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Abstract

Modern structure from motion (SfM) remains dependent

on point features to recover camera positions, meaning that

reconstruction is severely hampered in low-texture environ-

ments, for example scanning a plain coffee cup on an un-

cluttered table.

We show how 3D curves can be used to refine camera

position estimation in challenging low-texture scenes. In

contrast to previous work, we allow the curves to be par-

tially observed in all images, meaning that for the first time,

curve-based SfM can be demonstrated in realistic scenes.

The algorithm is based on bundle adjustment, so needs

an initial estimate, but even a poor estimate from a few point

correspondences can be substantially improved by includ-

ing curves, suggesting that this method would benefit many

existing systems.

1. Introduction

While 3D reconstruction from 2D data is a mature field,

with city-scale and highly dense reconstruction now almost

commonplace, there remain some serious gaps in our abil-

ities. One such is the dependence on texture to resolve the

aperture problem by supplying point features. For large-

scale outdoor scanning, or for cameras with a wide field of

view, this is not an onerous requirement, as there is typ-

ically enough texture in natural scenes to obtain accurate

camera poses and calibrations. However, many common

environments in which a naı̈ve user might wish to obtain a

3D reconstruction do not supply enough texture to compute

accurate cameras. In short, we cannot yet scan a “simple”

scene such as a coffee cup on a plain table.

Consider figure 1, showing a simple scene captured with

a consumer camera. Without the calibration markers, which

are there so that we can perform ground-truth experiments,

there are no more than a few dozen reliable interest points.

Furthermore, some of those points are on T-junctions, so

correspond to no real 3D point, further hindering standard
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Figure 1: (a) A typical low-texture scene (one of 21 “Cups”

images, markers are for ground-truth experiments). Sparse

point features lead to poor cameras, and poor PMVS2 re-

construction (b). Reprojection of the 16 curves used to up-

grade cameras (c), yielding better dense reconstruction (d).

SfM reconstruction. However, the curves in the images are a

rich source of 3D information. For curved surfaces, recon-

structing surface markings provides dense depth informa-

tion on the surface. Even in areas where no passive system

can recover depth, such as the white tabletop in this exam-

ple, the fact of having a complete curve boundary, which is

planar, is a strong cue to the planarity of the interior. The

silhouette curves (which we do not exploit in this work) are

yet another important shape cue.

Related work is covered in detail in §2 but in brief,

while some previous research has looked at reconstruction

of space curves, and other efforts have considered camera

pose estimation from line features, very few papers address

the simultaneous recovery of general curve shape and cam-

era pose. Those that do have either assumed fully visible

curves (or precisely, known visibility masks) in each image,

or have shown only qualitative camera recovery under an
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orthographic model. This paper is the first to show improve-

ment of a state-of-the-art dense reconstruction pipeline (Vi-

sualSFM [21] and PMVS2 [8]) by using curves.

Our primary contribution is a formulation of curve-based

bundle adjustment with the following features:

1. curves are not required to be fully visible in each view;

2. not limited to plane curves—our spline parameteriza-

tion allows for general space curves;

3. point, curves, and cameras are optimized simultane-

ously.

A secondary, but nevertheless important, contribution lies

in showing that curves can provide strong constraints on

camera position, so should be considered as part of the SfM

pipeline. Finally, we note that nowhere do we treat lines as

a special case, but we observe that many of the curves in our

examples include line segments, so that at least at the bundle

adjustment stage they may not need to be special-cased.

A potential criticism of our work is that “it’s just bundle

adjustment”—we wrote down a generative model of curves

in images and optimized its parameters. However, we refute

this: despite the problem’s long standing, the formulation

has not previously appeared.

Limitations of our work are: we assume the image curves

are already in correspondence, via one of the numerous pre-

vious works on automatic curve matching [19, 12, 2, 5, 10,

12]. We also cannot as yet recover motion without some as-

sistance from points, hence our title is “towards” point-less

reconstruction. However, despite these limitations, we will

show that curves are a valuable component of structure and

motion recovery.

2. Related work

The venerable term “Structure from Motion” is of course

a misnomer. It is the problem of simultaneously recovering

the 3D “structure” of the world and the camera “motion”,

that is the extrinsic and intrinsic calibration of the camera

for each image in a set.

