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Abstract

We propose an object clique potential for semantic seg-

mentation. Our object clique potential addresses the mis-

classified object-part issues arising in solutions based on

fully-convolutional networks. Our object clique set, com-

pared to that yielded from segment-proposal-based ap-

proaches, is with a significantly smaller size, making our

method consume notably less computation. Regarding sys-

tem design and model formation, our object clique po-

tential can be regarded as a functional complement to

local-appearance-based CRF models and works in synergy

with these effective approaches for further performance im-

provement. Extensive experiments verify our method.

1. Introduction

Semantic segmentation is a fundamental task in com-

puter vision that involves labeling each pixel in an im-

age to a category. It relates to the tasks of segmentation,

image classification and object detection, but differs from

them by nature. Semantic segmentation predicts the addi-

tional category information that is not involved in bottom-

up segmentation, and classifies multiple objects together

with their locations. This is also different from image clas-

sification. Compared to object detection, it produces more

accurate pixel-level location, and contains additional back-

ground class.

In recent years, deep convolutional neural networks

(CNN) [17, 32] quicken the development of semantic seg-

mentation systems [24, 3]. One stream is to directly adopt

CNN to classify segment proposals generated by objective-

ness approaches [7, 11, 3]. These methods enjoy the advan-

tage to classify complete and tight object segment propos-

als. But there are still two main issues that possibly influ-

ence the performance.

First, the computation cost is relatively heavy. Even at

test time, around 2,000 segment proposals need to be eval-

uated in the deep neural networks. Reducing the number of

segment proposals could decrease the recall. Second, the

initial bottom-up segmentation results almost determine the

(a) Input (b) Segment proposal result [3]

(c) Input (d) FCN result [24]

(e) Input (f) CRF after FCN result [2]

Figure 1. (a) and (b) illustrate problematic segment proposals due

to inappropriate initial segments. (c) and (d) show an example

difficult for the FCN system. The receptive fields of predicted

point in green and yellow in (d) correspond to the bounding box

in (c). (e) and (f) demonstrate that the CRF model cannot correct

large mistakes – top-left of (f) is the initial FCN prediction result.

final structure. When the initial segments go wrong, such

as that shown in Fig. 1(a) and (b), the system cannot cor-

rect the problematic proposals. Such cases are common in

complex-scene images.

The other line [24] is to replace the fully connected lay-

ers with convolution ones to produce a fully convolutional

network (FCN) for dense prediction. It solves the efficiency

problem by reusing the convolution output. The end-to-end

dense prediction also leads to flexible segment prediction.

But when two categories have similar parts, such as dog

and cat, the sliding window receptive field could be misled

for part identification due to unawareness of global clues.
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Fig. 1(c) and (d) contain a failure case. The tail of the dog

is recognized as a cat. Our experiments show that about

65.5% of the failure images in the FCN system are caused

by this problem.

Incorporating the local appearance relationship via a

CRF model [2] can possibly correct erroneous boundary

labels. It is locally effective because if the majority of

an object is misclassified, the errors are hardly corrected.

Fig. 1(e) and (f) demonstrate this finding, where the initial

result in top-left region of (f) misclassifies the bottom of the

cat. The CRF model cannot handle it since the mistake is

no longer local.

To build an efficient system with flexible segmentation

and global object-level clues, we propose a framework

with object regularization. It inherits efficiency and flex-

ible segmentation of a FCN-type model, and incorporates

object-level information for global regularization. Our ex-

periments show this new object-level regularization covers

84.7% of the overall objects in VOC segmentation dataset.

Therefore, most FCN failure cases have the chance to be

corrected by this framework. Moreover, our approach does

not conflict with the CRF model. Thus its local correction

ability can be similarly introduced in our framework.

Our contributions are as follows. First, we propose the

object regularization for FCN semantic segmentation. Sec-

ond, we include an efficient optimization procedure to up-

date object-level and CRF-based regularization iteratively.

Finally, we conduct experiments on many data and find our

method suitably deals with several previous failure cases.

2. Related Work

Segmenting images with semantic labels is one of the

ultimate goals towards image understanding. Conditional

random field based models [16, 31, 12, 8, 19] were used

for long time. Various unary and pair-wise terms were dis-

cussed [18, 31]. High order terms [15, 29, 14, 20, 21]

were also employed. Ladicky et al. [20] used a sliding

window object detector to generate the score map for each

pixel. This method needs much computation especially

when the detector has to evaluate thousands of sliding win-

dows. Also the large number of object candidates may bring

false alarms.

