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Abstract

The Flickr30k dataset has become a standard benchmark

for sentence-based image description. This paper presents

Flickr30k Entities, which augments the 158k captions from

Flickr30k with 244k coreference chains linking mentions of

the same entities in images, as well as 276k manually an-

notated bounding boxes corresponding to each entity. Such

annotation is essential for continued progress in automatic

image description and grounded language understanding.

We present experiments demonstrating the usefulness of our

annotations for text-to-image reference resolution, or the

task of localizing textual entity mentions in an image, and

for bidirectional image-sentence retrieval. These experi-

ments confirm that we can further improve the accuracy of

state-of-the-art retrieval methods by training with explicit

region-to-phrase correspondence, but at the same time, they

show that accurately inferring this correspondence given an

image and a caption remains really challenging.

1. Introduction

We are interested in understanding language grounded

in visual content, and using language to better interpret im-

ages. The task of sentence-based image description, which

combines both of these goals, has received a lot of atten-

tion in both computer vision and natural language process-

ing communities [1, 4, 6, 7, 12, 16, 19, 20, 22, 23, 25, 28, 37,

39]. Existing datasets for this task pair each image with one

or more captions [11, 12, 24, 31, 40]. Unfortunately, none

of these datasets provide an explicit grounding of where the

entities mentioned in the captions appear in the image. As a

consequence, most approaches to automatic image descrip-

tion either learn global associations between images and

sentences without any explicit attempt to detect or local-

ize the mentioned entities [1, 4, 12, 19, 20, 23, 25, 37], or

rely on detectors that were trained for different purposes

[7, 22, 28, 39]. A number of recent works have taken a

more conceptually satisfying approach of inducing map-

pings of image regions to words or phrases in the cap-

tions [6, 17, 16, 38], but have had to treat these mappings

as latent. It is reasonable to believe the accuracy of the lat-

ter methods would be enhanced by having explicit super-

vision at training time. At test time, ground-truth region-

to-text correspondence could help evaluate how accurately

methods associate phrases with specific image locations.

Indeed, there is evidence that state-of-the-art caption gen-

eration methods tend to reproduce generic captions from

the training data and do not perform well on composition-

ally novel images [2]. To overcome such weaknesses and

develop richer compositional image-sentence models, we

need large-scale supervision and new benchmarks.

The main contribution of this paper is providing the

first large-scale comprehensive dataset of region-to-phrase

correspondences for image description. We build on the

Flickr30k dataset [40], a popular benchmark for caption

generation and retrieval [1, 4, 6, 10, 17, 16, 19, 20, 23, 25,

37, 38]. Flickr30k contains 31,783 images focusing mainly

on people and animals, and 158,915 English captions (five

per image). In this work, we introduce Flickr30k Entities,

which augments the original dataset by identifying which

mentions among the captions of the same image refer to the

same set of entities, resulting in 244,035 coreference chains,

and which image regions depict the mentioned entities, re-

sulting in 275,775 bounding boxes. Figure 1 illustrates the

structure of our annotations on three sample images.

The largest existing dataset with both captions and

region-level annotations is Microsoft Common Objects in

Context (MSCOCO) [24], containing over 300k images

with over 2.5m labeled object instances from 80 pre-defined

categories, and five captions per image. However, the

MSCOCO region-level annotations were produced inde-

pendently from its captions, and phrases in the captions are

not linked to these regions or to each other in any way. Thus,

while MSCOCO is an order of magnitude larger, unlike our
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A man with pierced ears is wearing glasses and an orange hat.

A man with glasses is wearing a beer can crotched hat.

A man with gauges and glasses is wearing a Blitz hat.

A man in an orange hat starring at something.

A man wears an orange hat and glasses.

During a gay pride parade in an Asian city, some people hold 

up rainbow flags to show their support.

A group of youths march down a street waving flags showing 

a color spectrum.

Oriental people with rainbow flags walking down a city street.

A group of people walk down a street waving rainbow flags.

People are outside waving flags  .

A couple in their wedding attire stand behind a table

with a wedding cake and flowers.

A bride and groom are standing in front of their wedding 

cake at their reception.

A bride and groom smile as they view their wedding 

cake at a reception.

A couple stands behind their wedding cake.

Man and woman cutting wedding cake.

