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Abstract

In this paper, we propose a new multi-view domain gen-

eralization (MVDG) approach for visual recognition, in

which we aim to use the source domain samples with mul-

tiple types of features (i.e., multi-view features) to learn ro-

bust classifiers that can generalize well to any unseen tar-

get domain. Considering the recent works show the domain

generalization capability can be enhanced by fusing multi-

ple SVM classifiers, we build upon exemplar SVMs to learn

a set of SVM classifiers by using one positive sample and

all negative samples in the source domain each time. When

the source domain samples come from multiple latent do-

mains, we expect the weight vectors of exemplar SVM clas-

sifiers can be organized into multiple hidden clusters. To

exploit such cluster structure, we organize the weight vec-

tors learnt on each view as a weight matrix and seek the

low-rank representation by reconstructing this weight ma-

trix using itself as the dictionary. To enforce the consisten-

cy of inherent cluster structures discovered from the weight

matrices learnt on different views, we introduce a new regu-

larizer to minimize the mismatch between any two represen-

tation matrices on different views. We also develop an effi-

cient alternating optimization algorithm and further extend

our MVDG approach for domain adaptation by exploiting

the manifold structure of unlabeled target domain samples.

Comprehensive experiments for visual recognition clearly

demonstrate the effectiveness of our approaches for domain

generalization and domain adaptation.

1. Introduction

In many visual recognition tasks, the training and testing

samples are with different data distributions. Recently, a

large number of domain adaptation methods [20, 19, 1, 17,

6, 24, 14, 13, 15, 26, 27] have been proposed to explicitly

cope with the data distribution mismatch between the train-

ing samples from the source domain and the testing samples

from the target domain. Meanwhile, the domain generaliza-

tion techniques [30, 38, 31] were also developed to learn

robust classifiers that can generalize well to any unseen tar-

get domain. Please refer to Section 2 for the recent works

on domain generalization and adaptation.

In most existing domain generalization/adaptation ap-

proaches, only one type of feature is used during the train-

ing and testing process. When multiple types of features

are available for the training and testing samples, the visu-

al recognition results can be improved by fusing multi-view

features (See Section 2 for the related works on multi-view

learning). Recently, multi-view domain adaptation methods

[3, 41, 39] were also proposed to reduce the data distribu-

tion mismatch and simultaneously fuse multi-view features.

In [3], Blitzer et al. proposed to learn the projection ma-

trices by using Canonical Correlation Analysis (CCA) and

adapt the source classifiers to the target domain based on the

learnt projection matrices. In [41], the training samples are

weighted similarly as in [24], while the prediction scores on

different views are enforced to be close to each other. Yang

and Gao proposed to add the Maximum Mean Discrepan-

cy (MMD) based regularizer under the CCA framework in

[39]. However, these multi-view domain adaptation meth-

ods [3, 41, 39] are only applicable when the target domain

data is available.

In Section 3, we propose a multi-view domain general-

ization (MVDG) approach by using multi-view source do-

main samples to learn robust classifiers that can generalize

well to any unseen target domain. Our method is motivated

by the existing work [38] that experimentally demonstrates

the domain generalization capability can be enhanced by

fusing multiple SVM classifiers. Specifically, we build up

our work on exemplar SVMs [29], in which we learn a set

of SVM classifiers by using one positive sample and all

negative samples in the source domain each time. As in

[38, 18, 23], we also assume that the source domain sam-

ples come from multiple latent domains, so the weight vec-
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tors of exemplar SVM classifiers corresponding to the pos-

itive training samples from the same latent domain should

be similar to each other, which means the weight vectors

can be organized into multiple hidden clusters. To exploit

such cluster structure, we first organize the weight vectors

learnt on each view as a weight matrix, and then seek the

low-rank representation (LRR) [28] for each weight matrix

by reconstructing this matrix using itself as the dictionary.

To enforce the consistency of inherent cluster structures dis-

covered from the weight matrices learnt on different views,

we introduce a new regularizer to minimize the mismatch

between any two representation matrices on different views.

We develop an efficient alternating optimization algorithm

for our nontrivial optimization problem.

In Section 4, we further extend our MVDG to multi-

view domain adaptation (MVDA), in which we introduce a

smoothness based regularizer to exploit the manifold struc-

ture of unlabeled target domain samples. In section 5, we

conduct comprehensive experiments and the results clearly

demonstrate our approaches are better than related methods

for visual recognition.

Our major contribution is an effective multi-view do-

main generalization method MVDG and its extended ver-

sion MVDA. To the best of our knowledge, our work is the

first to study the domain generalization problem under the

multi-view setting.

2. Related Work

Our work is related to the domain generalization ap-

proaches [30, 38]. In [30], Muandet et al. proposed to re-

duce the marginal distribution mismatch between multiple

latent domains while keeping their conditional distributions.

But domain labels are required in [30], which are usually u-

navailable in many real-world applications. The most relat-

ed work [38] aims to exploit the low-rank structure in pos-

itive training samples based on exemplar SVMs [29]. All

the existing approaches [30, 38] focus on the single-view

learning setting, while our work is the first for multi-view

domain generalization.

