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Abstract

This paper presents a patch-based approach for crowd

density estimation in public scenes. We formulate the prob-

lem of estimating density in a structured learning frame-

work applied to random decision forests. Our approach

learns the mapping between patch features and relative lo-

cations of all objects inside each patch, which contribute

to generate the patch density map through Gaussian kernel

density estimation. We build the forest in a coarse-to-fine

manner with two split node layers, and further propose a

crowdedness prior and an effective forest reduction method

to improve the estimation accuracy and speed. Moreover,

we introduce a semi-automatic training method to learn the

estimator for a specific scene. We achieved state-of-the-art

results on the public Mall dataset and UCSD dataset, and

also proposed two potential applications in traffic counts

and scene understanding with promising results.

1. Introduction

Counting objects in images is important in many real-

world applications, including traffic control, industrial in-

spection, surveillance and medical image analysis. Count-

ing in crowded scene is non-trivial owing to severe inter-

object occlusion, scene perspective distortion and complex

backgrounds. Besides counting, estimating crowd density is

necessary for understanding crowd behaviour, especially in

large public spaces such as train stations and streets. This

paper addresses the problem of counting in public scenes

based on crowd density estimation, as shown in Fig. 1.

Existing counting methods can be classified into three

categories: counting by detection [19, 30], counting by

clustering [8, 25] and counting by regression [10, 11, 21, 16,

9, 23]. In the first two categories, counting is based on in-

dividual detection and motion segmentation, which are sen-

sitive to heavy object occlusion and cluttered background.

Particularly, for such crowded scenes that only a part of

Count = 41

Figure 1. Our objective is to estimate the object density map and

the number of objects (right) from an input image (left).

object instance can be observed, detection and segmenta-

tion of individuals become impracticable. In counting by

regression, counting techniques learn a mapping between

low-level features and people count, and therefore they can

avoid explicit object detection and segmentation in crowded

scenes.

Counting by regression methods differs depending on the

target of regression: the object count, or the object density.

Chen et al. [11, 10] learn the regression mapping between

the low-level imagery feature and the number of object.

They achieved state-of-the-art results for counting people

by introducing the concept of cumulative attribute to the re-

gression problems, which improved the counting accuracy

by considering the cumulative dependent nature of regres-

sion labels [10]. In another approach, Lempitsky et al. [21]

estimate an image density whose integral over any image

region gives the count of objects within that region. The

object density is more informative than the object count,

since it can give a rough estimate on the object locations,

as shown in Fig. 1. Therefore, crowd density estimation is

more useful for understanding the crowd behaviour. To esti-

mate the crowd density, Lempitsky et al. learn a linear trans-

formation of the feature representation f(x) that approxi-

mates the density function at each pixel D(x) = ωT f(x)
[21]. The problem here is that it is difficult to design a fea-

ture satisfying the linear approximation hypothesis.

This paper presents a patch-based approach for crowd
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density estimation in public scenes. Different from Lem-

pitsky et al.’s work [21] assuming a linear transformation,

we aim to learn the nonlinear mapping between patch fea-

tures and relative locations of all objects inside each image

patch using a random forest framework. Object locations

estimated in each patch will contribute to generate the patch

density map through Gaussian kernels. The patch feature

used in our method is much simpler and scene-independent.

We name our model COUNT forest (CO-voting Uncertain

Number of Targets using random forest), as it uses random

forest regression from multiple image patches to vote for

the densities of multiple target objects. We build the forest

in a coarse-to-fine manner with two split node layers, and

train a prediction label at each leaf node. One of the advan-

tages of the COUNT forest model is that it requires much

less memory to build and reserve the forest, compared with

regression forest models with dense structured labels pro-

posed in [20, 16]. This is a prerequisite for an embedded

computer vision system.

