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Abstract

We propose a novel approach to human action recogni-

tion, with motion capture data (MoCap), based on group-

ing sub-body parts. By representing configurations of ac-

tions as manifolds, joint positions are mapped on a sub-

space via principal geodesic analysis. The reduced space is

still highly informative and allows for classification based

on a non-parametric Bayesian approach, generating behav-

iors for each sub-body part. Having partitioned the set of

joints, poses relative to a sub-body part are exchangeable,

given a specified prior and can elicit, in principle, infinite

behaviors. The generation of these behaviors is specified

by a Dirichlet process mixture. We show with several ex-

periments that the recognition gives very promising results,

outperforming methods requiring temporal alignment.

1. Introduction

Human action recognition is still a challenging and stim-

ulating problem especially when considering motion cap-

ture data (MoCap), which are relevant in several applica-

tions including robotics, sports, rehabilitation and enter-

tainment. A considerable amount of work has been pro-

posed so far to solve problems arising in action recogni-

tion, such as view-point change, occlusions, likewise vari-

ations in behaviors amid different subjects performing the

same action. However there is a significant difference be-

tween MoCap and 2D/2.5D action representations, and it

could be argued without fear that the two recognition prob-

lems are drastically different, as they address different fea-

ture spaces and representations and, consequently, different

recognition methods. MoCap sequences represent actions

by 3D points, and joints of the human skeleton with appro-

priate kinematics. These data can, for example, be acquired

by means of an RGB-D sensor, such as the Kinect, by in-

frared marker tracking systems, such as the Vicon System,

or via back-projection techniques using multiple cameras.

With this kind of data, occlusions so far have not been con-

sidered a major issue, such as with 2D/2.5 D data, how-

ever variations amid behaviors are still a major problem to

be handled. Among the most relevant approaches we re-

call [14, 19, 17, 23, 30], all using noise and occlusion free

datasets. In [14] actions are represented as structured-time

series, with each frame lying on a high-dimensional am-

bient space, from which a spatio-temporal manifold is ob-

tained by a dimensionality reduction approach, based on dy-

namic manifold warping, accounting only for joints transla-

tion. In [29], instead, both joints rotations and translations

are considered, so as to construct a novel class of features in

SE(3)×· · ·×SE(3), obtaining a full feature space mapped

on the Lie algebra. In [17] actions are represented via joint

covariance descriptors, so as to work with symmetric posi-

tive definite matrices, which lie on Riemannian manifolds.

In most of the approaches the representation of the joints

space is a major issue and the need for a viable compromise

between space reduction and completeness seems evident.

In this sense we propose a novel representation for MoCap

data, by introducing a new skeleton model, which has the

advantage of considering the ambient space of the joints

and mapping it into a reduced space via Principal Geodesic

Analysis. The advantage of the proposed representation is

that it keeps the most from the joints information and, at

the same time, it provides the most suitable transformation

to approach the recognition problem with a non-parametric

Bayesian model.

Indeed, the representation model is crucial, both for elic-

iting features and for the recognition method used. For

example, [14, 29, 19] consider a time-based ordering for

which a temporal alignment is needed. In particular, [19]

decompose the 3D joints into subspaces representing either

the motion of a single body part, or of the combination of

multiple ones. In our approach, instead, for each joint of the

skeleton, and for each configuration in the action space, we

keep the global transformation of the joint reference frame

with respect to the world inertial frame. These transforma-

tion matrices are elements of a Riemannian manifold, and

joints of the human skeleton have ranges of variation, which

can be gathered into groups. In particular, we consider 6

sub-body groups, corresponding to the head, left and right

legs, torso, left and right arms, respectively. Each of these

defined groups represents a set of possible motions of the
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associated sub-body part, and it is such that the elements