Figure 1: Example annotations from our dataset. In each group of captions describing the same image, coreferent mentions

(coreference chains) and their corresponding bounding boxes are marked with the same color. On the left, each chain points

to a single entity (bounding box). Scenes and events like “outside” or “parade” have no box. In the middle example, the

people (red) and flags (blue) chains point to multiple boxes each. On the right, blue phrases refer to the bride, and red phrases

refer to the groom. The dark purple phrases (“a couple”) refer to both of these entities, and their corresponding bounding

boxes are identical to the red and blue ones.

dataset, it has neither cross-caption coreference information

nor explicit groundings of textual mentions to regions.

Our dataset is also related to ReferIt [18], which aug-

ments the IAPR-TC dataset [11] of 20k photographs with

130k isolated entity descriptions for 97k objects (image re-

gions), only 10k of which have more than a single descrip-

tion. While some of the ReferIt descriptions contain spatial

relations to other objects, they typically do so only if that

is necessary to uniquely identify the object in the image.

The average number of identified objects per image in our

dataset (8.9 bounding boxes) is significantly higher than in

the ReferIt dataset (4.8), and is on par with MSCOCO (7.7).

Johnson et al. [15] is another notable work concerned

with grounding of semantic scene descriptions to image re-

gions. However, instead of natural language, it proposes a

formal scene graph representation that encapsulates all en-

tities, attributes and relations in an image, together with a

dataset of scene graphs and their groundings for 5k images.

While these graphs are more dense and detailed than our

annotations (on average, each image has 13.8 objects, 18.9

attributes and 21.9 relations), such an exhaustive annotation

scheme makes it difficult to identify salient content for nat-

ural language communication, and it is unclear how it can

scale to larger numbers of images.

Section 2 describes our crowdsourcing protocol, which

consists of two major stages, coreference resolution and

bounding box drawing. Each stage is split up into smaller

tasks to ensure both efficiency and quality. Our annota-

tions also enable us to conduct quantitative evaluation for

new benchmark tasks, such as text-to-image reference res-

olution. Section 3 presents baseline results for this task,

demonstrating that even with state-of-the-art text-to-image

embeddings, accurately localizing specific entities in an im-

age remains challenging. Finally, in Section 4, we show

how our region-phrase annotations can help to improve per-

formance on the established task of bidirectional (image-to-

sentence and sentence-to-image) retrieval.

2. Annotation Process

As can be seen from Figure 1, our desired annotations are

highly structured. They also vary in complexity from image

to image, since images vary in the numbers of clearly dis-

tinguishable entities they contain, and sentences vary in the

extent of their detail. Further, there are ambiguities involved

in identifying whether two mentions refer to the same entity

or set of entities, how many boxes (if any) these entities re-

quire, and whether these boxes are of sufficiently high qual-

ity. Due to this intrinsic subtlety of our task, compounded

by the unreliability of crowdsourced judgments, we devel-

oped a multi-stage pipeline of simpler atomic tasks to en-

sure high-quality final annotations.

Our pipeline consists of two stages: coreference reso-

lution, or forming coreference chains that refer to the same

entities (Section 2.1), and bounding box annotation for

the resulting chains (Section 2.2). This workflow provides

two advantages: first, identifying coreferent mentions helps

reduce redundancy and save box-drawing effort; and sec-

ond, coreference annotation is intrinsically valuable, e.g.,
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for training cross-caption coreference models [13]. More

details on the interfaces used to collect annotations on Ama-

zon’s Mechanical Turk (AMT) are provided in the supple-

mentary material.

2.1. Coreference Resolution

We rely on the chunking information given in the

Flickr30k captions [40] to identify potential entity men-

tions. With the exception of personal pronouns (he, she,

they) and a small list of frequent non-visual terms (back-

ground, air), we assume that any noun-phrase (NP) chunk

is a potential entity mention. NP chunks are short (avg.

2.35 words), non-recursive phrases (e.g., the complex NP

[[a man] in [an orange hat]] is split into two chunks). Men-

tions may refer to single entities (a dog); regions of “stuff”

(grass); multiple distinct entities (two men, flags, football

players); groups of entities that may not be easily identified

as individuals (a crowd, a pile of oranges); or even the entire

scene (the park). Finally, some NP chunks may not refer to

any physical entities (wedding reception, a trick, fun).