In this work, our MVDG is extended for domain adap-

tation, so we also discuss the existing domain adaptation

methods here. The existing domain adaptation method-

s can be roughly categorized into feature-based methods

[20, 19, 1, 17], classifier-based methods [6, 14, 13, 15, 27],

and instance-reweighting methods [24]. However, the

above works did not discuss how to cope with multi-view

source domain samples, which is the focus of our work. As

discussed in Section 1, several domain adaptation method-

s [3, 41, 39] were recently proposed under the multi-view

setting. However, they are only applicable when the target

domain samples are available.

Our work is more related to recent latent domain discov-

ering methods [18, 23]. The work in [23] uses the clus-

tering method to partition the source domain samples into

different latent domains, while the approach in [18] aims to

maximize the separability of different latent domains based

on the MMD criterion [24]. After discovering the latent

domains, the classifiers trained for each latent domain are

fused to predict the target domain samples. However, the

number of latent domains is required and how to effectively

utilize multi-view features was not discussed in the above

methods.

Finally, we discuss the difference between our work

and the existing multi-view learning methods [21, 16, 11].

The approach in [21] proposed to employ Kernel Canon-

ical Correlation Analysis (KCCA) as the preprocessing

step and then train SVM classifiers based on the trans-

formed features. In [16], the above two-stage learning

problem was formulated as a unified optimization prob-

lem. In [11], a low-rank common subspace was learn-

t among different views. Moreover, several multi-view

semi-supervised learning methods [4, 34] were develope-

d. For manifold regularization based methods, the Lapla-

cian matrices from multi-view features are combined for

semi-supervised learning in [34], while the semi-supervised

Laplacian regularization is employed under the framework

of KCCA in [2]. In co-training [4], the confident unlabeled

training samples selected by using the classifier on one view

are added into the labeled data set to learn the classifier

on another view. However, the above multi-view learning

methods assume the training and testing samples are from

the same data distribution. In contrast, this assumption is

not required in our multi-view domain generalization and

adaptation approaches.

3. Multi-view Domain Generalization

In this section, we propose our multi-view domain gen-

eralization (MVDG) approach. For ease of presentation, a

vector/matrix is denoted by a lowercase/uppercase letter in

boldface. The transpose of a vector/matrix is denoted using

the superscript ′. We also denote 0n,1n ∈ R
n as the n-dim

column vectors of all zeros and all ones, respectively. When

the dimensionality is obvious, we use 0 and 1 instead of 0n

and 1n. We also use O and I to denote the matrix of all ze-

ros and identity matrix, respectively. Moreover, we denote

A ◦ B as the element-wise product between two matrices.

The inequality a ≤ b means that ai ≤ bi for i = 1, . . . , n.

We also denote A−1 as the inverse matrix of A.

In this work, we study the multi-view domain generaliza-

tion problem under the binary classification setting. Sup-

pose we have n positive training samples and m negative

training samples in the source domain, and each sample is

represented as V views of features. We denote each positive

sample as x+
i = (x1

i

+
, . . . ,xV

i

+
), i = 1, . . . , n, and each

negative sample as x−
j = (x1

j

−
, . . . ,xV

j

−
), j = 1, . . . ,m.
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3.1. Domain Generalization with Exemplar SVMs

The key issue in domain generalization is to enhance the

domain generalization capability of classifiers learnt from

the training data. The recent works [18, 23] proposed to

discover multiple latent domains from the training data, and

train the discriminative classifiers for each latent domain.

By fusing the classifiers from different latent domains, the

integrated classifiers are robust to the changes of domain

distributions, and thus generalize well for predicting the test

samples from any unseen target domain.

However, the variance of training data in the real world

applications may be affected by many hidden factors which

usually overlap and interact with each other in complicat-

ed ways. As a result, discovering latent domains becomes

a nontrivial task. Instead of explicitly discovering the la-

tent domains, the recent work [38] proposed to exploit the

intrinsic low-rank structure of positive training samples. In

particular, their work builds upon the exemplar SVMs [29],

in which multiple SVM classifiers are learnt by using one

positive training sample and all negative training samples

each time. Since those works [38, 29] were proposed for

single-view training data (i.e., V = 1), we omit the super-

script v in this section for ease of presentation. Let us de-

note fi(x) = w′
ix as the exemplar SVM classifier learnt by

using the i-th positive sample x+
i and all negative samples1

{x−
j |

m
j=1}. The objective of exemplar SVMs can be written

as follows,

min
wi,ξi,ϵij

1

2

n
∑

i=1

∥wi∥
2 + C

n
∑

i=1

ξi + C

n
∑

i=1

m
∑

j=1

ϵij (1)

s.t. wi
′x+

i ≥ 1− ξi, ξi ≥ 0, ∀i,

wi
′x−

j ≤ −1 + ϵij , ϵij ≥ 0, ∀i, ∀j,

where ∥wi∥
2 is the regularization term, ξi’s and ϵij’s are

the slack variables, and C is the tradeoff parameter.

Since the positive training samples from the same latent

domain are similar to each other, the prediction scores of

positive samples from those exemplar classifiers should be

low-rank. The work in [38] further employs a nuclear norm

based regularizer on the prediction score matrix to exploit

the intrinsic low-rank property of positive training samples.