As there is a large variation in appearance and shape be-

tween crowded image patches and non-crowded ones, we

propose a crowdedness prior, which is a global property of

the image, to train two different forests corresponding to

this prior. We develop a robust density estimator by adap-

tively switching between the two forests. Moreover, we also

propose a non-trivial approach of effective forest reduction

by using permutation of decision trees. This improvement

speeds up the estimation so that it can run in real-time. An-

other contribution is the introduction of a semi-automatic

training method to learn the estimator for a specific scene.

We synthesize training samples randomly from a large set of

segmented human regions and the target scene background.

The synthesized training samples not only facilitate labor-

saving, but also adapt our estimator to the target scene.

Finally, we verified the performance on various crowded

scenes. We achieved state-of-the-art results on the public

Mall dataset [11] and UCSD dataset [9], and confirmed high

performance for multiple-class counting and scene adapta-

tion with good results for the Train Station dataset [31] and

a newly captured dataset. We also proposed two potential

applications in traffic counts and scene understanding with

promising results.

We discuss related works in Section 2, and explain the

proposed COUNT forest model in Section 3. Improvements

of the method including the crowdedness prior, forest per-

mutation and semi-automatic training are explained in Sec-

tion 4. We present experimental results in Section 5.

2. Related Works

Counting by regression: Chen et al. [11, 10] learn the

regression mapping between the low-level imagery feature

and the object count. In [11], they propose a single multi-

output model based on ridge regression, which takes inter-

dependent local features from local regions as input and

people count from individual regions as multidimensional

structured output. They further introduce the concept of cu-

mulative attribute for regression to address the problems of

feature inconsistency and sparse data [10]. In this work,

they convert the people count into a binary cumulative at-

tribute vector, and use it as the intermediate representation

of the image to learn the regression models. Loy et al.

[23] develop a framework for active and semi-supervised

learning of a regression model with transfer learning capa-

bility, in order to reduce laborious data annotation for model

training. Lempitsky et al. [21] model the crowd density at

each pixel, casting the problem as that of estimating an im-

age density whose integral over any image region gives the

count of objects within that region. This model is effective,

but the linear model requires a scene-dependent and rela-

tively complex set of features (BoW-SIFT).

Random forest: Part-based object detection methods learn

the appearance of object parts and their spatial layout to

model an object. Okada [24] and Gall et al. [17] proposed

a random forest framework [3, 7] to learn a direct mapping

between the appearance of an image patch and the object

location. The combination of the tree structure and simple

binary tests makes training and matching against the code-

book very fast, whereas clustering-based learning of explicit

codebooks is considerably more expensive in terms of both

memory and time. The idea of probabilistic voting was also

exploited in object tracking [18], action recognition [28], fa-

cial feature detection [12], and human pose estimation [13].

The main difference between the COUNT forest and other

voting-based methods is the output of regression. In our

method, each patch votes for locations of nearby objects,

whose quantity and structure are not fixed due to the large

variation of crowds.

3. COUNT Forest

Our problem is that of estimating a density map of target

objects as shown in Fig. 1, given a set of training images

with annotations. The annotation is a set of dots located at

centers of object regions, as shown in Fig. 2. Dotting is a

natural way for humans to count objects, at least when the

number of objects is large, and it is less laborious than other

annotation methods such as bounding boxes. For a training

image I , we define the ground truth density function for

each pixel p ∈ I to be a kernel density estimated based on

the dots provided

F 0(p) =
∑

µ∈A

N (p;µ, σ2
12×2), (1)

where A is a set of user annotation dots and

N (p;µ, σ2
12×2) denotes a 2D Gaussian kernel cen-

tered on each dot µ ∈ A with a small variance (σ = 2.5
pixels).
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Figure 2. User annotation dots.