Once we have our candidate mentions from the sentences

corresponding to the same image, we need to identify which

ones refer to the same set of entities. Since each caption

is a single, relatively short sentence, pronouns (he, she,

they) are relatively rare in this dataset. Therefore, unlike in

standard coreference resolution in running text [34], which

can be beneficial for identifying all mentions of people in

movie scripts [30], we ignore anaphoric references between

pronouns and their antecedents and focus on cross-caption

coreference resolution [13]. Like standard coreference res-

olution, our task partitions the set of mentions M in a doc-

ument (here, the five captions of one image), into subsets of

equivalent mentions such that all mentions in the same sub-

set c ∈ C refer to the same set of entities. In keeping with

standard terminology, we refer to each such set or cluster of

mentions c ⊂ M as a coreference chain.

Binary Coreference Link Annotation. Since the task of

constructing an entire coreference chain from scratch is

cognitively complex and error-prone, we broke it down into

a simpler task to collect binary coreference links between

pairs of mentions. A coreference link between mentions m

and m′ indicates that m and m′ refer to the same set of en-

tities. In the manual annotation process, workers are shown

an image and the two captions from which m and m′ orig-

inate. The workers are asked whether these mentions refer

to the same entity. If a worker indicates that the mentions

are coreferent, we add a link between m and m′. Given a

set of mentions M for an images, manual annotation of all

O(|M |2) pairwise links is prohibitively costly. But since M

typically contains multiple mentions that refer to the same

set of entities, the number of coreference chains is bounded

by, and typically much smaller than, |M |. This allows us

to reduce the number of links that need to be annotated to

O(|M ||C|) by leveraging the transitivity of the coreference

relation [26]. Given a set of identified coreference chains C

and a new mention m that has not been annotated for coref-

erence yet, we only have to ask for links between m and

one mention from each element of C. If m is not coreferent

with any of these mentions, it refers to a new entity whose

coreference chain is initialized and added to C.

In the worst case, each entity has only one mention re-

quiring annotation of all |M |2 possible links. But in prac-

tice, most images have more mentions than coreference

chains (in our final dataset, each image has an average of

16.6 mentions and 7.8 coreference chains). We further re-

duce the number of required annotations with two simplify-

ing assumptions. First, we assume that mentions from the

same captions cannot be coreferent, as it would be unlikely

for a caption to contain two non-pronominal mentions to the

same set of entities. Second, we categorize each mention

into eight coarse-grained types using manually constructed

dictionaries (people, body parts, animals, clothing/color1,

instruments, vehicles, scene, and other), and assume men-

tions belonging to different categories cannot be coreferent.

Coreference Chain Verification. To handle errors intro-

duced by the coreference link annotation, we verify the ac-

curacy of all chains that contain more than a single mention.

Although false negatives (missing coreference links) lead

to an oversegmentation of entities that increases the time

required to draw boxes for each set of entities, we can iden-

tify this redundancy post-hoc since the associated boxes are

highly likely to have significant overlap (see Section 2.3 for

details on box merging). False positives (spurious corefer-

ence links) are more harmful for our purposes, since they

may result in mentions being associated with incorrect en-

tities or image regions. We use a Coreference Chain Veri-

fication task to detect these false positive coreference links.

Here, workers are shown the mentions that belong to the

same coreference chain and asked whether all the mentions

refer to the same set of entities. If the worker answers True,

the chain is kept as-is. If a worker answers False, that chain

is broken into subsets of mentions that share the same head

noun (the last word in a chunk).

2.2. Bounding Box Annotations

The workflow to collect bounding box annotations is

broken down similarly to Su et al. [36], and consists of

four separate AMT tasks, discussed below: (1) Box Re-

quirement, (2) Box Drawing, (3) Box Quality, and (4) Box

Coverage. In each task, workers are shown an image and

a caption in which a representative mention for one coref-

erence chain is highlighted. We use the longest mention in

each chain, since we assume that it is the most specific.