In recent years, with the immense development of deep

convolutional networks [17, 32], semantic segmentation has

achieved great success. Early methods [6, 27, 25] resorted

to superpixels. Farabet et al. [6] applied a deep convolu-

tional network to learning multi-scale hierarchical represen-

tation for superpixels and used the feature and the classi-

fication score to parse a tree hierarchically. Pinheiro and

Collobert [27] used a recurrent network to merge the super-

pixels represented by low level features. These methods are

influenced by the quality of superpixels.

Starting from [7], which classifies segment proposals by

objectiveness via state-of-the-art image classification mod-

els, Dai et al. [3] extended it using spatial pyramid pooling.

Hariharan et al. [11] proposed simultaneous detection and

segmentation. Albeit great improvement in performance,

the computation is still heavy. The candidate segments are

built from bottom-up. It may cause serious problems when

initial segments are wrong.

Another line of research investigates the fully convolu-

tional network [24]. The share of convolutional layers can

reduce running time. Chen et al. [2] improved the per-

formance by reducing the network stride with their “hole”

method. It considers a fixed size receptive field and does

not involve object level clues for faraway object parts.

To optimize the local boundary segmentation labels, con-

ditional random fields were incorporated in a post pro-

cess [2]. Methods in [33, 30] merged the CRF model into

the network for joint training. These approaches handle lo-

cal mistakes. They however could go wrong when a large

part of a region is with incorrect labels.

With a large amount of unlabeled or weakly labeled data,

semi-supervised setting was considered. In [26, 4], a semi-

supervised training method was used. The model is trained

using the VOC supervised [5] and COCO weakly super-

vised [23] data, and iteratively updates the mask or the la-

bel of the weakly supervised data for future training. This

method is a promising direction for semantic segmentation,

which avoids labor-intensive data annotation.

3. Object Regularized Semantic Segmentation

Given an image I ∈ R
m×n, we use i to index pixels. xi

is the semantic label for pixel i. Our regularized semantic

segmentation framework is formulated as

E(x, I) =
∑

i

φ1(xi, I) +
∑

c∈C

∑

i∈c

φ2(xi, I)

+
∑

i,j∈N

φ3(xi, xj , I),
(1)

where x is the vector containing all labels in the image.

For notation simplicity, we omit the dependency on I , e.g.

E(x, I) is denoted as E(x).
The first term φ1(xi) indicates the unary potential for

pixel i, which will be introduced in Sec. 3.1. The second

term φ2(xi) is our new object potential, the major contribu-

tion in our system. It will be elaborated on in Sec. 3.2. The

third term φ3(xi, xj) is a local appearance potential, with

its definition in Sec. 3.3. These three terms work collabora-

tively for the final semantic segmentation prediction.

3.1. Unary Potential

Our unary term φ1(xi) aims to classify the region cen-

tered at pixel i. We resort to state-of-the-art image classifi-

cation system [32, 24] and define this term on the output of
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a fully convolutional network as

∑

i

φ1(xi) = −
∑

i

log(P (xi|I)), (2)

where P (xi|I) is the network softmax prediction for pixel i

with label xi. The − log(·) operator maps maximization of

a probability to minimization of the energy term.

The fully convolutional network we adopt is similar to

the one presented in [32]. It keeps the image classification

record for next-stage prediction in pixel labeling. The fully

convolutional network [24] has the property that a fully con-

nected layer equals to a 1× 1 convolutional layer, and takes

a large input to produce dense prediction.

To reduce the stride and produce denser prediction, we

change the stride of the last two max pooling layers from 2

to 1, and use a modified im2col to produce input to next

layer to stabilize the size of the receptive field. Specifically,

we modify the im2col function to select each feature vec-

tor with a stride of 2. The final map uses 4×4 times channel

number as the input channel number. The resulting recep-

tive field of this network is with size 198 × 198, which is

comparable to the original 224 × 224 receptive field. The

stride size becomes 8.

This approach is similar to the hole method [2]. A large

receptive field ensures class-specific classification decision.