in the set are order independent and exchangeable, making

unnecessary the temporal alignment, as for example pro-

posed in [14, 15, 29]. We provide a representation for these

groups via the principal directions of each of them, in the

configuration space. The obtained feature space proves to

be good for classification, based on clustering. The basic

idea is that every type of action generates specific set of be-

haviors for each sub-body part. To capture similarities amid

behaviors we approach the classification problem with the

Dirichlet process mixture model. Other approaches con-

sidering behaviors classification are [23, 30, 31]. In [23],

the most informative joints are extracted by considering the

fastest joints or the joints that mostly vary in angles. Sim-

ilarly, [30] construct an actionlet ensemble, which is a col-

lection of the most discriminative primitive actions, which

in turn are the representative features of subsets of joints of

an action sequence. These actionlets are learned within the

SVM framework. [31] introduce eigenjoints as novel fea-

tures so as to represent an action as the set of static pose,

offsets and joints motion. Many approaches use datasets

like [13, 7, 25, 24], which consider only 3D joints loca-

tions. Our approach, requiring full 3D poses, can be applied

to these datasets too. In fact, following [29] the root joint

(see Fig.1) can be simply considered translated with respect

to the world origin, without rotations, and each other joint

rotation matrix can be evaluated as the minimum rotation

required to carry the world’s x-axis onto the joint’s bone.

The advantage of our approach is that behaviors are gen-

erated by Dirichlet process mixtures, exhibiting a great flex-

ibility, and performing well both with queries formed by a

single frame and with queries formed by a set of frames

which do not need to be ordered, in so showing to be ro-

bust with respect to frame occlusions, actions interruptions,

and looping repetitions. Indeed, the great benefit of the pro-

posed method, called PGA-DPM, is that it provides a simple

representation for basic actions, which is very suitable for

learning. It can be used to generalize the recognition prob-

lem when time and subsequence relations are effectively

needed to define complex actions, by combining different

basic actions.

The paper is organized in the following manner. In Sec-

tion 2, we focus on some preliminary definitions and meth-

ods that will be used to define the feature space. How

groups of joints are obtained by collecting these features

into groups, according to the limbs of the human skeleton, is

explained in Section 3. In Section 4, we introduce the clas-

sification model based on Dirichlet process mixtures gener-

ating a representation of an action, which can possibly ex-

ploit some empirical knowledge of the action itself. In Sec-

tion 5 results are presented, and a comparison with a state of

the art method (the Dynamic Manifold Warping, [15, 14])

is proposed. Finally, in Section 6, we address some future

developments together with some conclusive discussion.

2. Preliminaries

In this preliminary part we provide some basic notions

that are used for the feature space representation, for further

details on the basic concepts we refer the reader to [26, 11].

In the following, vectors are denoted by boldface symbols

and matrices by upper case letters. We start considering the

set of transformations T in SE(n), n = 3:

T =

[

R d

0
1×3 1

]

(1)

Here R ∈ SO(3) is the rotation matrix, and d ∈ R
3 is the

translation vector. T ∈ SE(3) has 6 DOF and is used to

describe the pose of the moving body with respect to the

world inertial frame. SO(3) and SE(3) are Lie groups and

their identity elements are the 3× 3 and 4× 4 identity ma-

trices, respectively. The tangent space of a Lie Group at

its identity element defines its Lie algebra. The Lie algebra

so(3) of SO(3) is formed by skew-symmetric matrices of

the form:

so(3) = {Ω |Ω ∈ R
3×3,Ω = −Ω⊤} (2)

Ω can be uniquely identified with a vector w ∈ R
3. The Lie

algebra se(3) for SE(3) is defined as following:

se(3) =

{[

Ω v

0
1×3 0

]
∣

∣

∣

∣

∣

Ω ∈ so(3),v ∈ R
3

}

, (3)