On the “structure” side, curves have often been studied

as a means of enriching sparse 3D reconstructions (figure 2

attempts to illustrate). Baillard et al. [2] showed how line

matching could enhance aerial reconstruction, and Berthils-

son et al. [3] showed how general curves could be recon-

structed. Kahl and August [12] showed impressive 3D

curves reconstructed from real images, and recently Fab-

bri and Kimia [5] and Litvinov et al. [15] showed how re-

construction of short segments could greatly enhance 3D

reconstructions. Other work introduced more general curve

representations such as nonuniform rational B-splines [23],

subdivision curves [11], or curve tracing in a 3D probability

distribution [20].

The key to this paper, though, is the use of curves to

obtain or improve the “motion” estimates. Two classes of

Figure 2: Two views of final curves, overlaid on dense point

reconstruction. Curves provide a more semantically struc-

tured reconstruction than raw points.

existing work pertain: multiple-view geometry for a small

number of views, and curve-based bundle adjustment. It has

been known for decades that structure and motion recovery

need not depend on points. The multiple-view geometry of

lines [6], conics [13], and general algebraic curves [14] has

been worked out. For general curved surfaces, and for space

curves, it is known that the epipolar tangencies [17] provide

constraints on camera position. However, these various re-

lations have a reputation for instability, possibly explaining

why no general curve-based motion recovery system exists

today. Success has been achieved in some important special

cases, for example Mendonça et al. [16] demonstrated re-

liable recovery of camera motion from occluding contours,

in the special case of turntable motion.

Success has also been achieved in the use of bundle ad-

justment to “upgrade” cameras using curves. Berthilsson et

al. [3] demonstrated camera position recovery from space

curves, with an image as simple as a single “C”-shaped

curve showing good agreement to ground truth rotation val-

ues. However, as illustrated in figure 3, because they match

model points to data, they require that each curve be entirely

visible in every image. Prasad et al. [18] use a similar ob-

jective to recover nonrigid 3D shape for space curves on a

surface, and optimize for scaled orthographic cameras, but

show no quantitative results on camera improvement. Fab-

bri and Kimia [5] augment the bundle objective function to

account for agreement of the normal vector at each point,

but retain the model-to-data formulation, dealing with par-

tial occlusion by using curve fragments rather than com-

plete curves. Cashman and Fitzgibbon [4] also recover cam-

eras while optimizing for 3D shape from silhouettes, but

deal with the occluding contour rather than space curves,

and use only scaled orthographic cameras.

2.1. Model-to-data versus data-to-model

A key distinction made above was that most existing al-

gorithms (all but [23, 4]) match model to data, probably

because this direction is easily optimized using a distance

transform. By this we mean that the energy function they
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Figure 3: The problem with the model-to-data objective (§2.1). (a) A 2D setup with a single curve (blue) viewed by four

cameras (fields of view shown black) parameterized by 2D translation and optionally scale. (b) Illustration of the cost function

surfaces in each image for the model-to-data objective used in most previous work [5, 18, 3]. Each image is represented by

a distance transform of the imaged points (yellow dots), and the bundle objective sums image-plane distances. Even when

varying only camera translation, the global optimum for the L2 objective (red curves) is far from the truth (blue). If varying

scale as well as translation (analogous to our perspective 3D cameras), the situation is even worse: the global optimum is

achieved by setting the scale to zero. (c) Attempting to model occlusion using a robust kernel reduces, but does not eliminate

the bias. All existing model-to-data techniques must overcome this by explicitly identifying occlusions as a separate step. If

that step is based on rejection of points with large errors, it is already subsumed in (c), i.e. it doesn’t remove the bias.

minimize in bundle adjustment involves a sum over the

points of the 3D curve, rather than summing over the im-

age measurements. However, as illustrated in figure 3, in

the presence of any partial occlusion, the global optimum

of this formulation does not coincide with the ground truth,

and indeed can be strongly biased. Existing work can avoid

the bias by knowing, for each view, exactly what subset of

the model curve is visible, but this is in general unknow-

able and any attempt to do it using image-plane distances

must amount to some form of robust estimator (fit, reject

large values, re-fit), which does not fix the bias. As shown

below (and by [23, 4]), the data-to-model objective can be

efficiently minimized. Thus, to our knowledge ours is the

first work to optimize camera parameters from curves using

an intrinsically occlusion-resistant objective function.