With our denser stride and comparable receptive field gen-

eration, unary prediction is improved. The final score map

then goes into an upsampling layer [24] to reach the scale

of input. We validate the steps in Section 5.

3.2. Object Potential

Our object potential works complementarily with the

unary term to provide object-level information. It benefits

the flexible receptive field formed on objects, which pre-

viously cannot be efficiently handled via the unary fully

convolutional network. This potential makes traditionally

confusing object parts, such as those of cat and dog, bet-

ter handled under the global view on objects. Moreover, it

avoids heavy computation [7] partly due to the small size of

object proposals. Our object potential term is formulated as

∑

c∈C

∑

i∈c

φ2(xi) =
∑

c∈C

∑

i∈c

[

− Ic(xi, τ) log(s
c
xi
)
]

, (3)

where c ∈ C indexes an object clique. Each object clique

contains a group of pixels with their semantic labels. Note

that each pixel can belong to several cliques, since two ad-

jacent object cliques can potentially form a new clique.

Ic(xi, τ) is an indicator function, which is non-zero

when pixel i belongs to the c-th object clique under the pro-

posal tree τ . We will give more details about τ later. scxi
is

the xi-th element in sc, where sc is the probability vector

for object proposal c predicted by an object detection sys-

tem. sc is thus a N -dimension vector for N -class semantic

segmentation. Note that the group of pixels inside object

clique c share the same object probability vector sc.

With the object potential defined in Eq. (3), a clique with

high object confidence tends to predict its corresponding

object label as the pixel label. In the following, we explain

generation of object clique set C, setting object probability

vector sc, and clique indicator function Ic(·) definition.

Object Clique Generation Object proposal generation is

crucial for our system since it upper bounds the capability

of our object potentials.

We start with the label map output from our fully con-

volutional network (FCN), which generates the class label

for the minimum unary potential in Eq. (2), as shown in

Fig. 2(b). The FCN label map gives us a rough indication

of existence of the object, which serves as an initial seed for

our proposal clique set C. We build a proposal tree τ on top

of it to identify the object cliques.

In particular, given an image I and the corresponding la-

bel map L, we first include neighboring regions with the

same label as cliques. Note that we remove the background

label region, as well as the regions whose sizes are smaller

than 625 pixels, since the scores for such regions are not re-

liable. These initial cliques are then hierarchically merged

to generate new cliques based on the connectivity and sim-

ilarity of regions until all connected regions are grouped.

If two or more regions are adjacent to each other, we re-

sort to the object probability vector sc to group similar ones

first. The definition of sc will be introduced later. This hi-

erarchical grouping strategy results in the proposal tree set

denoted as τ , where each tree represents the merging pro-

cess of object cliques, and each node is an object clique c.

The grouping strategy is illustrated in Fig. 2(c) and sketched

in Algorithm 1.

Our object clique generation strategy produces 4 pro-

posals per image on average, which defines the number of

objects for the detection system to get the object probabil-

ity vector. Compared to previous state-of-the-art pipelines,

which give about 2,000 proposals per image [7, 3], ours is

significantly more efficient and contains less false propos-

als. We verified that our label map covers about 84.7% ob-

jects in the VOC 2012 dataset, which is a large and reason-

able ratio compared to previous ones. Those missing object

cliques include small, distant, and blurred objects, which

are very difficult to be recognized in the region level.

Object Probability Construction Equipped with the ob-

ject cliques c ∈ C, our framework constructs an object prob-

ability vector sc, which determines the object-level guid-

ance in the overall process. Our object probability vector is

defined as

sc = (Wlc) · dc, (4)

where Wlc is a co-occurrence prior; dc is the object confi-

dence score; and · denotes element-wise multiplication.
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(a) Original Image

(b) Label Map (c) Hierarchical Tree (d) Object Cliques and Max Object Scores

Cat 0.92

Cat 0.86

Cat 0.62
Dog 0.34

Horse 0.21

(e) Selected Object Clique

Figure 2. Illustration of the object potential. (a) is the input image. (b) is the label map where each color represents a class. (c) shows the

hierarchical tree τ built on the label map. (d) shows a few object clique bounding boxes in the set C. The maximum object score s
c

xi
for

each clique is listed on the right for clique identification. After parsing the clique tree with the object probability vector sc, only the root

clique is enabled as the final object potential.