Nevertheless, this method only considers single-view train-

ing data. We show that when the training data consist-

s of multi-view features, it is beneficial to jointly exploit

the low-rank structures of the exemplar classifiers learnt on

multiple views.

3.2. Multi­view Domain Generalization

When the training data consists of multi-view features,

we learn exemplar SVMs on each view. Let us denote

1We do not explicitly use the bias term. Instead, we append 1 to each

feature vector.

fv
i (x

v) = wv
i
′xv as the exemplar classifier on the v-th view

learnt by using xv
i
+ and {xv

j
−|mj=1} as the training data, and

also denote Wv = [wv
1 , . . . ,w

v
n] as the weight matrix of all

exemplar classifiers on the v-th view.

The positive training samples may come from multiple

latent domains, so the exemplar classifiers corresponding

to the positive training samples from the same latent do-

main should be similar to each other, which means the

weight vectors wv
i ’s may come from multiple hidden clus-

ters. In this work, we exploit such membership informa-

tion (i.e., which cluster each weight vector wv
i belongs to)

by using low-rank representation (LRR) [28], which has

shown promising results in various real-world application-

s [37, 36]. Specifically, we seek a low-rank representation

matrix Zv ∈ R
n×n for each view such that the weight ma-

trix can be represented as Wv = WvZv + Ev , in which

Ev is an error term and expected to be close to zeros. It

has been shown in LRR that the representation matrix Zv

encodes the membership information of the samples, where

the within-cluster entries of Zv are usually dense, while the

between-cluster entries of Zv are usually sparse under cer-

tain conditions.

On one hand, with LRR, we expect to obtain a low-rank

representation matrix Zv . By jointly learning the weight

matrix Wv and the low-rank representation matrix Zv , we

encourage Wv to exhibit clear cluster structure, namely,

the weight vectors wv
i ’s learnt by using the positive sam-

ples from the same latent domain should be similar to each

other, while those from different latent domains are well

distinguished.

On the other hand, when the training samples are with

multi-view features, the membership information inferred

based on Wv’s on different views should be consisten-

t. It is hard to directly enforce such consistency based on

the weight matrices Wv’s, since the weight matrices learn-

t using different views of features are in different feature

spaces. Nevertheless, based on our low-rank representa-

tion, we can easily introduce the consistency by enforcing

the the representation matrices Zv’s from different views to

be close to each other with our newly proposed regularizer
∑

v,ṽ:v ̸=ṽ ∥Z
v − Zṽ∥2F .

Based on the above discussions, we formulate our opti-

mization problem as follows,

min
Zv,Wv,Ev

ξv
i
,ϵv

ij

V
∑

v=1





1

2
∥Wv∥2F + C

n
∑

i=1

ξvi + C

n
∑

i=1

m
∑

j=1

ϵvij





+
V
∑

v=1

(

λ2∥E
v∥2F +λ3∥Z

v∥∗
)

+
γ

2

∑

v,ṽ:v ̸=ṽ

∥Zv − Zṽ∥2F (2)

s.t. wv
i
′
xv
i
+ ≥ 1− ξvi , ξvi ≥ 0, ∀v, ∀i, (3)

wv
i
′
xv
j
− ≤ −1 + ϵvij , ϵvij ≥ 0, ∀v, ∀i, ∀j, (4)

Wv = WvZv +Ev, ∀v, (5)
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where ∥Wv∥2F is the regularizer for exemplar classifiers,

ξvi , ϵvi are the slack variables similarly as in (1), and C, λ2,

λ3, and γ are the trade-off parameters. The term ∥Ev∥2F is

used to enforce the error term Ev to be close to zeros, and

the regularizer ∥Zv∥∗ is the nuclear norm of Zv and used to

enforce Zv to be low-rank.

3.3. Optimization

To solve the problem in (2), we first introduce an inter-

mediate variable Gv for each Wv , such that we employ

low-rank representation (LRR) on Gv instead of Wv and

enforce Gv to be close to Wv . Specifically, we arrive at the

new objective as follows,

min
Zv,Wv,Gv

Ev,ξv
i
,ϵv

ij

V
∑

v=1





1

2
∥Wv∥2F + C

n
∑

i=1

ξvi + C

n
∑

i=1

m
∑

j=1

ϵvij





+
V
∑

v=1

(

λ1∥W
v −Gv∥2F + λ2∥E

v∥2F + λ3∥Z
v∥∗

)

+
γ

2

∑

v,ṽ:v ̸=ṽ

∥Zv − Zṽ∥2F (6)

s.t. wv
i
′
xv
i
+ ≥ 1− ξvi , ξvi ≥ 0, ∀v, ∀i, (7)

wv
i
′
xv
j
− ≤ −1 + ϵvij , ϵvij ≥ 0, ∀v, ∀i, ∀j, (8)

Gv = GvZv +Ev, ∀v, (9)

where λ1 is the tradeoff parameter. It can be observed that

the problem in (2) is a special case of (6) when λ1 approach-

es +∞. We solve (6) by using the alternating optimiza-

tion approach. Specifically, we iteratively update two sets

of variables {Zv,Ev} and {Wv,Gv, ξvi , ϵ
v
ij} until the ob-

jective of (6) converges.