3. Algorithm

We consider N views of a scene that contains M 3D

curves, e.g. texture edges or sharp object outlines. Our goal

is to reconstruct 3D curves from their image projection and

to refine the camera calibration using these curves. Each 3D

curve is partly visible in several views.

We define a 3D curve as a function C mapping from an

interval Ω ⊂ R to R
3. We will use curves whose shape is

parameterized, typically by a set of control vertices, X =
{X1, ..., XK} ⊂ R

3, and we will write C(t;X) to show

the dependence on both the curve parameter t and the shape

parameters X. In this work we will use a piecewise cubic

spline, defined as

C(t;X1, ..., XK) =

3∑

k=0

X⌊t⌋+kφk(t− ⌊t⌋) (1)

for fixed piecewise smooth basis functions φ0..3, and Ω is

the interval [1,K − 2). Note that despite the apparently

discontinuous floor operator, this is a very simple function,

piecewise cubic in t and linear in X, whose derivatives with

respect to t and X are well defined at each t ∈ Ω because the

basis functions are chosen so that the spline is smooth. The

definition above uses fixed uniform knots, but in practice it

is easy to switch to NURBS [23] or subdivision curves [4] if

desired. Our code is quite agnostic to the parameterization

of C.

We also consider a quite general representation of cam-

eras, projecting 3D points to 2D images. Each dataset

will comprise N images, and image n has corresponding

unknown camera parameters θn, comprising for example

translation, rotation, focal length and radial distortion. A

projection function π is defined which applies a vector of

camera parameters θ to a 3D point X and projects into R
2:

π(X;θ) ∈ R
2 (2)

The image data comprises a list of curve segments,

numbered 1 to S. As noted above, we assume corre-

spondence will be provided by an existing algorithm, even
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though in practice one would almost certainly iterate re-

construction and correspondence finding, this does not

change the mechanics of our optimization. Let the M

3D curves’ unknown shape parameters be written Xm =
{Xm1, ..., XmK} for m = 1..M .

A detected 2D curve segment s has associated image in-

dex ns (we will sometimes write this n(s) if fonts get too

small) and 3D curve index ms (or m(s)), and a list of 2D

points of length Ps:

Zs = {zsp}
Ps

p=1 (3)

Note that because of occlusion, there could be multiple

detections in one image corresponding to the same model

curve, which simply means two detections s, s′ may have

n(s) = n(s′),m(s) = m(s′). The problem statement and

occlusion sensitivity are unaffected.

3.1. Curve and camera bundle adjustment

The objective we would like to optimize is to match the

data to the model, that is to sum over the data, and measure

the distance from each image point to its closest point on

the model. The curve bundle adjustment objective is simply

the sum over all detected curves

E(θ1, ...θN ,X1, ...,XM ) =
∑

s

Es(θn(s),Xm(s)) (4)

For curve s, the objective is the sum of closest-points

Es(θ,X) =

Ps∑

p=1

min
t

‖zsp − π(C(t;X);θ)‖2 (5)

When matching model to data, the equivalent closest-

point operation can be easily implemented using a distance

transform on the image [18, 5, 11]. However, as the t-

minimization here is against the model curve, the distance

transform would be 3D, and would need to be updated on

every optimizer iteration. An analytic solution is nontrivial,

involving a rootfinding operation for every edgel. However,

a simple solution is obtained by using the “lifting” tech-

nique described in [18]. The t variables (or “correspon-

dences”) are renamed

Ps∑

p=1

min
tsp

‖zsp − π(C(tsp;X);θ)‖2 (6)

after which the min and sum can swap (this is exact)

min
Ts

Ps∑

p=1

‖zsp − π(C(tsp;X);θ)‖2 (7)

where Ts = [ts1, ..., ts,Ps
] is the vector of all correspon-

dences for detected segment s. The final step is to gather

the correspondences into an overall objective

E(θ1, ...θN ,X1, ...,XM , T1, ..., TS)

Figure 4: Jacobian sparsity pattern for “Cups” example

Thus our system which used to have say 3MK unknowns in

addition to point-based bundle adjustment, now has 3MK+
100S additional unknowns (assuming Ps ≈ 100 on aver-

age). This apparent explosion in the number of unknowns

is however compensated by the simplification of the objec-

tive. This is a non-linear least squares problem which can

be readily optimized using the Levenberg-Marquardt algo-

rithm, provided we take care to make use of the sparsity of

the Jacobian. An example Jacobian is depicted in figure 4.