The co-occurrence prior Wlc provides context informa-

tion based on training data statistics. For example, a horse

can be beside a person. But a horse has a very low prob-

ability to be co-occurrent with a dinning-table. Therefore,

if the FCN label map predicts a region as a horse, the co-

occurrence prior imposes the high probability to both the

horse and person, but not the dinning-table.

Accordingly, W is the co-occurrence matrix obtained by

counting the co-occurrent object information. lc is a binary

vector indicating the existence of a class in object clique

c on the label map. The multiplication of W and lc gives

an N -dimension vector for the N -class labeling problem.

Its i-th element defines the probability that FCN label map

reports the i-th label based on the co-occurrent information

and its current label configuration lc.

The object confidence score dc can be understood as pro-

viding the global view of objects, which avoids inaccuracy

caused by the fixed receptive field in the unary term via

FCN. It is defined via an object detection system [7], which

extracts feature by the fine-tuned VGG model [32], and

feeds into an SVM model for prediction. To calibrate the

SVM score into a probability distribution to fit our model in

Eq. (3), we use the method of [28] to map it to a sigmoid

distribution likelihood as

dc = 1 + exp(−(α · f c + β)), (5)

where α,β ∈ R
N×1 are the calibration parameters. They

are learned on training data with the ground-truth label vec-

tor dc.

Since in the object potential part, we only focus on fore-

ground objects, both Wlc and dc are with N−1 dimensions

if the problem contains N classes including background.

We append an additional 1 to the probability vector sc to

Algorithm 1 Object Clique Generation and Probability

Construction

Input: FCN heat map H;

Procedure:

1: Initialize C with all foreground object regions in H;

2: Initialize sc via Eq. (4) ∀c ∈ C;

3: while adjacent foreground regions exist do

4: Select 2 adjacent objects in C with most similiar sc;

5: Merge the two regions as a new object in C;

6: Remove previous two regions from C;

7: Calculate sc via Eq. (4);

8: end while

Output: All object cliques c in C and its probability vector

sc; the clique merging tree τ .

ease optimization without introducing any overhead.

We summarize the object clique generation and the prob-

ability vector construction process in Alg. 1. Our object

probability vector has the following advantages. First, the

context information is incorporated via the co-occurrence

prior to utilize big data. Second, the detection-based confi-

dence vector gives us a different view of objects from top

down, which serves as a vital complement of the unary

term via FCN. Moreover, with the elegant scale of object

clique set and its high object recall, we only need to test a

few candidates, which is much more efficient than previous

segment-proposal-based methods [3, 11] without sacrificing

accuracy.

Object Clique Selection We note not all cliques represent

reasonable objects. To alleviate the adverse effect caused by

false alarms, we define our object clique indicator function
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Algorithm 2 Object Clique Selection via Message Passing

Input:

Clique merging tree τ defined in Alg. 1;

object probability vector sc for all nodes c in τ ;

parent-child threshold γ.

Procedure:

1: Initialize m = argmaxj s
c
j , ∀ c ∈ τ ;

2: Initialize V as node list in τ in a breath-first search;

3: Initialize Vt = V ;

4: Initialize Ic(j, τ) = 0, ∀j, c;
5: for p ∈ Vt do

6: Construct Vs as the child node of p;

7: for s ∈ Vs do

8: if spm > ssm − γ then

9: ss = sp;

10: remove s and all its children from Vt;

11: end if

12: end for

13: Remove p if all its children s are left in Vt;

14: end for

15: Assign the leaf node in V with the probability vector of

its lowest ancestor in Vt.

Output: Ic(m, τ) = 1 for c ∈ Vt;

Probability vector of each leaf node.

as

Ic(xi, τ) =











1 if scxi
>spxi

+γ ∩ scxi
>ssxi

−γ, ∀p, s,

∩ scxi
> scj , ∀j 6= xi;

0 otherwise.

(6)

where scj is the j-th element in object probability vector sc.

Thus only the predicted object label by the detection sys-

tem has the object potential. p, s ∈ C are the object clique

indices in the clique proposal tree τ . p denotes all possible

ancestor nodes of c in the object clique tree τ . s can be all

offspring nodes of c inside the clique tree τ . γ is a thresh-

old parameter. It favors large cliques, since the top node is

chosen unless the probability of its child node is larger and

the gap is over a threshold γ.