Given an element U ∈ se(3) on the tangent space TISE(3)
at the identity I of SE(3), the corresponding element T ∈
SE(3) can be evaluated just by using the exponential map:

exp : se(3) → SE(3), where exp in SE(3) is the matrix

exponential. The inverse mapping is log : SE(3) → se(3),
where log in SE(3) is the principal matrix logarithm. The

same mappings hold when restricting to SO(3). Elements

of se(3) can be associated with the tangent vector of a

curve A(t) ∈ SE(3), at t, representing the local motion

of a rigid body. Elements of this kind are called twists,

and can be uniquely represented by a 6-dimensional vector

(ω(t)⊤,v(t)⊤)⊤, physically corresponding to the instanta-

neous angular velocity and the instantaneous linear velocity

of the body, both expressed in the moving body reference

frame. The operation (·)
∨

converts a 4 × 4 twist into the 6

dimensional vector (ω(t)⊤,v(t)⊤)⊤.

Given a metric specifying properties of the rigid body,

[32] show that a geodesic is a locally length-minimizing

curve on a manifold, such that, for two configurations

A,B ∈ SE(3):

A=

[

RA dA

0 1

]

B=

[

RB dB

0 1

]

(4)
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the geodesic Γ(t) is:

Γ(t)=

[

RA exp(Ω0t) (dB−dA)t+dA

0 1

]

(5)

Here Ω0 = log(R⊤

ARB). The problem to solve in this

preliminary part is the following: given a set of Euclidean

transformations T1, ..., Tn ∈ SE(3), find the principal di-

rections maximizing the variance of the data. This can

be obtained by applying the Principal Geodesic Analysis

(PGA) introduced for the first time in [12], which is a gen-

eralization of PCA when a manifold is considered. The

authors define the variance, the subspaces and the projec-

tions in a manifold setting. In particular the subspaces,

that in PCA were linear, now are geodesic sub-manifolds.

An extension of the algorithm provided in [12] to SE(3)
is straightforward and illustrated in Algorithm 1. Indeed,

given the set of body transformations, the centroid T̄ is

computed, so as to minimize the distance of T̄ with all the

T s in the starting set. If the T s are close enough to each

other, it is known that the centroid is unique as stated in

[20, 18]. This is the intrinsic mean on the manifold, a gen-

eralization to SE(3) is straightforward.

Data: T1, ..., Tn ∈ SE(3)
Result: Principal directions ei ∈ TµSE(3)

(tangent space of SE(3) at µ) with

associated variances λi ∈ R

1) Compute µ = [R̄ |d̄] with R̄ Karcher Mean in

SO(3) [20] and d̄ = 1/n
∑

i di on T1, ..., Tn;

2) Compute Γµ,Ti
(t), t ∈ [0, 1] as in eq.(5) with

RA replaced by R̄ and RB replaced by Ri,

obtained from Ti, i = 1, . . . n (eq. (1);

3) ∀Ti compute the twist Ui = Γ−1
µ,Ti

(t)Γ̇µ,Ti
(t),

t ∈ [0, 1];

4) Compute the vector (ω(t)⊤,v(t)⊤)⊤i = U∨
i ;

5) S = 1
n

n
∑

i=1

(ω(t)⊤,v(t)⊤)⊤i (ω(t)⊤,v(t)⊤)i;

6) {λi, ei} = eigenvalues and eigenvectors of S;

Algorithm 1: Principal Geodesic Analysis in SE(3)

Fact: The twist Ui physically interprets the local motion of

a joint, and using its vector representation (ω(t)⊤,v(t)⊤)i,
we obtain that S, is in R

6×6, and clearly symmetric. Each

principal direction ei, resulting from the PGA algorithm, as

an eigenvector of S is in R
6. As Γµ,Ti

is a geodesic, the

product (Γ−1
µ,Ti

Γ̇µ,Ti
), once applied the ∨ transformation,

according to the fact that a twist can be uniquely represented

by a 6-dimensional vector, specifies the motion between the

joint and the Karcher mean R̄.
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Figure 1: On the left a skeleton with the whole set of joints,

groups are highlighted by color. On the right joints mo-

tion with respect to v and ω highlighting motion similarities

within groups (better seen in color).