1In Flickr30k, NP chunks that only consist of a color term are often

used to refer to clothing, e.g. man in blue.
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Box Requirement. First, we determine if the entities a rep-

resentative mention refers to require boxes to be drawn. A

mention does not require boxes if it refers to the entire scene

(in [the park]), to physical entities that are not in the image

(pose for [the camera]), or to an action or abstract entity

(perform [a trick]). Given an image and a caption with a

highlighted mention, we ask workers if (1) at least one box

can be drawn (2) the mention refers to a scene or place or

(3) no box can be drawn.

If the worker determines that at least one box can be

drawn, the coreference chain proceeds to the Box Drawing

task (below). Otherwise, we ask for a second and some-

times a third Box Requirement judgment to obtain agree-

ment between two workers. If the majority agrees that no

box needs to be drawn, the coreference chain is marked as

“non-visual” and leaves the bounding box annotation work-

flow. After preliminary analysis, we determined that coref-

erence chains with mentions from the people, clothing, and

body parts categories so frequently required boxes that they

immediately proceeded to the Box Drawing task, skipping

the Box Requirement task altogether.

Box Drawing. In this task, we collect bounding boxes for

a mention. The key source of difficulty here is due to men-

tions that refer to multiple entities. Our annotation instruc-

tions specify that we expect individual boxes around each

entity if these can be clearly identified (e.g., two people

would require two boxes). But if individual elements of

a group cannot be distinguished (a crowd of people), a sin-

gle box may be drawn around the group. We show workers

all previously drawn boxes for the representative mention

(if they exist), and ask them to draw one new box around

one entity referred to by the mention, or to indicate that no

further boxes are required.

If the worker adds a box, the mention-box pair proceeds

to the Box Quality task. If the worker indicates that no

boxes are required, the mention accrues a “no box needed”

judgment. The mention is then returned to Box Require-

ment if it has no boxes associated with it. Otherwise, the

mention is sent to Box Coverage.

Box Quality. For each newly drawn we ask a worker

whether the box is good. Since we want to avoid redun-

dant boxes, we also show all previously drawn boxes for

the same mention. Good boxes are tightly drawn around

the entire entity a mention refers to which no other box al-

ready covers. When mentions refer to multiple entities that

can be clearly distinguished, these must be associated with

individual boxes. If the worker marks the box as ’bad’, it is

discarded and the mention is returned to the Box Drawing

task. If the worker marks the box as ’good’, the mention

proceeds to the Box Coverage task to determine whether

additional boxes are necessary.

Box Coverage. In this step, workers are shown the boxes

that have been drawn for a mention, and asked if all required

boxes are present for that mention If the initial judgment

says that more boxes are needed, the mention is immedi-

ately sent back to Box Drawing. Otherwise, we require

a second worker to verify the decision that all boxes have

been drawn. If the second worker disagrees, we collect a

third judgment to break the tie, and either send the mention

back to Box Drawing, or assume all boxes have been drawn.

2.3. Quality Control

Identifying Trusted Workers. Since annotation quality

on AMT is highly variable [35, 31], we only allow work-

ers who have completed at least 500 previous HITs with

95% accuracy, have successfully completed a correspond-

ing qualification test for each of our six tasks, and have suf-

ficient accuracy on their first 30 items. For Box Drawing,

Boxes have to pass Box Quality. For the binary tasks, we

use verification questions for which we know the answer.

For the binary tasks, they then have to maintain high accu-

racy on the 2% of items that are also verification questions.

Additional Review. At the end of the crowdsourcing pro-

cess, we identified roughly 4k entities that required addi-

tional review. This included some chunking errors that

came to our attention (e.g., through worker comments), as

well as chains that cycled repeatedly through the Box Re-

quirement or Box Coverage task, indicating disagreement

among the workers. Images with the most serious errors

were manually reviewed by the authors.

Box and Coreference Chain Merging. As discussed in

Section 2.1, coreference chains may be fragmented due to

missed links (false negative judgments). Additionally, if an

image contains more than one entity of the same type, its

coreference chains may overlap or intersect (e.g., a bride

and a couple from Figure 1). Since Box Drawing operates

over coreference chains, it results in redundant boxes for

such cases. We remove this redundancy by merging boxes

with IOU scores of at least 0.8 (or 0.9 for “other”). This pro-

cess has some restrictions (e.g. clothing and people boxes

cannot be merged). Afterwards, we merge any coreference

chains that point to the exact same set of boxes.