We aim to learn a nonlinear mapping F between patch

features v and locations l of all objects inside each image

patch relative to the patch center

F : v ∈ V → l ∈ L, (2)

where V is the feature space, and L is the label space. The

patch feature v is a vector concatenating responses of fea-

ture channels at every pixel inside the image patch. We aug-

ment each image patch with multiple additional filter chan-

nels, resulting in a feature vector v ∈ R
h×w×C where C is

the number of channels and h×w is the patch size. A label l
denotes a set of displacement vectors from the patch center

O to all object locations Pj within its neighbour region of

radius R:

l = {
−−→
OPj |Pj ∈ A ∧ |

−−→
OPj | < R}. (3)

Some samples of l are shown in Fig. 3. We propose a novel

random forest framework, which we call COUNT forest, to

learn the mapping F and use this forest regression from

multiple image patches to vote for the densities of multi-

ple target objects. The biggest advantages of our COUNT

forest model is that it requires small memory space to build

and reserve the forest, as it contains only vector labels at its

leaf nodes. Compared with regression forest models with

dense structured labels proposed in [20, 16], our model is

more suitable for embedded computer vision systems.

3.1. Building COUNT Forest

Our COUNT forest is an ensemble of randomized trees

that classify an image patch by recursively branching left or

right down the tree in a coarse-to-fine manner until a leaf

node is reached, as shown in Fig. 3.

Training of each tree proceeds as follows. Given a train-

ing set {(vi, li)}, we assign all the training samples to the

root node and recursively repeat splitting of the node un-

til the number of training samples in a node becomes small

or the height of the tree becomes large. For each node, we

choose J splits randomly, each of which is a pair of a test

function and a threshold. All data Sj = {(vi, li)} arriving

at node j are split into a left subset SL(j) and a right subset

SR(j) based on the thresholding result of the test function

SL(j) = {(vi, li) ∈ Sj |fj(vi) < tj}

SR(j) = Sj \ SL(j), (4)

(v, l = )

Upper 

layer

Lower 

layer

…

Figure 3. Training COUNT forest in a coarse-to-fine manner using

two split layers. For space limit, only one tree is shown.

where fj(v) and tj are the test function of the feature vec-

tor v and the threshold at a node j, respectively. In our im-

plementation, fj(v) is a randomly selected element of the

feature vector v.

Because our regression target is the vector label which

differs by both the number of displacement vectors and their

spatial distribution, we found that a single split criterion

used in previous works is not enough to classify such labels.

Our solution is to apply a coarse-to-fine approach where we

separate the split nodes into two split layers with different

split criterion. In the upper split layer, we attempt to split

the labels based on their spatial distributions. Here, we find

the best split (f∗
j , t

∗
j ) by minimizing the total variance

(f∗
j , t

∗
j ) = argmin

(fn
j
,tn

j
)

∑

o∈SL(j)

||Ho−H̄
L||2F+

∑

o∈SR(j)

||Ho−H̄
R||2F ,

(5)

where H
o is a 2D histogram representing the spatial distri-

bution of object locations indicated by the label, as shown

in Fig. 4. Each histogram bin of H is computed from con-

tributions of nearby object locations via Gaussian kernels.

H̄
L and H̄

R are the average histogram of H’s belonging to

the left subset SL(j) and the right subset SR(j) respectively

after splitting. ||· ||F is the Frobenius norm. When the max-

imum depth or the minimum node size of this split layer is

reached, patches are then passed to the lower split layer.

In the lower split layer, we attempt to make finer splits

based on the label size, which is defined as the number of

displacement vectors, i.e. the number of object locations, in-

dicated by each label. We use the class uncertainty measure

as the split function

(f∗
j , t

∗
j ) = argmin

(fn
j
,tn

j
)

|SL(j)|

|Sj |
H(SL(j)) +

|SR(j)|

|Sj |
H(SR(j)),

(6)

where H(S) is defined as the Shannon entropy of distribu-

tion of label sizes in S. As a result, the uncertainty of class

distribution of all labels associated with a node decreases

with increasing tree depth, and each leaf should contain a

set of labels with almost the same label size.
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Figure 4. Splitting criterion of the upper split layer.

…

1-vector labels

2-vector labels

3-vector labels

Majority vote

…

K-means

Figure 5. Prediction model by majority voting and K-means. In

this sample, K = 2.

We must notice that in the test phase, we do not need

to distinguish the two split layers because we use the same

testing criterion for every node.