3. Action Representation Model

In MoCap representation, input data are sequences of

joints configurations. Each sequence is about a single sub-

ject performing a specific action. Joints are associated with

a subject skeleton and are expressed along time as transfor-

mation matrices, of the form given in eq. (1), with respect to

the global coordinate system. We consider K = 19 joints,

see Figure 1, left. To properly obtain a representation for

each sub-body part we introduce some notation.

Notation In the following we denote ji an unordered se-

quence of frames of the action Ai, which we call sample

sequence. The length of each sample sequence ji, is de-

noted by Lji
. Given Ni sample sequences for action Ai,

ji = 1i, . . . , Ni, their length is L1i , . . . , LNi
. Each sample

sequence is divided in 6 groups, indexed by m. A feature

vector of a number of sample sequences for action Ai is

vlji,m, where m = 1, . . . , 6, ji = 1i, . . . , Ni, and the super-

script l varies on the sequence length.

Dji denotes the block matrix for the MoCap joints trans-

formations, for each sample sequence ji:

Dji
=









T 1
ji,1

T 1
ji,2

· · · T 1
ji,K

: : : :

T
Lji

ji,1
T

Lji

ji,2
· · · T

Lji

ji,K









, (6)

Here each block T l
ji,k

, k = 1, . . . ,K, is a 4× 4 transforma-

tion matrix (see eq. (1)) with respect to the world’s inertial

frame of the sample sequence ji of action Ai, relative to the

k-th joint in frame l.
Cji denotes the block matrix of all the configurations of a

single sample sequence ji of action Ai, taking into account
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Figure 2: Stack of feature vectors v
l
ji,m

of the first group

(m = 1) of joints into a 7× (L1i +L2i + · · ·+LNi
) matrix.

all the 6 sub-body groups:

Cji
=







g1ji,1 · · · g1ji,6
: : :

g
Lji

ji,1
· · · g

Lji

ji,6






, (7)

Here each glji,m is a block of the form (T l
ji,a

, . . . , T l
ji,b

), of

dimension (4×4)·h, with h the number of joints of the m-th

sub-body group, for m = 1, . . . , 6 and 1 6 a < b 6 K.

Matrices like Cji are used to compute the features of

sample sequences of action Ai, as shown in Algorithm 2.

4. Classification via preferences on DPM

In this section we investigate how to specify an action

via a number of behaviors, generated by the body parts in-

volved in the action, and show how to model the action

classification problem via the Dirichlet process mixtures.

The approach, in this basic formulation, proves that tem-

poral alignment (see e.g. [29]) can be avoided, in so signif-

icantly improving the classification process. We introduce

first some notation for this section.

Notation: matrix Mi,m,m = 1, . . . , 6, i = 1, . . . nA,

nA the number of actions, collects the sampled sequences

of the m-th group of action Ai; a single element of Mi,m is

a realization xim,k of a stochastic variable Xi,m ∈ R
7, real-

izations are indicated with lowercase letters. The length of

the collected sequences for action Ai is
∑Ni

ji=1 Lji . Since

only a subset of Mi,m is considered for training (see Algo-

rithm 3), we indicate the length of the training data for the

i-th action, m-th group, by Jim . The training set for action

Ai, group m, is X ◦
i,m = {(xim,k, yim,k)|k = 1, . . . , Jim},

im = 1, . . . , nA. A query Q⋆
m, m = 1, . . . , 6, is a set of

Data: Ni sample sequences Cji , as in eq. (7), of

lengths Lji for action class Ai

Result: Feature vectors of action Ai organized

into matrices {Mi,m}m=1,...,6

1. For each block glji,m, of Cji , compute the

first principal direction e
l
ji,m

∈ se(3),
according to Algorithm 1.

2. Map e
l
ji,m

into a transformation matrix

T l
ji,m

∈ SE(3), via exponential mapping.