Error Analysis. Errors present in our dataset mostly fall

under two categories: chunking and coreference errors.

Chunking errors occur when the automated tools made a

mistake when identifying mentions in caption text. Coref-

erence errors occur when AMT workers made a bad judg-

ment when building coreference chains. An analysis using a

combination of automated tools and manual methods iden-

tified chunking errors in less than 1% of the dataset’s men-

tions and coreference errors in less than 1% of the datasets

chains. Since, on average, there are over 16 mentions and 7

chains per image, there is an error of some kind in around

8% of our images.
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Figure 2: The total number of coreference chains, mentions,

and bounding boxes per type.

Type #Chains Mentions/Chain Boxes/Chain

people 59766 3.17 1.95

clothing 42380 1.76 1.44

body parts 12809 1.50 1.42

animals 5086 3.63 1.44

vehicles 5561 2.77 1.21

instruments 1827 2.85 1.61

scene 46919 2.03 0.62

other 82098 1.94 1.04

total 244035 2.10 1.13

Table 1: Coreference chain statistics. The number of men-

tions per chain indicates how salient an entity is. The num-

ber of boxes per chain indicates how many distinct entities

it refers to.

2.4. Dataset Statistics

Our annotation process has identified 513,644 entity or

scene mentions in the 158,915 Flickr30k captions (3.2 per

caption), and these have been linked into 244,035 corefer-

ence chains (7.7 per image). The box drawing process has

yielded 275,775 bounding boxes in the 31,783 images (8.7

per image). Figure 2 shows the distribution of coreference

chains, mentions, and bounding boxes across types, and Ta-

ble 1 shows additional coreference chain statistics. 48.6%

of the chains contain more than a single mention. The num-

ber of mentions per chain varies significantly across entity

types, with salient entities such as people or animals being

mentioned more frequently than e.g clothing or body parts.

Aggregating across all five captions, people are mentioned

in 94.2% of the images, animals in 12.0%, clothing and

body parts in 69.9% and 28.0%, vehicles and instruments

in 13.8% and 4.3%, while other objects are mentioned in

91.8% of the images. The scene is mentioned in 79.7%

of images. 59.1% of the coreference chains are associated

with a single bounding box, 20.0% with multiple bounding

boxes, and 20.9% with no bounding box, but there is again

some wide variety across entity types. The people category

has significantly more boxes than chains (116k boxes for

60k chains) suggesting that many of these chains describe

multiple individuals (a family, a group of people, etc.).

Training Set Size

All NP chunks 423,134

Resampled, N = 1 70,759

Resampled, N = 10 137,133

Table 4: Training set sizes for our experiments.

3. Text-to-Image Reference Resolution

As a key application for our annotations, we consider

the task of text-to-image reference resolution, i.e., ground-

ing or localizing textual mentions of entities in an image.

To our knowledge, Kong et al. [21] is the only work that

deals directly with this task, but it is focused on using sen-

tences to help with 3D parsing of RGB-D images. Up to

now, in the absence of the kinds of annotations provided by

Flickr30k Entities, it has not been possible to use general

text-to-image reference resolution as a benchmark task for

image description.

Given an image and a sentence that describes it, we want

to predict a bounding box for each entity mention from that

sentence. This task is akin to object detection and can be

evaluated in a similar way. However, training a separate

detector for each unique noun phrase is not a promising so-

lution since a large number of phrases are very rare, and dif-

ferent phrases may refer to similar entities (e.g. infant and

baby). Instead, as a baseline approach, we learn an embed-

ding of region and phrase features to a shared latent space

and use distance in that space to score image regions.

3.1. Region­Phrase CCA Model

We want to learn a shared semantic space which would

allow us to associate phrases in our sentences to image re-

gions. This can be done in various ways, from recurrent

neural networks [16, 19, 25] to Canonical Correlation Anal-

ysis (CCA) [10, 20]. Even though CCA is a classic tech-

nique [14], Klein et al. [20] have recently used it to achieve

remarkable results for image-sentence retrieval. Key to their

performance are state-of-the-art features for images (deep

activation features from VGG net [32]) and text (Fisher

vector pooling [29] on word2vec vectors [27] of individual

words). Due to the simplicity, high accuracy, and speed of

this model (on Flick30K, training of CCA only takes a cou-

ple of minutes, while recurrent neural networks may need

tens of hours), we adopt it as our baseline.