3.2. Prediction Model

In this section, we explain how to predict the output la-

bel of the above-mentioned randomized tree using the labels

stored in the leaves during training time. An illustration of

this prediction model is shown in Fig. 5.

After the training process stated in Section 3.1, training

samples are stored in leaf nodes of the forest. We divide

all the labels stored in each leaf node into clusters with the

same label size (see Fig. 5). Among these clusters of labels,

we select the cluster G having the largest number of mem-

bers. As stated in the previous section, labels in each leaf

node have almost the same size, therefore G contains most

labels in the leaf and the remaining labels can be considered

as noises. We assume that the labels in G have the same la-

bel size K. Note that K varies with the labels stored in each

leaf. In Fig. 5, we show the case when K = 2. In the next

step, we project the object locations indicated by all the la-

bels in G on a plane whose center corresponds with each

patch center of the labels, and apply K-means to obtain K
clusters of such locations. Finally, we create a new label

consisting of K displacement vectors from the plane center

to the K centroids of these clusters. We call it the prediction

label, and substitute it for all labels in the same leaf node to

make the final trained tree. The built forest consists of only

vector labels in its leaf node, and therefore its memory size

is much smaller than regression forest models with dense

structured labels proposed in [20, 16].

Extract patch feature

Predict label

Estimate patch density

Compute whole density

COUNT forest

(dictionary)

Figure 6. Density estimation procedure.

3.3. Density Estimation by COUNT Forest

In Fig. 6, we explain the procedure of estimating object

densities using the trained COUNT forest. The procedure

starts by extracting all patches from the input image, and a

feature vector vi from each patch i is computed. We then

classify this vector vi by recursively branching left or right

down each tree Tj in the learned forest until a leaf node

is reached, and obtain a prediction label lji stored in this

leaf node. In the standard voting procedure [17], each la-

bel votes a delta peak for each object location and the vote

counts accumulated in each pixel are then Gaussian-filtered

to obtain a voting result map. Because each false predicted

object location will increase the error of object counts by

1, we can not use this this voting map as our desired den-

sity map. Applying non-maxima suppression and counting

from the object detection results does not work either be-

cause objects are so closed to each other and often partly

occluded in crowded scenes (see Fig. 1).

Borrowing the idea of neighbour smoothing in [20], we

suppress the error in estimating a density for each pixel by

collecting predictions from neighbouring pixels. We calcu-

late a patch density map from a predicted label and average

it across trained trees and across neighbour patches. For de-

tails, each object location indicated by a label lji contributes

to the patch density map by a Gaussian kernel, following the

definition of the density function in (1):

Dji(x) =
∑

µ∈lji

N (x;µ, σ2
12×2), (7)

where x is an arbitrary pixel inside patch i, and µ is an

object location indicated by label lji. Note that this patch

density map has the same size as the input image patch.

For fast computation, we precompute the Gaussian kernels

N (x;µ, σ) and store them in a lookup table indexed by

(x − µ). The final density map of patch i is computed by

averaging Dji over the set of trees T of the trained forest:

Di(x) =
1

|T |

∑

Tj∈T

Dji(x). (8)
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Figure 7. Crowded image patches (left) and non-crowded ones

(right) differ largely in appearance and shape.

The density map for the whole image is computed by aver-

aging all the predicted overlapping density maps Di(x):

D(x) =
1

|D(x)|

∑

Di∈D(x)

Di(x), (9)

where D(x) is the set of density maps that contain pixel x in

their scope. The average computations in equations (7)-(9)

smooth the density predicted at each pixel by incorporating

neighbour pixel information, and therefore the estimation

error at a single pixel can be suppressed.

4. Robust Density Estimation

In this section, we use the COUNT forest described in

the previous section to develop a robust density estima-

tor with three improvements: increasing accuracy with a

crowdedness prior, speeding up estimation by an effective

forest reduction method, and decreasing annotation work

by semi-automatic training.