3. Build the feature vector vl
ji,m

∈ R
7, using

the rotation angles and the translation

obtained from T l
ji,m

, and the norm of the

instantaneous linear velocity, obtained from

e
l
ji,m

.

for m = 1 : 6 do
Mi,m =

[

v
1
1i,m, ...,v

L1i

1i,m
, . . . ,v1

Ni,m
, ...,v

LNi

Ni,m

]

;

end

Algorithm 2: Features extraction

variables {xim,j1 , . . . ,xim,jq}, xu ∈ R
7, i.e. any permu-

tation of a set of elements, sampled from a possibly tem-

porally ordered MoCap sequence. It is, thus, intended that

Q⋆
m is the result of the transformation of the joints of an ob-

served action via PGA, and it is related to a group m. The

classification problem is to classify, for each m = 1, . . . 6,

the query Q⋆
m, and issue a label y ∈ {ℓ1, . . . , ℓnA

} for the

observed action. In the following we shall omit the sub-

script m in xim,k and yim,k.

Recall that the feature vectors are obtained from the prin-

cipal directions of a group of joints whose rigid motions

are referred to a global frame. Therefore within the set of

observations for the same group the response vectors are

considered an exchangeable sequence, and the ordering is

irrelevant. Given a training set X = ∪i ∪m X
◦

i,m, if the

parameters are known, hence p(Θ|X ) can be estimated,

then Q⋆
m, m = 1, . . . , 6, can be classified basing on the

predictive densities:

Pi(y
⋆
i,k = y|X , Q⋆

m) =
∫

D
p(y⋆i,k = y|X , Q⋆

m,Θ)p(Θ|X , Q⋆
m)dΘ

(8)

With D the domain and Θ the vector of all parameters in the

model. Then using the loss function based on the percent-

age of correctly classified, the label assigned to each group

m is estimated by the maximum a posteriori MAP:

ŷ = argmax
y

{p(y⋆i,k = y|X , Q⋆
m)} (9)
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The basic steps for classification and prediction are illus-

trated in Algorithms 3 and 4. The probability model that we

consider for the classification problem is the popular Dirich-

let process (DP) mixtures (DPM)[10, 6]. A DP places a dis-

tribution on the space of distributions, generating a distri-

bution on the countable set of mixtures, hence we consider

a set of DPMs, one for each group m, of each action Ai.

Consider the multivariate normal N7(µ,Σ) with µ ∈ R
7,

Σ ∈ R
7×7 and θi,j = (µi,j ,Σi,j), j < ∞:

xi,k|θi,j ∼ N7(xi,k|µi,j ,Σi,j)
θi,j |Gm ∼ Gm

Gm ∼ DP (αH)
(10)

Here we are assuming that observations are i.i.d sampled

from a parametric family, namely a multivariate Gaussian

distribution, with parameters θi,k, which are in turns inde-

pendently sampled from an unknown distribution Gm on

which is placed a Dirichlet process DP (αH). Where α is

the concentration parameter affecting the number of clus-

ters that will be generated, and H is the base distribution.

Namely, for a subset of X , H(A) = E[Gm(A)], and typi-

cally H is taken to be the conjugate prior of the observation

distribution. Here we follow the conjugate approach for the

multivariate normal, by choosing:

(Σi,j |β,W ) ∼ W(β, βW−1)
(µi,j |Σi,j ,ν, ρ) ∼ N (ν, (ρΣi,j)

−1))
(µi,j ,Σi,j) ∼ NW (ν,ρ, β, βW )

(11)

HereW is the Wishart distribution, with β > 7 DOF, 7
the dimension of N7(·). NW is the normal Wishart joint

prior distribution with ν,ρ, β, βW common to all mixture

components of the group m. In turn the priors for ν and ρ

are Gaussian and Gamma, while for W and β the priors are

the Wishart and Gamma (see [16, 27] for further details).