We generally follow the implementation details in [20].

Given an image region, we represent it using 4096-

dimensional activations from the 19-layer VGG model (un-

like whole-image features of [20], which are averaged over

ten different crops, our region-level features are computed

from a single crop, which we have found to give better

results). Given a phrase, we represent each word with a

300-D word2vec feature. Then we construct a Fisher Vec-
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people clothing bodyparts animals vehicles instruments scene other mAP/overall

#Instances 5656 2306 523 518 400 162 1619 3374 14558

AP-NMS 13.16 11.48 4.85 13.84 13.67 11.42 10.86 10.50 11.22

R@1 29.58 24.20 10.52 33.40 34.75 35.80 20.20 20.75 25.30

R@10 71.25 52.99 29.83 66.99 76.75 61.11 57.44 47.24 59.66

R@100 89.36 66.48 39.39 84.56 91.00 69.75 75.05 67.40 76.91

Table 2: Localization performance using our resampled (N = 10) CCA model to rank 100 object proposals per image. We

report average precision after nonmaximum suppression (AP-NMS) for different training data and Recall@K (see Section 3

for details).

man woman boy girl person people dog two men street young boy little girl two people

#Instances 1100 599 140 135 132 119 116 112 101 97 84 84

AP-NMS 9.52 15.89 13.71 6.76 7.02 10.53 19.00 28.96 3.05 10.16 11.88 7.68

R@1 32.30 35.18 33.09 32.59 30.30 11.21 33.04 29.52 23.76 36.17 39.76 28.05

R@100 86.91 90.82 92.86 80.74 81.06 83.19 95.69 78.57 66.34 92.78 84.52 86.90

water child little boy two women table ball hat white shirt young girl young man crowd black shirt

#Instances 83 82 69 65 63 62 61 57 57 54 53 50

AP-NMS 14.97 4.37 5.82 11.33 14.54 9.09 16.36 11.13 20.98 11.48 13.45 14.10

R@1 35.37 9.76 48.53 30.16 24.19 40.98 38.98 26.32 43.64 48.15 24.53 8.00

R@100 65.06 91.46 88.41 93.85 74.60 43.55 62.30 68.42 92.98 87.04 88.68 68.00

Table 3: Localization performance for the 24 most common phrases in the test set.

Figure 3: Example localization results. For each image and reference sentence, phrases and top matching regions are shown

in the same color. The CCA matching score is given in brackets after each phrase (low scores are better). See Section 3.2 for

discussion.

tor codebook with 30 centers using both first and second

order information, resulting in phrase features of dimen-

sionality 300 × 30 × 2 = 18000. Due to memory con-

straints, we only use the Hybrid Gaussian-Laplacian Mix-

ture Model (HGLMM) for our experiments rather than the

combined HGLMM+GMM which reported the best perfor-

mance in [20]. We use the normalized CCA formulation

of [9], where we scale the columns of the CCA projection

matrices by the eigenvalues and normalize feature vectors

projected by these matrices to unit length. In the resulting

space, we use cosine distance to rank image regions given a

phrase.

3.2. Phrase Localization Evaluation

As explained above, using our CCA model we can com-

pute a score for each entity mention from a given sentence

to each image region. To obtain candidate image regions,

we take the top 100 proposals returned by the EdgeBox

method [41]. Following [10, 16, 20, 25], we use 29,783

images for training, 1,000 for validation, and 1,000 for test-

ing. Our split is the same as in [10]. At test time, we use the

Stanford parser [33] to identify NP chunks in the test cap-

tions, and attempt to localize phrases that exactly match a

ground truth phrase. If no exact match is present, no predic-
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tion is made, which results in a penalty during evaluation.

We evaluate localization performance using recall and

average precision. First, we treat phrase-region refer-

ence resolution as a retrieval problem with the phrase as

the query and the proposals from the input image as the

database to search over. For this setup, we report Recall@K

(K = 1, 10), or the percentage of queries for which a cor-

rect match has rank of at most K (we deem a region to be

a correct match if it has IOU ≥ 0.5 with the ground truth

bounding box for that phrase). Since we use 100 proposals

per image, reporting Recall@100 gives an upper bound on

localization performance given our region proposals. Fur-

ther, since we get a ranking of regions from test set images

for each unique phrase from the test sentences, we can eval-

uate our output using standard object detection methodol-

ogy [5]. To this end, we report average precision following

non-maximum suppression of predicted boxes (AP-NMS).