Such indicator function can be calculated by traversing

nodes and passing messages in the tree from top down. We

use Alg. 2 to summarize the process. Our object potential

gives additional confidence for object regions in its respec-

tive object category. Thus, if a misclassified region by the

unary term predicts ‘dog’ while our object potential gives a

high score as ‘cat’ by detection, the system can finally select

the ‘cat’ label by merging the scores from unary and object

potentials.

3.3. Local Appearance Potential

The fully convolutional network (FCN) consists of sev-

eral spatial-invariant operations for object-level representa-

tion, such as max pooling and convolution layers, which

make the score map generated by the FCN system difficult

to preserve the accurate object contour. The object potential

is based on connecting regions provided by FCN, where the

contour is still not sufficiently accurate. Our pairwise poten-

tial is similar to the CRF model proposed in [2], expressed

as

φ3(xi, xj) = I(xi, xj)
(

λ1 exp(−
‖pi − pj‖

2

2θ2α
)

+ λ2 exp(−
‖pi − pj‖

2

2θ2β
−

‖Ii − Ij‖
2

2θ2γ
)
)

,

(7)

where I(xi, xj) is an indicator function. It equals to 1 if

xi 6= xj and 0 otherwise. pi is the position in x- and y-

directions of pixel i. Ii denotes the RGB value vector of

pixel i. θα, θβ , and θγ are the parameters controlling the

weight of each term. The first term favors close pixels while

the second term gives large confidence to close pixels with

similar local appearance. λ1 and λ2 balances the two parts.

With the local appearance potential, close pixels with

similar local appearance tend to have the same label, thus

further correcting local-boundary inaccuracy. Note that our

new object potential presented in Sec. 3.2 facilitated by top-

down object-level information can contrarily correct labels

in larger areas. So the two conditions, i.e., φ2 and φ3, work

in synergy to update and improve both larger-area and local

boundary labeling mistakes.

4. Optimization

Our final object regularized semantic segmentation

framework predicts a pixel-wise label map x defined as

argminx E(x). where E(x) is given in Eq. (1). The prob-

lem is NP-hard. Following [31, 22], we adopt a stepwise

optimization approach to approximate it.

The fully convolutional network (FCN) is pre-trained us-

ing off-the-shelf SGD algorithm following [24]. Thus the

unary term by the FCN network is computed once during

optimization. To optimize the object potential and local ap-

pearance potential, we resort to the following two steps.

Solve for Object Potential Given the initial label con-

figuration, we construct the object clique set and its cor-

responding probability following Alg. 1. Then we parse

the object clique generation tree to get the clique identifica-

tion function in Eq. (6) via a message parsing algorithm in

Alg. 2. In this step, each pixel gets a new score by combing

the score map of the unary potential and the object potential.
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Algorithm 3 Object Regularized Semantic Segmentation

Input:

FCN label map for unary term;

Maximum iteration number T ;

Procedure:

1: Initialize φ2(xi) = 0 for all i;

2: for i ∈ [1, T ] do

3: Solve Eq. (8) via [16];

4: Use Alg. 1 to build object clique set C and its proba-

bility vector sc;

5: Use Alg. 2 to construct clique indicator in Eq. (6);

6: Update Φ(xi) for each i via Eq. (9).

7: end for

Output: Label map x.

Solve for Local Appearance Potential In this round,

with the updated pixel confidence combined by unary po-

tential and object potential, the objective function is formu-

lated as

min
x

∑

i

Φ(xi) +
∑

i,j

φ3(xi, xj). (8)

Φ(xi) is the combined confidence from Eqs. (2) and (3) for

pixel i, expressed as

Φ(xi) = φ1(xi) +
∑

c∈C

I(i ∈ c)φ2(xi) (9)

where I(i ∈ c) is an indicator function which equals to

1 when pixel i ∈ c. Thus, Eq. (8) becomes a traditional

CRF problem and can be solved following [16], which uses

mean-field approximation and takes 0.5 second to process

an image. The overall optimization procedure is summa-

rized in Alg 3.

5. Experiments

Dataset We evaluate our method on PASCAL VOC 2012

segmentation benchmark [5]. The number of training, val-

idation and testing images are 1,464, 1,449 and 1,456 re-

spectively. Following the scheme of [2], we also merge the

additional 9,118 annotated images from Hariharan et al. [9]

into the training set. This dataset is a standard dataset for

semantic segmentation. It contains 20 object classes and 1

background class.