4.1. Crowdedness Prior

In Fig. 7, we show two examples of crowded and non-

crowded scenes. As seen in the figure, there is a large

variation in appearance and shape between crowded image

patches and non-crowded ones. Therefore, learning a for-

est from the entire training set including both crowded and

non-crowded scenes should be harder than learning differ-

ent forests for each scene. We use this crowdedness prior,

which is a global property of the image, to develop a robust

density estimator.

We aim to estimate a density Dn
i of an image patch i in

the current frame, given the density Dn−1
i estimated from

the previous frame. By introducing the crowdedness prior

c, the probability p(Dn
i |D

n−1
i ) can be estimated as

P (Dn
i |D

n−1
i ) =

∑

j=1,2

P (Dn
i |cj , D

n−1
i )P (cj |D

n−1
i ), (10)

where c1 and c2 denote the crowded and non-crowded prop-

erties. The probability p(Dn
i |cj , D

n−1
i ) is independent on

Dn−1
i and can be learned by training a COUNT forest on

different training subsets. We collect crowded patches and

non-crowded patches to train a different forest for c1 and c2.

A patch i is called crowded if the number Ni of objects in

its neighbourhood is inside the range [1/3N,N], and non-

crowded if Ni ∈ [0, 2/3N], where N = maxNi. The prior

1

2

3

4

Figure 8. The density map for each red patch is predicted using a

different sub-forest, therefore the density at the center dot is com-

puted from all 4 sub-forests.

probability p(cj |D
n−1
i ) is defined as

P (c1|D
n−1
i ) = [N n−1

i > N/2], (11)

P (c2|D
n−1
i ) = 1− P (c1|D

n−1
i ). (12)

The motivation for these simple definitions is that we need

to process only one forest to estimate a density map for a

patch. As a result, we can improve accuracy by using this

crowdedness prior without increasing the calculation cost.

4.2. Forest Permutation

As other regression forest based methods, the speed of

our density estimation method depends on the the number

of trees to be loaded and the sampling stride, i.e. the dis-

tance between sampled image patches. A trivial approach of

fixedly reducing the forest could affect the accuracy heavily

due to the weak ensemble of few decision trees.

We proposed a non-trivial approach of reducing the for-

est using permutation of decision trees. We divide the orig-

inal forest into several sub-forests (typically 4), and circu-

larly shift these sub-forests whenever moving to the next

patch (e.g. 1234 → 2341 → ...). We then modify the for-

mulation (8) as follows:

Di(x) =
1

|Ti,1|

∑

Tj∈Ti,1

Dji(x), (13)

where Ti,1 is the first sub-forest after the forest permutation

at patch i. Our idea is based on the fact that a density at

a pixel is calculated by averaging predicted patches across

trained trees and across neighbour locations. As shown in

Fig. 8, although each density patch is predicted using only

one sub-forest, a density at each pixel is eventually com-

puted from the whole forest which appears partly in the sur-

rounding patches.

4.3. Semi-Automatic Training

In this section, we address another common problem of

counting-by-regression methods: manual annotation. As in

other methods [10, 11, 21, 16, 9], we also require a different

set of annotated images to train the estimator for a specific

scene. Annotating dozens of images is laborious work, even

in the case of a simple task such as marking the head of each

person as shown in Fig. 2.
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Figure 9. Segmentation masks obtained by GrabCut [26].

To deal with this problem, we introduce a semi-

automatic training method to learn the estimator for a spe-

cific scene, making our technique more practical. Instead of

selecting and annotating real images, we synthesize train-

ing images from a large set of segmented human regions

and the target scene background. The synthesized training

samples not only facilitate labor-saving, but also adapt our

estimator to the new scene. Moreover, since we deal with

image patches in crowded scenes with small object sizes,

we do not need high qualities of synthetic data. As shown

in our experiments in Section 5, our COUNT forest model

is sufficiently robust to take a simple synthesized data as the

training samples to obtain a high performance.