As a first attempt, we train a CCA embedding on the set

of all ground-truth phrase-region pairs from the dataset (for

phrases associated with multiple regions, we merge them

into a single bounding box). The resulting model gets 8.69

mean average precision (mAP) over our phrase types. Part

of the reason for the low performance is that the distribu-

tion of region counts for different NP chunks in this train-

ing set is very unbalanced: a few NP chunks, like a man,

are extremely common, while others, like tattooed, shirtless

young man, occur quite rarely. We found we can alleviate

this problem by keeping at most N randomly selected ex-

emplars for each phrase. We get our best mAP of 11.22 by

resampling the dataset with N = 10 (for N = 1, the mAP

is only 7.70). The sizes of the corresponding training sets

are listed in the first three lines of Table 4. A breakdown

of the performance over phrase types using both evaluation

metrics with our best model is found in Table 2. Table 3

shows performance for the 24 most frequent phrases.

While our average precision is poor, this can be partially

explained by the fact that the CCA model is better suited

for retrieval than for localization. For many phrase types, it

is possible to get a good CCA score for a region in which

the corresponding object is poorly localized. For example,

to get a good score for “person,” it is not necessary to have

a tight bounding box that encloses the entire visible extent

of the person in the picture (qualitative results in Figure 3

are indicative). We also obtain low recall on smaller entity

types (hat, ball) due to a lack of good object proposals for

them. On the other hand, not shown in Table 3 are 436

phrases that have AP of 100 (e.g., cow, goalie, rugs), but

occur seven or fewer times in our test set.

Figure 3 shows example results for three image-sentence

pairs, and helps to illustrate the challenges inherent in text-

to-image reference. In the left example, we find the boy, the

toy’s wheels, and associate a large region containing the bed

with “bedroom.” In the center example we find a plausible

box for the man, but the box for glasses lands on the bench

beneath him. To deal with such errors, incorporating spatial

constraints into our localization model will be crucial. The

right example is especially tricky. Here, our model finds the

same box for each child, while finding the swing for the cor-

rect child. In order to properly interpret the sentence cues,

we need to determine from image evidence which child is

being pushed by the woman and which one looks on, and

this is likely to require sophisticated interaction models.

4. Image-Sentence Retrieval

Now that we have shown how our annotations can be

used to train models and establish baselines for a new task,

we would also like to demonstrate their usefulness for the

standard tasks of sentence-to-image and image-to-sentence

retrieval.

We use the standard protocol for evaluation: given the

1,000 images and 5,000 corresponding sentences in the test

set, we use the images to retrieve the sentences and vice

versa, and report performance as Recall@K, or the percent-

age of queries for which at least one correct ground truth

match was ranked among the top K matches.

4.1. Region­Phrase Correspondences for Training

The results in Section 3 came from a CCA model trained

on regions and phrases. Now we train a CCA model on

whole-image and whole-sentence features using the imple-

mentation details in Section 3.1 (following [20], we aver-

age the whole-image features over ten crops for best per-

formance). Table 5(b) shows the performance of this model

on our test set. As can be seen from Table 5(a), this sim-

ple baseline outperforms more complex RNN-based models

of [16, 19, 25]. Next, we want to leverage our region-phrase

annotations to learn a better embedding for image-sentence

retrieval.

An obvious way to train a model combining image-

sentence correspondences with region-phrase correspon-

dences would be to simply take the union of the image-

sentence and region-phrase training sets. However, our

image-level and region-level features are computed in dif-

ferent ways and have different statistics. In particular, be-

cause the image-level features are averaged over multiple

crops while the region-level features are not, the latter are

much sparser. The features for the sentences are also unlike

those of phrases due to the differences in the number and

kinds of words present in the two types of data. Thus, it

is inappropriate to combine the image-sentence and region-

phrase correspondences into a single training set. Instead,

we adopt the Stacked Auxiliary Embedding (SAE) method

of Gong et al. [10] where embedded features learned from

auxiliary sources are concatenated with the original features

to form a stacked representation. In the case of Gong et

al. [10], the auxiliary data came from Flickr images and
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Methods on Flickr30K Image Annotation Image Search