Update Zv and Ev: When fixing Wv , Gv , ξvi , and ϵvij ,

the problem in (6) reduces to the following problem,

min
Zv,Ev

V
∑

v=1

(λ2∥E
v∥2F +λ3∥Z

v∥∗)+
γ

2

∑

v,ṽ:v ̸=ṽ

∥Zv−Zṽ∥2F (10)

s.t.Gv = GvZv +Ev, ∀v. (11)

By introducing the auxiliary variable Pv (resp., Qv) to
replace Zv in ∥Zv∥∗ (resp., Zv in the constraint (11)), the
problem in (10) can be solved by using inexact augment-
ed Lagrange Multiplier (ALM) method [5], which aims to
minimize the following augmented Lagrangian function:

L =

V∑

v=1

(λ2∥E
v∥2F +λ3∥P

v∥∗)+
γ

2

∑

v,ṽ:v ̸=ṽ

∥Zv−Z
ṽ∥2F (12)

+

V∑

v=1

⟨Sv
,Z

v −P
v⟩+

V∑

v=1

⟨Tv
,Z

v −Q
v⟩

+

V∑

v=1

⟨Rv
,G

v −G
v
Q

v −E
v⟩+

µ

2

V∑

v=1

∥Zv −P
v∥2F

+
µ

2

V∑

v=1

∥Zv −Q
v∥2F +

µ

2

V∑

v=1

∥Gv −G
v
Q

v −E
v∥2F ,

where Sv , Tv , and Rv are the Lagrangian multipliers,

µ > 0 is a penalty parameter. Basically, the inexact ALM

method is to iteratively update each variable in the augment-

ed Lagrangian function (12) until the termination criterion

is satisfied. We list the steps to solve (12) in Algorithm 1.

In particular, the problem in (22) can be solved by using the

Singular Value Threshold (SVT) method [7], similarly as in

LRR. The equation in (23) (resp., (25)) can be obtained by

setting the derivative of (12) w.r.t. Qv (resp., Ev) to zeros.

The problem in (24) can be solved by stacking the vector-

izations of all Zv’s to Z̄ ∈ R
V×n2

and setting the derivative

of (24) w.r.t. Z̄ to zeros.

Update Wv , Gv , ξvi , ϵvij: When fixing Zv and equivalently

replacing Ev with Gv −GvZv , the problem in (6) reduces

to the following problem,

min
Wv,Gv

ξv
i
,ϵv

ij

V
∑

v=1

(
1

2
∥Wv∥2F + C

n
∑

i=1

ξvi + C

n
∑

i=1

m
∑

j=1

ϵvij (13)

+λ1∥W
v −Gv∥2F + λ2∥G

v −GvZv∥2F )

s.t. wv
i
′
xv
i
+ ≥ 1− ξvi , ξvi ≥ 0, ∀v, ∀i, (14)

wv
i
′
xv
j
− ≤ −1 + ϵvij , ϵvij ≥ 0, ∀v, ∀i, ∀j. (15)

The above problem can be separated into V independent

subproblems with one for each view. We solve the subprob-

lem on each view by updating two sets of variables {Wv ,

ξvi , ϵvij} and Gv alternatively until the objective of (13) con-

verges. Specifically, when fixing Gv , we solve Wv , ξvi ,

and ϵvij by separately solving n independent subproblems,

in which each subproblem is related to one exemplar clas-

sifier. The subproblem w.r.t. the i-th exemplar classifier can

be written as follows,

min
wv

i
,ξv

i
,ϵv

ij

1

2
∥wv

i ∥
2 + C(ξvi +

m
∑

j=1

ϵvij) + λ1∥w
v
i − gv

i ∥
2 (16)

s.t. wv
i
′
xv
i
+ ≥ 1− ξvi , ξvi ≥ 0, (17)

wv
i
′
xv
j
− ≤ −1 + ϵvij , ϵvij ≥ 0, ∀j, (18)

where gv
i is the i-th column vector of Gv . By respectively

introducing the dual variables {α+
i , β+

i } and {α−
j , β−

j }’s

for the constraints in (17) and (18), we arrive at the dual

form of (16) as follows,

min
α

α
′ X̄

v′

i X̄v
i ◦ (yy

′)

2(1+2λ1)
α+[

2λ1(X̄
v′

i gv
i ) ◦ y

1+2λ1
−1]′α (19)

s.t. 0 ≤ α ≤ C1,

where X̄v
i = [xv

i
+,xv

1
−, . . . ,xv

m
−], α = [α+

i , α
−
1 , . . . ,

α−
m]′ and y = [1,−1m

′]′. The problem in (19) is a quadrat-

ic programming (QP) problem, which can be solved by us-

ing the existing QP solvers. In our work, we develop an

efficient SMO approach to solve (19) by updating one se-

lected dual variable in each iteration. After obtaining α, we

can recover wv
i as follows,

wv
i =

1

1 + 2λ1
(2λ1g

v
i + X̄v

i (y ◦α)). (20)
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Algorithm 1 Solving (12) with inexact ALM

1: Input: Gv, λ2, λ3, γ

2: Initialize Zv = Ev = Sv = Tv = Rv = O, ρ = 0.1,

µ = 0.1, µmax = 106, ν = 10−5, Niter = 106.