The unknown distribution is evaluated at observation

points and, according to its discreteness, generates clusters

of observations. Namely, in any sample θi,1, . . . ,θi,j from

Gm there is a positive probability of identical values (see

[9, 10]). Then each sample can either be assigned to an

existing partition or it can generate a new one. This is regu-

lated by the probabilities nh/(α+n−1) and α/(α+n−1),
which induce the Chinese restaurant process (CRP), and the

mixing proportion probabilities πi,j . Where nh is the num-

ber of elements of the cluster to which the repeated sample

θi,h would belong to.

Inference of the parameters and hyperparameters is ob-

tained for each group by Gibbs sampling and updating them

from their posterior distribution as specified above, using

the steps for conjugate prior as in [22] and adopting the

clever solutions indicated in [27]. Many approaches have

highlighted the need to investigate the dependences among

data in different groups when these are generated by DPMs,

Data: Xi,m, i=1, . . ., nA,m=1, . . ., 6
Result: Parameters

Θi,m,Ki,m, i=1, . . ., nA,m=1, . . ., 6
for i = 1 : nA do

for m = 1 : 6 do
X ◦

i,m := draw sample training data from

Xi,m;

Testi,m := Xi,m\X ◦
i,m;

θji,jm := estimate parameters using

eq.(11), via DPM;

Fix Ki,m as new clusters approach zero;

Θi,m = {µ1, . . .µKi,m
, Σ1, . . .ΣKi,m

,

π1, . . .πKi,m
};

end

end

Algorithm 3: Basic steps in parameters estimation

since the work of [8]. Where, in particular, the problem of

how to determine clusters of data in the presence of par-

tial exchangeability and unknown partition of the observa-

tions, has been addressed. A solution has been indicated

in [28] via the hierarchical DPM (HDPM), which can dis-

cover dependencies, generating shared clusters with differ-

ent weights but same locations.

In the representation we propose, considering the do-

main of the sub-body part features, two subgroups might

take values in space regions that intersect. Despite this the

range are usually different and also the observations come

separated at the source and the groups are known. There-

fore, we combine the groups, in terms of the behaviors that

are generated by the DPM for each of them, and use the

MAP on the combined groups. To this end we define a

preference matrix F of size nA × 6, with nA the num-

ber of action classes considered. The stochastic matrix F ,

which provides the optimal combination for the groups, is

a matrix of multinomial variables, evaluated according to

a success matrix S. Each row of F represents the experi-

ment assigning a success to the group m, which provides

the best contribution to characterize the action. This is as-

sessed by assigning a success to the group that has higher

concentration parameter, since this is sensible to the number

of behaviors, which implies that the group undergoes sev-

eral changes during the action execution, hence the involved

sub-part characterizes the action. The successes recorded

for the multinomial at S are the values of the concentration

parameter α estimated for the DPM of the group. The pa-

rameters of F are estimated at the final step of the Gibbs

sampling and kept common to all the groups estimation.

An initialization of S is provided assigning a success to the

group/groups that are considered the more active ones in the
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action execution, according to a rule of thumb. The com-

Data: Q⋆
m, Θi,m,Ki,m, Si,m,

i = 1, . . . , nA,m = 1, . . . , 6
Result: Matrix M for ∪6

m=1Q
⋆
m

for i = 1 : nA do

for m = 1 : 6 do
p(Q⋆

m|Θi,m,Ki,m) ∝
∑Ki,m

j=1 N7(Q
⋆
m|θi,j)πj ;

with (θi,j ,πi,j)∈Θi,m ;

Zi,m := p(Q⋆
m|Θi,m,Ki,m);

end

end

Final step

Compute the new mixture weights F according to

eq.(12);

M = F⊤Z;

Algorithm 4: Basic steps of prediction

putation of F is carried at the last step of Gibbs sampling.