In our implementation, we perform image segmenta-

tion on the PETS2009-S2 dataset [15] including 795 im-

ages with bounding-box annotations, by using the Grab-

Cut method [26]. We obtain more than 2000 segmentation

masks, as shown in Fig. 9. The synthesizing process starts

by pasting the random segmentation masks at random posi-

tions in the target scene background. We then fix the mask

size according to the perspective scale of the scene, and syn-

thesize shadows to make the final augmented images.

5. Experiments

The parameters of the our COUNT forest are set as

follows: the number of trees |T | = 32, the tree depth

hmax = 11, the maximum depth for the upper split layer

h1
max = 8, and the minimum split size nmin = 20. The

patch size is fixed to 13×13 pixels. In our training process,

we extracted 1000 patches from each training image to build

the set of training samples. We used the following feature

channels to compute the feature vector v: the raw image,

the background subtraction result, the temporal derivative,

the Gaussian gradient magnitude, the Laplacian of Gaus-

sian, and the eigenvalues of the structure tensor at different

scales 0.8, 1.6. 3.2 (here we used the covariation matrix of

derivatives over the pixel neighbourhood). To account for

the perspective distortion, we multiplied all feature values

with the square of the provided camera perspective map.

We use the same metrics as conventional works [11,

10, 23] for evaluating counting performance: mean ab-

solute error mae = E(|κj − κ̂j |), mean squared error

mse = E((κj − κ̂j)
2), and mean deviation error mde =

E(|κj − κ̂j |/κj), where κj and κ̂j are the true number and

the estimated number of objects in frame j, respectively.

κ̂j is computed as the sum of estimated densities over the

whole image.

Data Frame Resolution FPS Count Total

UCSD 2000 238× 158 10 11-46 49885

Mall 2000 640× 480 2 13-53 62325

Table 1. Dataset details. From left to right: dataset name, number

of frame, resolution, frame per second, minimum and maximum

number of people in the ROI, total number of people instances.

(a)

(b)

Figure 10. Datasets used in our experiments: (a) Mall [11], (b)

UCSD [9]. Upper row: input image, lower row: density map. The

red border line indicates the ROI for density estimation.

5.1. Counting Performance

We evaluate the performance of counting people on the

two public dataset: UCSD [9] and Mall [11]. Both datasets

are provided with dotted ground truth [2, 1]. The details of

both dataset are shown in Tab. 1. Sample images from the

two datasets and the corresponding density maps estimated

by our method are shown in Fig. 10.

In the first experiment, we used the same experiment

setting as [11, 10, 23]. For the UCSD dataset, we em-

ployed 800 frames (600-1400) for training and the rest

(1200 frames) for testing. For the Mall dataset, the first

800 frames were used for training and the remaining 1200

frames for testing.

We perform comparison against conventional methods:

recent pedestrian detetor (Detector [6])1, Least Square Sup-

port Vector Regression (LSSVR [27]), Kernel Ridge Re-

gression (KRR [4]), Random Forest Regression (RFR [22]),

Gaussian Process Regression (GPR [9]), Ridge Regression

(RR [11]), Cumulative Attribute Ridge Regression (CA-RR

[10]), Semi-Supervised Regression (SSR [23]), Maximum

Excess over SubArrays (MESA [21]). The accuracy com-

parison results of counting people for the two dataset are

shown in Tab. 2. We achieved the state-of-the-art perfor-

mance on all three metrics, and improved the mean absolute

error (mae) by 27% relative to the best previous result on

the Mall dataset [10].