3: for t = 1 : Niter do
4: For v = 1, . . . , V , update Pv by solving

P
v=argmin

Pv
λ3∥P

v∥∗+
µ

2
∥Pv−(Zv+

Sv

µ
)∥2F . (22)

5: For v = 1, . . . , V , update Qv by

Q
v=(I+G

v ′
G

v)−1(Gv ′(Gv−Ev+
Rv

µ
)+Z

v+
Tv

µ
). (23)

6: For v = 1, . . . , V , update Zv by solving

min
Zv

γ

2

∑

v,ṽ:v ̸=ṽ

∥Zv−Z
ṽ∥2F +

V∑

v=1

µ∥Zv −H
v∥2F , (24)

where Hv = 1
2 (P

v +Qv − 1
µ
(Sv +Tv)).

7: For v = 1, . . . , V , update Ev by

E
v =

µ(Gv −GvQv) +Rv

2λ2 + µ
. (25)

8: For v = 1, . . . , V , update Sv , Tv , and Rv by

S
v = S

v + µ(Zv −P
v), (26)

T
v = T

v + µ(Zv −Q
v), (27)

R
v = R

v + µ(Gv −G
v
Q

v −E
v). (28)

9: Update the parameter µ by µ=min(µmax, (1+ρ)µ).

10: Break if ∥Gv−GvQv−Ev∥∞<ν, ∥Zv−Pv∥∞<ν,

∥Zv−Qv∥∞<ν, ∀v.

11: end for

12: Output: Zv .

When fixing Wv , ξvi , and ϵvij , we set the derivative of

the objective function in (13) w.r.t. Gv to zeros, and then

update Gv by using the closed-form solution as follows,

Gv = λ1W
v (λ2(I− Zv)(I− Zv)′ + λ1I)

−1
. (21)

The whole algorithm is summarized in Algorithm 2.

In the testing stage, it is more reasonable to utilize the

exemplar classifiers from the latent source domain which is

close to the target domain. Inspired by [38], given a test

sample, we fuse the exemplar classifiers which output high-

er prediction scores on this test sample. Formally, given a

test sample u = (u1, . . . ,uV ) with uv denoting the v-th

view feature, the prediction score of u can be obtained as

follows,

f(u) =
1

V

V
∑

v=1

1

|Γ(uv)|

∑

i:i∈Γ(uv)

fv
i (u

v), (29)

where fv
i (u

v) is the prediction score obtained by applying

the exemplar classifier wv
i on uv , and Γ(uv) denotes the in-

dex set of exemplar classifiers that output the top prediction

Algorithm 2 Multi-view Domain Generalization (MVDG)

Input: Training data {xv
i
+|

n

i=1} and {xv
j
−|

m

j=1
} with V

views.

1: Initialize2 Gv’s.

2: repeat

3: Update Zv’s by using Algorithm 1.

4: repeat

5: Update Wv by solving n subproblems in the dual

form (19) and recovering Wv by using (20) on

each view.

6: Update Gv by using (21) on each view.

7: until The objective of (13) converges.

8: until The objective of (6) converges.

Output: The learnt classifier Wv’s.

scores on uv . In our experiments, we set the cardinality

of Γ(uv) (i.e., |Γ(uv)|) as 5, as suggested in [38]. When

predicting each test sample by using the exemplar classi-

fiers with higher prediction scores, we conjecture this test

sample is likely to be sampled from the most relevant la-

tent source domain, from which the corresponding positive

training samples are used to learn those selected exemplar

classifiers. As a result, the fused classifier by using (29) can

generalize well to any unseen target domain.

4. Extending MVDG for Domain Adaptation

When the unlabeled samples from the target domain are

available during the training process, we extend our MVDG

approach to multi-view domain adaptation (MVDA) by us-

ing those unlabeled samples for domain adaptation. In

particular, we additionally utilize a Laplacian regularizer,

such that the prediction scores using the exemplar classifier-

s should satisfy the smoothness constraint on the unlabeled

samples in the target domain. We formulate our MVDA ap-

proach as follows,

min
Zv,Wv,Gv

Ev,ξv
i
,ϵv

ij

V
∑

v=1

(
1

2
∥Wv∥2F + C

n
∑

i=1

ξvi + C

n
∑

i=1

m
∑

j=1

ϵvij

+λ1∥W
v −Gv∥2F + λ2∥E

v∥2F + λ3∥Z
v∥∗)

+
γ

2

∑

v,ṽ:v ̸=ṽ

∥Zv−Zṽ∥2F +θ

V
∑

v=1

Ω(Wv,Lv,Uv) (30)

s.t. wv
i
′
xv
i
+ ≥ 1− ξvi , ξvi ≥ 0, ∀v, ∀i, (31)

wv
i
′
xv
j
− ≤ −1 + ϵvij , ϵvij ≥ 0, ∀v, ∀i, ∀j, (32)

Gv = GvZv +Ev, ∀v, (33)

where Ω(Wv,Lv,Uv) = tr(Wv ′UvLvUv ′Wv) is the

Laplacian regularizer, in which Lv is the Laplacian ma-

trix for the target domain samples on the v-th view, Uv =
[uv

1, . . . ,u
v
N ] is the target domain samples with N being the

2We initialize Gv with its i-th column vector being the weight vector

of exemplar classifiers trained by using the i-th positive training sample

and all negative training samples on the v-th view.
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total number of unlabeled target domain samples and uv
i be-

ing the v-th view feature of the i-th sample. We construct

Laplacian matrices Lv’s based on cosine distance.