3.1.1 Regularization

Control of the smoothness of the reconstructed curve is pri-

marily by choosing the number K of control vertices of the

spline. Too small a value means that complex curves can-

not be modelled, while too large a value could give rise to

overfitting. In practice, overfitting is less of a problem, so

we set K = 12 for all curves in all experiments. Ultimately

of course this should be set automatically, but the fact that a

constant works for a range of situations is encouraging.

One further option for regularization is enabled by the

explicit exposing of the correspondences tsp. Because suc-

cessive points on an image curve are likely to be close in

3D (even in extreme cases like a 2D cusp corresponding to

a smooth 3D section), we have experimented with adding a

regularizer

Ereg(T1, ..., TS) =
∑

s

Ps−1∑

p=1

‖tsp − ts,p+1‖
2 (8)
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Figure 5: Points on the spline that have correspondences in

the images are shown in green, full spline in black.(a) With-

out regularization some parts of the spline may not have

correspondence in the images. (b) With regularization the

3D spline projects more completely onto the images.

In practice this acts like a “spring” term, keeping cor-

respondences to a subset Ω, with a beneficial effect on

overfitting. The effect of the regularization is illustrated

in figure 5. It is implemented by adding residuals to

the Levenberg-Marquardt objective, and introduces another

large but very sparse block in the Jacobian.

3.2. Implementation: Inital estimate

Given matched 2D curves and approximate cameras, it

is straightforward to use the epipolar constraint to gener-

ate feature correspondences and create a 3D reconstructed

curve. However, we can benefit from the engineering of ex-

isting dense multiview stereo systems such as PMVS2 [8],

and simply identify 3D points which project near to our

matched curves in two or more views. Although noisy, these

points are sufficient to initialize our system (see figure 6).

In order to provide an initial estimate for the correspon-

dences {tsp}, we project the 3D points the view where the

curve is least occluded. It is worth noticing that our method

does not require a view where curve is fully visible. This

is used only to obtain a very rough ordering on the 3D

points on the initial spline, allowing the algorithm to sam-

ple control points in the correct order. The points are then

uniformly sampled on the 2D curve and control points are

initalized using the 3D dense stereo point with projection

closest to this sampled point. This initial 3D spline is pro-

jected onto all images in which the curve appears, and t

is initialized to the t value of the closest point. As initial

camera calibration may be inaccurate, the initial spline can

project far from the curve. Therefore we first align the 2D

curve with the projection of the initial spline using an it-

erated closest point algorithm (ICP). Optionally we use a

dynamic programming strategy [7, 4] to refine the curves in

a second optimization pass (see figure 7), but the results on

camera improvement did not use this.

a b

Figure 6: (a) Initial estimates for splines and correspon-

dences T . The rainbow colourmap on the image at edgel p

in curve s indicates the value of tsp. These are before dy-

namic programming, indicating that the initial t estimates

are quite good, even when the shape is poor (see the far let-

ter “T”). (b) Final optimized curve, without priors on Ts.

Some non-monotonicity is visible on the “S” but this does

not prevent us from getting improved camera estimates.

a b

c d

Figure 7: Curve refinement using dynamic programming.

(a) Curve initialized using DP. (b) Final optimization result.

(c) Reinitialized using optimized control points and cam-

eras. (d) Final optimized curves. The fidelity of the com-

plex curves (text) improves, but we begin to see overfitting

on the simple rectangle. Future work will adaptively adjust

the number of control points.

3.3. Implementation: Ceres solver

The Levenberg Marquardt algorithm was implemented

in C++ using the Ceres solver framework [1]. We imple-

mented analytic derivatives for speed and accuracy, and

used the dynamic sparsity option to deal with the non-

constant sparsity of our Jacobian. A typical problem size

(for the “Cups” example) was 400,000 residuals, 140,000

parameters, and 5,000,000 nonzero Jacobian entries. Opti-
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