We also perform comparison on the UCSD dataset with

other four different training/testing splits of the data (’max’,

’down’, ’up’, ’min’) as used in [21], and show the result in

1The pedestrian detector did not work for the UCSD dataset due to

small sizes of people.
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Mall[11] UCSD[9]

Method mae mse mde mae mse mde

Detector([6]) 20.55 439.1 0.641 - - -

LSSVR([27]) 3.51 18.2 0.108 2.20 7.3 0.107

KRR([4]) 3.51 18.1 0.108 2.16 7.5 0.107

RFR([22]) 3.91 21.5 0.121 2.42 8.5 0.116

GPR([9]) 3.72 20.1 0.115 2.24 8.0 0.112

RR([11]) 3.59 19.0 0.110 2.25 7.8 0.110

CA-RR([10]) 3.43 17.7 0.105 2.07 6.9 0.102

SSR([23]) - 17.8 - - 7.1 -

Ours 2.50 10.0 0.080 1.61 4.4 0.075

Table 2. Comparison on the Mall dataset [11] and the UCSD

dataset [9]. We achieved the best results on all three metrics.

Method ’max’ ’down’ ’up’ ’min’

MESA [21] 1.70 1.28 1.59 2.02

RF [16] 1.70 2.16 1.61 2.20

Arteta et al. [5] 1.24 1.31 1.69 1.49

Ours 1.43 1.30 1.59 1.62

Table 3. Mean absolute errors in the UCSD dataset with four dif-

ferent training/testing splits of the data as used in [21].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

overlap threshold

Average Recall

Figure 11. Average recall to measure the effectiveness of person

displacement estimation in the UCSD dataset.

Tab. 3. We outperform [16] for all split settings and are

comparable with Arteta et al. [5].

To evaluate the estimated displacements of pedestrians,

we propose a recall function for each image which is the

fraction of ground-truth person instances that the sum of

estimated density inside its bounding box is larger than an

overlap threshold. In Fig. 11, we show the average recalls

(AR) over all frames with corresponding overlap thresholds.

AR at threshold 50% is 96%, meaning that 96% of persons

are detected closely to their correct locations.

5.2. Robustness

In Tab. 4, we present detailed evaluations of the COUNT

forest and the proposed improvements in Section 4. The

methods are compared in their accuracy, speed and mem-

ory cost. All experiments were performed using C++ on a

PC with 2 Intel Xeon CPUs (2.80 GHz). We implemented

the regression forest with dense structured labels proposed

in [20] as our strong baseline2. Our COUNT forest gives a

better accuracy and the memory cost for loading the forest is

30 times smaller. When applying the crowdedness prior, we

further increase the accuracy at the cost of doubling the dic-

tionary size, as we use two forests for estimation. In Fig. 12,

we show the ground-truth and estimated pedestrian counts

2We used only the upper split layer with a larger maximum height 10

and stored a dense structured label in each leaf node expressing the aver-

aged density patch calculated from the original vector labels.

Method Error (mae) Runtime Dictionary Size

Baseline [20] 2.10 82ms 44.9MB

CF with 1 split layer 1.89 92ms 1.7MB

CF 1.59 96ms 1.5MB

CF + Prior 1.43 98ms 2.9MB

CF + Prior + Speedup 1.54 36ms 2.9MB

Table 4. Detailed evaluation on the UCSD dataset with the ’max’

split setting (160 training, 1200 testing frames). CF: COUNT for-

est, Prior: crowdedness prior, Speedup: forest permutation.
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Figure 12. Counting results on the UCSD dataset using COUNT

forest without and with the crowdedness prior. The right graph

shows better estimation in extremely crowded and non-crowded

scenes (highlighted regions).

(a)

(b)

Figure 13. Real images (left) and synthesized images (right) from

the Train Station dataset [31] (a) and UCSD dataset [9] (b).

by the two approaches. By adaptively switching between

the two forests, we obtained better estimation in extremely

crowded and non-crowded scenes.

We then applied the forest permutation approach in Sec-

tion 4.2, where the sampling stride was set to 3 and number

of sub-forest was 4. There was a small loss in accuracy,

but we could achieve the real-time speed (30 fps). A trivial

approach of fixedly reducing the forest also produced the

real-time speed but with a lower accuracy (mae = 1.60).

5.3. Semi-automatic training

We used the Train Station dataset [31] to evaluate the

performance of the semi-automatic training technique in

Section 4.3. This dataset recorded over 100 persons travers-

ing inside a train station. Sample synthesized training im-

ages are shown in Fig. 13.