The solution to (30) can be similarly derived as that to

(6). The only difference is that we respectively replace
1

1+2λ1

(X̄v′

i X̄v
i ) and 1

1+2λ1

(X̄v′

i gv
i ) in the first and second

terms with X̄v′

i (Jv)
−1

X̄v
i and X̄v′

i (Jv)
−1

gv
i when solving

(19), where Jv = (1 + 2λ1)I+ 2θUvLvUv ′.

5. Experiments

In this section, we demonstrate the effectiveness of our

proposed approaches for human action recognition and ob-

ject recognition.

5.1. Datasets and Experimental Settings

We evaluate different methods using two human ac-

tion datasets ACT42 [9] and Online RGBD Action Dataset

(ORGBD) [40] as well as one object recognition dataset

Office-Caltech [33, 19]. For performance evaluation, we

report the recognition accuracy for all methods.

ACT42 dataset: The ACT42 dataset contains both RGB

and depth videos from 14 representative classes of daily ac-

tions, which are captured by using different Kinect cameras

from 4 viewpoints. Similarly as in [38], we treat the videos

captured by each camera as one domain. Then, we mix the

samples from several domains as the source domain, and

use the remaining samples as the target domain. As suggest-

ed in [9], we use the samples from 2 cameras for training

and the samples from the remaining 2 cameras for testing.

So we have 6 settings in total.

ORGBD dataset: The Online RGBD Action Dataset

(ORGBD) [40] provides the RGB-D videos from 7 type-

s of actions. The whole dataset consists of 4 sets, among

which the first three sets can be used for cross-environment

action recognition as suggested in [40]. Set 1 and set 2 are

recorded in the same environment while Set 3 is recorded

in another environment. In our experiments, we combine t-

wo sets from different environments as training data and the

remaining one as test data, which leads to 2 settings.

We use two-view features (i.e., the RGB features and

depth features) in our experiments. Specifically, we extract

the improved dense trajectory features [35] from each RGB

and depth video in both ACT42 and ORGBD datasets. Fol-

lowing [8], we obtain a 6000-dim feature vector for each

RGB and depth video by concatenating the bag-of-words

(BoW) features from three types of descriptors, in which

each type of descriptors are encoded to the 2000-dim BoW

feature.

Office-Caltech dataset: The Office-Caltech dataset [19]

contains the images from four domains: Amazon (A),

Caltech-256 (C), Digital SLR (D), and Webcam (W). Fol-

lowing [18, 38], we evaluate all methods using the 10 com-

mon categories among the 4 domains based on three set-

tings, in which A and C (resp., D and W; C, D, and W) are

merged as the source domain while the remaining domains

are merged as the target domain. For each image, we extract

the DeCAF6 feature [12] and the Caffe6 [25] feature as two

views of features.

5.2. Results of MVDG and MVDA

We first evaluate our proposed MVDG and MVDA ap-

proaches. In order to show the effectiveness of our multi-

view learning approach, we report the results of a special

case of MVDG, which is named MVDG (w/o co-reg), in

which we remove the co-regularizer
∑

v,ṽ:v ̸=ṽ ∥Z
v −Zṽ∥2F

in (6) by setting γ to 0. Furthermore, to investigate the ben-

efits after fusing multi-view features, we also report the re-

sults of our MVDG method by only utilizing one view of

features, which are referred to as MVDG (RGB/DeCAF)

and MVDG (depth/Caffe). Moreover, we include SVM [10]

and Exemplar-SVM (ESVM) [29] as two baselines for com-

parison. For SVM, we train the SVM classifier on each

view, and fuse the prediction scores on two views. For ES-

VM, we train one exemplar classifier for each positive sam-

ple on each view, and then employ the same prediction s-

trategy as our MVDG method (see (29)). For our methods,

we empirically fix the parameters as C = 0.1, λ1 = 100,

λ2 = 10, λ3 = 0.1, γ = 100, θ = 10−5 for all the settings

on all datasets. For SVM and ESVM, we choose the opti-

mal parameters according to their best accuracies on the test

set.

The experimental results are summarized in Table 1. We

observe that ESVM is generally better than SVM, which

shows that it is beneficial to fuse multiple exemplar clas-

sifiers for enhancing the domain generalization capacity.

Note ESVM can be considered as a special case of our

MVDG (w/o co-reg) without using LRR when learning the

classifiers on each view. We also observe that MVDG (w/o

co-reg) achieves better results than ESVM, which demon-

strates it is beneficial to exploit the cluster structure of rep-

resentation matrices by using LRR for domain generaliza-

tion. It can also be observed that our special case MVDG

(w/o co-reg) achieves better results than both MVDG (RG-

B/DeCAF) and MVDG (depth/Caffe), which shows it is

helpful to fuse multi-view features.