Considering that each group is evaluated in turn, for each

action i, Fi is the i-th row of F corresponding to the cur-

rent evaluated action. Let κi,m be the prior assigned to the

Dirichlet distribution for the group m and t the final step of

Gibbs sampling:

F
(t)
i,m =

S
(t)
i,m + κi,m

nA +
∑6

m=1 S
(t)
i,m

(12)

Then the new mixture is obtained simply as F⊤Z, where

Z is the matrix of the DPM distributions computed for each

group m. We can note that the final mixture is still a mixture

combining the DPM models for each group, weighting the

groups in a way sensible to the number of behaviors elicited

by the DPM model. Without a non-parametric approach this

last mixing, which so to say meta-evaluates the estimation,

would have not been possible.

5. Experiments and Results

In this section we report experimental results on the per-

formance of the proposed method for MoCap action recog-

nition. The goal of the experiments is to verify the accuracy

of the prediction of a new observed action.

Data We consider 11 types of ”cut actions” (i.e. a single

type of action per sequence) obtained from HDM05 [21],

where each cut action is performed by 4 different subjects,

and similar types of actions from CMU [1]. Results from

[1] are not reported, though almost the same, being the data

Action Rotate, Group 3

Behaviors:

Action Punch, Group 2

Behaviors:

Action Grab, Group 2

Behaviors:

Action Walk, Group 5

Behaviors:

Figure 3: Behaviors clustering for 4 sub-body parts of 4

different actions.
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Figure 4: Histograms of MAP response for each Action

Category

noiseless. The actions considered from [21] are: grab an

object from high with right arm (3401 frames), hop with

both legs (5941 frames), kick with left leg (3828 frames),

kick with right leg (3374 frames), punch with left arm (3144
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Action Class #Clusters

Group 1

#Clusters

Group 2

#Clusters

Group 3

#Clusters

Group 4

#Clusters

Group 5

#Clusters

Group 6

Kick with Left Leg 10 17 14 10 26 15

Throw with Left Arm 13 23 15 12 19 18

Squat 12 13 13 3 11 13

Walk 8 11 10 4 9 8

Table 1: Number of clusters generated for each group of joints for 4 different categories of actions

Figure 5: Confusion matrices for comparing the PGA-DPM algorithm, on the left, with the one presented in [14] by Gong

and Medioni, on the right.
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Figure 6: MAP evaluation with repeated random samples

from test data, for each Action Category

frames), rotate both arms backward (1632 frames), run on

place (139440 frames), sit down on chair (2884 frames),

squat (9519 frames), throw an object with right arm (2254

frames), walk (3470 frames). We have also considered the

datasets [2, 3, 4, 5], and adapted it to our full 3D model.

Despite these datasets are noisier than CMU and HDM05,

results are comparable but not reported for lack of space.

Method All data available are structured according to the

description provided in Section 3, then they are transformed

to obtain the PGA features according to the description pro-

vided in Section 2. We have trained the DPM model as

follows. For each action we consider 800 data for train-

ing. From this set we then define the training set for each

group by randomly sampling from the chosen training set.

All the remaining frames are considered for test. Running

the Gibbs sampler we obtain a model for each group of each

action and we store it into a data structure. We distinguish

between a set of frames, randomly chosen from a sequence

of frames, in which data are ordered according to the action

evolution.

Now, given a set of frames (or an action sequence) from

the data test, we first estimate the probability of each group

according to the parameters of the model and the mixture

components and then we combine the groups using the es-

timated weight matrix F , eq. (12). The resulting classifica-

tion is obtained by MAP estimation, eq. (9). Estimation of

either a set or a sequence of actions takes less than one sec.

of computation time. Similarly geometric transformations

and features computation are on the order of 102 sec. On
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Approach Total Accuracy

PGA-DPM 93.86%

DMW 85.78%

Table 2: Total Accuracy for the PGA-DPM based method

and for DMW[14]

the other hand the computational cost for learning is quite

high, of the order of 106 sec.