The mean deviation errors of counting results with dif-

ferent numbers of synthesized images are shown in Fig. 14.

The best result by manual training using the same number of

training real images is also shown in the same graph. From
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Figure 14. Counting results of training by manual annotation, and

by the synthesizing method with different numbers of synthesized

images. In this experiment, training with 75 synthesized images

converged to the minimum mde (same result for 100 images).
#2814

motorcycle

#4010

persons on a bus

Figure 15. Pedestrian and car densities estimated for the Intersec-

tion dataset (person densities are in white, car densities are in red).

Methods Pedestrian Car

DPM [14] 17.7 3.4

Separated class counting 15.4 1.6

Simultaneous counting 6.6 1.4

Table 5. Mean absolute error (mae) of counting cars and pedestri-

ans for the Intersection dataset.

the graph, we can observe that the counting performance

is improved with an increasing number M of synthesized

training images, and even get closed to the performance of

the manual training if M is large enough.

5.4. Application 1: Traffic Count

We apply our method to solve the problem of simulta-

neous density estimation of pedestrians and cars in traffic

scenes. It has many potential applications such as acci-

dent detection and traffic control. The main difficulty is that

there are noises in person density estimation caused by mis-

classification of cars, because patch features of persons are

similar to patch features of some car parts.

Our solution starts by making a copy of the input image

for each person and car class, which we call the class layer.

We then scale the car layer down by 4 × 4 times to match

the car size to the person size. The advantage of this pre-

processing is that it can filter out person appearances from

the car layer, because person instances become so small af-

ter the resizing. As a result, noises of car density estimation

caused by person misclassification can be reduced. We train

a different COUNT forest for each class layer, and use these

forests to estimate a density map for each object class. We

then scale the car density map up to the original image size,

and score each class at each pixel with a density smoothed

L

o

w

H

i

g

h

Figure 16. Averaged stationary time distribution over 4 hours.

over the neighbourhood region. For each location we take

the maximally scoring class along with the corresponding

density as output.

We introduce a new Intersection dataset to evaluate the

performance of simultaneously counting pedestrians and

cars. This video has a length of 11 minutes, with 30 fps

frame rate, and 1920 × 1080 resolution. In this scene,

cars and pedestrians traverse an intersection, making the

scene become dense and sparse periodically. The number

of pedestrians varies from 10 to 120, while the number of

car varies from 0 to 20. We sampled 100 frames from the

video with an interval of 100 frames, and used the first 50

frames for training and the remaining 50 frames for testing.

The density estimation results are shown in Fig. 15. We

can observe that car and pedestrian regions are correctly

classified even when they locate close together. Some in-

teresting results are shown in the first two rows, in which a

motorcycle and two persons on a bus are correctly detected.

They prove the robustness of our method. The perfor-

mance comparison results of counting cars and pedestrians

for this dataset are shown Tab. 5. Compared with separated

class counting, simultaneous counting improved the count-

ing performance for both car and pedestrian classes. We

also obtained better results than the Deformable Part Mod-

els (DPM) detector [14], which is the most used method for

detecting multiple-class objects.

5.5. Application 2: Stationary Time

Our second application is the estimation of the stationary

time, which is defined as a period that a foreground pixel

exists in a local region allowing local movements [29]. The

stationary time estimation can help scene understanding and

provide valuable statistics computed over time. Besides, it

was confirmed in [29] that simply detecting foreground at

individual frames and computing how long a pixel has been

in the foreground gave poor results. Our solution is to esti-

mate a density map at each frame and compute how long a

density at a pixel has been larger than a threshold. Although

our method is much simpler than [29] without complex cal-

culations, we obtained a similar result as [29]. In Fig. 16,

we showed an averaged stationary time distribution in four

hours of the Train Station dataset [31] (see Fig. 13(a)).

As [29], it can be observed that stationary groups tend to

emerge and stay long around the information booth and in

front of the ticketing windows.
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