Our MVDG method outperforms its special case MVDG

(w/o co-reg), which validates the effectiveness of our new-

ly proposed co-regularizer
∑

v,ṽ:v ̸=ṽ ∥Z
v − Zṽ∥2F . So it is

beneficial to exploit the cluster structure discovered from

representation matrices on different views. Finally, our do-

main adaptation method MVDA further achieves better re-

sults than MVDG, which shows the effectiveness of MVDA

for exploiting the unlabeled target domain samples in the

training process based on the Laplacian regularizer.

We also give a visual comparison of the representa-

tion matrices Zv’s (Z1 and Z2 are denoted as ZRGB and

Zdepth respectively for better presentation) learnt by using
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Table 1: Accuracies (%) of our proposed methods for human action recognition and object recognition. For comparison, we

also report the results of the special cases of our MVDG method and the baseline methods SVM and ESVM.
Dataset ACT42 ORGBD Office-Caltech

Source 1,2 1,3 1,4 2,3 2,4 3,4 1,3 2,3 A,C D,W C,D,W

Target 3,4 2,4 2,3 1,4 1,3 1,2 2 1 D,W A,C A

SVM [10] 63.75 62.61 42.90 45.92 59.52 63.67 51.79 45.54 83.19 79.14 91.23

ESVM [29] 66.01 63.07 46.98 45.24 65.11 65.18 54.46 49.11 85.18 81.60 91.65

MVDG (RGB/DeCAF) 58.01 69.03 49.55 49.32 62.08 63.75 55.36 48.21 84.29 81.07 93.01

MVDG (depth/Caffe) 65.41 67.37 42.15 43.13 62.39 64.50 55.71 49.46 86.73 82.27 92.69

MVDG (w/o co-reg) 70.09 73.19 50.83 50.91 68.13 71.53 56.25 51.79 86.95 83.09 93.11

MVDG 72.81 76.21 52.04 53.17 69.79 72.96 58.04 53.57 87.62 83.47 93.32

MVDA 75.15 77.72 53.93 57.63 73.04 74.55 59.82 56.25 93.81 85.25 94.05

(a) ZRGB w/o co-reg (b) Zdepth w/o co-reg

(c) ZRGB with co-reg (d) Zdepth with co-reg

Figure 1: Illustration of the representation matrices Zv’s for

the action “Put On” on the ACT42 dataset under the setting

1, 4 → 2, 3.

our MVDG and its special case MVDG (w/o co-reg) in Fig-

ure 1. Recall that the representation matrix Zv encodes

the membership information of positive training samples,

in which the within-cluster (resp., between-cluster) entities

are usually dense (resp., sparse), so Zv is expected to be

block-diagonal in ideal cases. It can be observed all four

representation matrices are near block-diagonal with each

block corresponding to one latent domain, which demon-

strates the effectiveness of employing LRR for discovering

latent domains on each view. It is worth mentioning that

we only mix the training samples from two domains (i.e.,

camera 1 and camera 4) as the source domain samples, but

there are actually 4 latent domains discovered by using our

methods (See Figure 1). One possible explanation is that

for the action “Put On”, actors may put on clothes from the

opposite directions, which may lead to two latent domains

for the videos captured by each camera. After employing

our co-regularizer, we also observe the two representation

matrices learnt by using MVDG (the bottom row) are more

consistent and exhibit relatively better block-diagonal struc-

ture when compared with those learnt by using MVDG (w/o

co-reg) (the top row). The result indicates it is beneficial

to use our newly proposed co-regularizer to exploit the in-

trinsic cluster structure of latent domains based on multiple

views of features.

5.3. Comparison with the State­of­the­art

We compare our methods with the state-of-the-art meth-

ods for domain generalization and domain adaptation. We

use the same parameter setting for our methods as in Sec-

tion 5.2. For the baselines methods, we choose the optimal

parameters according to their best accuracies on the test set.

Due to space limitation, we only report the mean accura-

cy over the 6 (resp., 2, 3) settings for the ACT42 (resp.,

ORGBD, Office-Caltech) dataset.

5.3.1 Domain Generalization

Baselines: We compare our MVDG method with three

groups of baselines: the multi-view learning methods, the

domain generalization methods, and the latent domain dis-

covering methods. The multi-view learning methods in-

clude KCCA [21], SVM-2K [16] and low-rank common

subspace (LRCS) [11], which treat RGB/DeCAF6 features

and depth/Caffe6 features as two views.

The domain generalization methods contain the domain-

invariant component analysis (DICA) method [30] and the

low-rank exemplar SVM (LRESVM) method [38]. We em-

ploy DICA and LRESVM on each view and then use the

late-fusion strategy to fuse the prediction scores from two

views.

To discover the latent domains, we use the approaches in

[23, 18]. We train the classifiers for each latent domain, and

then apply two strategies named “match” and “ensemble”

for testing as suggested in [38]. As sub-categorization is

similar with latent domain discovery and applicable in our

task, we additionally compare our work with the discrim-

inative sub-categorization(Sub-Cate) method [22]. For all

the methods mentioned above, we apply them on each view

independently and employ the late-fusion strategy to fuse

the prediction scores from two views.