Experiments We have conducted the following experi-

ments. In the first experiment we have tested all the test data

and verified the MAP on the whole set, this is illustrated in

Figure 4. Each panel, in the figure, shows the histogram of

the classification on the whole test set. We can note that the

maximum is always correctly assigned. In the second ex-

periment, given that the number of test data is N , we have

randomly sampled from them N/10 + k, k > 10 data and

the results are reported in Figure 6.

Finally we have extracted actions as sequences from the

test data and the classification results are reported in the

confusion matrix in Figure 5, where the results have also

been compared with [15].

Comparisons We have chosen the algorithm of Dynamic

Manifold Warping [15, 14]. DMW is basically an instance-

based learning in which the action sequences are repre-

sented as structured time series. The authors, in [15], first

temporally align the testing sequence with all the training

labeled sequences. They then extract for each aligned se-

quences’ frames a similarity measure between the testing

sequence and the temporally aligned training sequences,

and the action performed in the testing sequence is labeled

with the label of the training sequence from which the test-

ing sequence has minimum distance. In our approach, in-

stead, we learn a model so as to estimate the most repre-

sentative behaviors made by each of the groups of joints,

not considering structured sequences along time, but con-

sidering, instead, each feature conditionally independent on

the other ones. Therefore, while DMW depends on the se-

quences considered and for each new input sequence has to

compare it with all the labeled training sequences, our al-

gorithm has a learning process so that the testing process

is immediate and the accuracy in recognition increases with

the number of features considered in the DPM process, fol-

lowing the ”rich get richer” fashion, typical of the DPMs.

It is worth mentioning that in order to evaluate the DMW

accuracy, we have implemented a version of DMW with a

choice of parameters and methods that are hidden in [15].

In order to compare our algorithm with DMW, we have

considered 10 configuration sequences of PGA-based fea-

tures for each action category group. We have used the

term configuration sequence, since in our model we do not

have ordered data, but instead features that are exchange-

able. The tests have been made on 10 actions. In this case,

the MAP estimate for our algorithm is computed for each

single query frame of a configuration sequence, and the ac-

curacy for each query sequence is evaluated as the percent-

age of correctly recognized query frames in the query se-

quence over the total number of frames of that sequence.

For DMW, instead, the accuracy is simply the number of

sequences correctly recognized, over the total number of se-

quences. In Figure 5, it is possible to see the confusion ma-

trix for our approach and for DMW. In Table 2, it is shown

for the two approaches the accuracy computed as the total

number of recognized query frames over the total number

of considered sequences.

Evaluation Table 1 shows the number of clusters esti-

mated by the PGA-DPM (as explained in Section 4) for

each of the sub-body group of joints for 4 different types

of actions. Note that in the kick and throw actions, a large

number of clusters is estimated for the most representative

groups of joints (i.e. the left leg and the left arm, respec-

tively). For the squat and the walk actions, instead, exclud-

ing the joints of the torso (group 4), all the sub-body groups

are involved in the motions, and therefore a more distributed

number of clusters is estimated. Furthermore, in Figure 3 it

is possible to visualize some of the generated clusters for an

arbitrary sub-body group in 4 different actions categories:

kick with left leg, rotate arms, punch with left arm, walk.

6. Conclusions

We have presented a novel approach to the human ac-

tion recognition problem, by considering a new MoCap fea-

ture representation, which has been verified to be suitable

for developing a non-parametric Bayesian method for clas-

sification, via the DPM. In particular, we have combined

the skeleton joints into groups and reduced their dimen-

sionality by means of PGA, so as to maintain a solid in-

formation on motion. Assuming features to be condition-

ally independent, for each group, given a specific prior, we

have applied DPM to generate the most representative be-

haviors for each group of joints and each action category

so as to perform classification. Our approach proves that

a time-ordered representation for MoCap sequences is not

needed and indeed, as shown in Section 5, performances are

good and our approach outperforms exactly time-alignment

based approaches as [14]. Basing on these promising results

we are now investigating more complex actions, in partic-

ular the collaborative ones, in which two different subjects

must pass objects between them, and carry objects together.
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