R@1 R@5 R@10 R@1 R@5 R@10

(a) State of the art BRNN [16] 22.2% 48.2% 61.4% 15.2% 37.7% 50.5%

MNLM [19] 23.0% 50.7% 62.9% 16.8% 42.0% 56.5%

m-RNN [25] 35.4% 63.8% 73.7% 22.8% 50.7% 63.1%

GMM+HGLMM FV [20] 33.3% 62.0% 74.7% 25.6% 53.2% 66.8%

(b) Whole image-sentence CCA HGLMM FV 36.5% 62.2% 73.3% 24.7% 53.4% 66.8%

(c) Combined image-sentence SAE 38.3% 63.7% 75.5% 25.4% 54.2% 67.4%

and region-phrase, N = 10 CCA Weighted Distance 39.1% 64.8% 76.4% 26.9% 56.2% 69.7%

Table 5: Bidirectional retrieval results. Image Annotation refers to using images to retrieve sentences, and Image Search

refers to using sentences to retrieve images. The numbers in (a) come from published papers, and the numbers in (b) are from

our own reproduction of the results of [20] using their code. See Section 4 for additional details.

unstructured tags, while we use our region-phrase pairs in-

stead. As shown in the first line Table 5(c), the resulting

model gives us an improvement of just over 1% over the

image-sentence model. This demonstrates in principle that

adding region- and phrase-level correspondences can help

to train better bidirectional retrieval models. The demon-

stration is not fully satisfactory, since SAE does not care

about the nature of the auxiliary data and does not take

into account the actual structure and relationships between

whole images and sentences and their parts, but it helps

to establish a strong baseline and indicates that further re-

search is likely to be fruitful.

4.2. Region­Phrase Correspondences for Retrieval

The CCA models of Section 4.1 are trained with the

help of region-phrase correspondence. However, at test

time, they are still used for global image-sentence retrieval,

without attempting to match regions in a query image and

phrases in a candidate matching sentence. To address this

limitation, we can additionally draw on the region-phrase

models from Section 3. Given a test sentence that we want

to rank with respect to an image, for each phrase feature

pi from that sentence, we obtain the top-ranked candidate

region r(pi). Then we compute the following distance be-

tween the sentence defined as a set of phrases and the image

defined as the set of regions:

DRP =
1

Lγ

L∑

i=1

||pi − r(pi)||
2

2
, (1)

where the exponent γ ≥ 1 is meant to lessen the penalty

associated with matching images to sentences with a larger

number of phrases. Such sentences tend to mention more

details that are harder to localize and therefore receive larger

phrase-to-region distance scores than matches from shorter,

more generic sentences. Experimentally, we have found

γ = 1.5 to produce the best results. Finally, we define a

new image-sentence distance as

D̂IS = αDIS + (1− α)DRP , (2)

where DIS is the squared Euclidean distance between

CCA-projected global image and sentence features.

The second line of Table 5(d) shows results of this

weighted distance with α = 0.7 (by itself, the performance

of eq. (1) is very poor). Compared to just using DIS for

retrieval, we get a consistent improvement of around 2%

for image search and a smaller gain for image annotation.

Once again, this demonstrates in principle that retrieval can

be improved by attempting to infer the correspondence be-

tween regions and phrases at test time, and more research is

needed to fully realize the potential of this idea.

5. Conclusion

This paper has presented Flickr30k Entities, the first

image description dataset that provides comprehensive

ground-truth correspondence between regions in images

and phrases in captions. Our annotations can be used to

benchmark tasks like text-to-image reference resolution, for

which up to now large-scale ground-truth information has

been lacking. While methods for global image description

have been improving rapidly, our experiments suggest that

current models are still quite weak at grounding specific tex-

tual mentions in local image regions, and datasets like ours

are needed to continue to make progress on the problem.

Because our dataset is densely annotated with multiple

boxes per image linked to their textual mentions in a larger

sentence context, it will also be a rich resource for learning

models of multi-object spatial layout [7, 8, 22]. Other

potential applications include training models for automatic

cross-caption coreference [13] and distinguishing visual vs.

non-visual text [3].
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