Experimental Results: The experimental results are sum-

marized in Table 2. Multi-view learning methods LRCS,

SVM-2K and KCCA outperform SVM because they can

better exploit two-view features.

Sub-Cate and the domain generalization methods DICA

and LRESVM generally achieve better results than SVM,

which shows the advantage of exploiting the intrinsic struc-

ture when using training data from a mixture of latent do-
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Table 2: Mean accuracies (%) of different methods over

multiple settings on each dataset without using target do-

main data in the training process. The best results are de-

noted in boldface.
Dataset ACT42 ORGBD Office

SVM [10] 56.40 48.67 84.52

ESVM [29] 58.60 51.79 86.14

LRCS [11] 59.72 52.68 85.28

SVM-2K [16] 59.68 50.00 86.10

KCCA [21] 57.72 51.34 86.33

DICA [30] 59.10 47.32 86.12

LRESVM [38] 62.61 53.57 87.04

[18](match) 57.83 50.00 86.47

[18](ensemble) 58.42 51.79 86.06

[23](match) 55.21 44.65 85.75

[23](ensemble) 57.78 50.45 84.81

Sub-Cate [22] 59.71 52.68 86.64

MVDG 66.16 55.81 88.13

mains. For the latent domain discovering methods [23, 18],

the results obtained by using the “ensemble” strategy are

better than SVM, which demonstrates it is effective to dis-

cover the latent domains. The results using the “ensemble”

strategy are also generally better when compared with the

“match” strategy.

Finally, our MVDG method outperforms all the base-

lines on all datasets, which demonstrates our MVDG

method can enhance the domain generalization capability

and effectively fuse the multi-view features simultaneously.

5.3.2 Domain Adaptation

For domain adaptation, we further utilize the unlabeled tar-

get domain samples during the training process.

Baselines: We compare our MVDA method with three

groups of baselines: the domain adaptation methods, the

multi-view semi-supervised learning methods, and the ex-

isting multi-view domain adaptation methods. The do-

main adaptation baseline methods include DASVM [6], K-

MM [24], TCA [32], SA [17], DIP [1], GFK [19], and S-

GF [20]. We apply the above domain adaptation methods

on each view and use the late fusion strategy to fuse the

prediction scores from two views.

We compare our MVDA method with multi-view semi-

supervised learning methods Co-training [4] and Co-

LapSVM [34], as well as the existing multi-view domain

adaptation methods Coupled [3], MVTL LM [41], and

MDT [39], which fuse the multi-view features and simul-

taneously reduce the domain distribution mismatch. We

further compare our MVDA with LRCS [11] by using the

target samples as the dictionary as suggested in [11].

Experimental Results: The experimental results are sum-

marized in Table 3. We also add the results of SVM from

Table 2 for comparison. We observe that the domain adapta-

tion methods DASVM, KMM, TCA, SA, DIP, GFK, and S-

GF generally achieve better results than SVM, which shows

it is beneficial to reduce the domain distribution mismatch

between the source domain and the target domain. The

Table 3: Mean accuracies (%) of different methods over

multiple settings on each dataset after using target domain

data in the training process. The best results are denoted in

boldface.
Dataset ACT42 ORGBD Office

SVM [10] 56.40 48.66 84.52

DASVM [6] 60.22 50.45 85.60

KMM [24] 59.46 52.12 86.34

TCA [32] 59.12 48.66 85.79

SA [17] 63.42 52.24 86.79

DIP [1] 58.86 54.46 86.58

GFK [19] 60.61 53.13 86.22

SGF [20] 56.17 52.23 85.78

Co-training [4] 62.15 53.13 87.96

Co-LapSVM [34] 61.57 52.68 88.20

Coupled [3] 64.79 54.02 86.48

MVTL LM [41] 63.70 55.36 87.76

MDT [39] 64.97 54.46 86.87

LRCS [11] 62.07 55.81 86.12

MVDA 68.67 58.04 91.04

multi-view semi-supervised learning methods Co-training

and Co-LapSVM outperform SVM, which demonstrates it

is helpful to utilize the unlabeled target domain data.

For the multi-view domain adaptation methods, Cou-

pled, MVTL LM, and MDT outperform the multi-view

learning methods reported in Table 2, possibly because

they further consider the domain distribution mismatch.

When compared with the corresponding results reported in

Table 2, LRCS also becomes better by utilizing the target

samples as the dictionary.

Finally, our MVDA method outperforms MVDG report-

ed in Table 2. It also achieves the best results on all datasets

by incorporating the unlabeled target domain samples when

learning the classifiers.

6. Conclusion

In this paper, we have proposed a multi-view domain

generalization (MVDG) approach for visual recognition,

which can effectively fuse multi-view features and simul-

taneously enhance the domain generalization ability to any

unseen target domain. Moreover, we further extend our

MVDG approach to a new MVDA approach for domain

adaptation by utilizing the target domain data in the train-

ing process. The effectiveness of our methods MVDG and

MVDA is demonstrated by comprehensive experiments.
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