Unary Potential with Fully Convolutional Network

Our unary potential in Eq. (2) is obtained from the predic-

tion of a fully convolutional network. We have fine-tuned

this network on the 10,582 training data initialized by the

VGG-16 model [32]. The overall network is implemented

based on Caffe [13].

When fine-tuning the model, the training images are re-

sized, so that the short side of the image is with 256 pixels.

Methods mean IoU%

Baseline FCN 62.48

FCN+Local Appearance 64.45

FCN+Object Potential 64.07

FCN+Object Potential (w/o co-occurence prior) 63.16

Table 1. Comparison of our baseline FCN model, FCN with local

appearance potential as in [2], and FCN with object regularization

respectively. We implement the local appearance potential [2].

We adopt the conventional data augmentation strategy with

random cropping and mirroring. Dropout is used the same

as the original VGG model. The stride for max pooling is

reduced to 1, with a modified im2col to preserve a stable

receptive field as detailed in Sec. 3.1. The initial learning

rate is set to 0.001. It decays with a factor of 0.1 after every

4000 iterations until 1e−7.

We evaluate the performance of our network on the

VOC 2012 validation set in terms of average per class pre-

dicting intersection-over-union (IoU) across the 21 classes.

Our baseline model with stride reduction and upsampling

layer [24] achieves 62.48% mean IoU. The stride reduction

strategy improves the network performance by 4.0%. The

upsampling layer only improves it by 0.2%.

Object Regularized Semantic Segmentation All the pa-

rameters of our approach, including α and β in Eq. (5), γ

in Eq. (6), and θα, θβ , θγ , and λ1, λ2 in Eq. (7) are ob-

tained from cross-validation on the validation set follow-

ing the strategy of [2, 4]. The input to the object detection

system is the object proposal bounding box with 16-pixel

padding following that of [7].

The performance of our baseline FCN model is listed in

Table 1, which is only the unary term in Eq. (1). We also in-

clude the model with unary potential and local appearance

potential, and the model with unary potential and object po-

tential, respectively. The results are tabulated in Table 1.

Note that our implemented local appearance potential yields

performance improvement 2.21% compared to the 3.94%

reported in [2]. It is possibly because we cannot find the

best parameter values. Our new object regularization yields

additional improvement in our system nevertheless.

Our final model is optimized in an iterative manner as

shown in Alg. 3. We fix the output of the FCN system and

iteratively optimize the object and local appearance poten-

tials. We evaluate the performance on the validation set.

After 3 iterations, the system ceases the update, as shown

in Table 2. In following experiments, we use two iterations

for the sake of computation efficiency.

We show iterative update in Fig. 3. The local appearance

term refines the object boundary. But it does not correct

large errors caused by FCN. Our object regularization con-

trarily updates labels for these large regions.
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(a) Original Image (b) Groundtruth (c) FCN (d) with local appearance (e) with object potential (f) Our final result

Figure 3. Visual illustration of results produced in iterations. Our object potential can correct a few large errors resulted from FCN.

Iterations mean IoU%

Baseline FCN 62.48

Iteration 1 with Local Appearance 64.45

Iteration 1 with Object Potential 66.67

Iteration 2 with Local Appearance 66.95

Iteration 2 with Object Potential 66.98

Iteration 3 with Local Appearance 66.96

Iteration 3 with Object Potential 66.99

Table 2. Performance of our object regularized semantic segmen-

tation in iterations.

Methods mean IoU%

Original ×0.8 62.60

Original ×1 62.48

Original ×1.2 61.04

Average of three scales 62.57

Original with Object Potential 64.07

Table 3. Comparison with the multi-scale strategy. We test three

scales in our experiments, i.e., {0.8, 1, 1.2} times the original

scale. Our object potential strategy is still better than average of

the three scales.

Comparison with Multiscale Strategy Multiscale train-

ing and testing can also correct errors caused by the fixed

receptive in the FCN-system. By scaling the image, the re-

ceptive field of the network can be updated with respect to

the original image resolution. We compare our method with

this strategy.

We use three scales as suggested in other multiscale

methods [6]. The images are scaled with ratios {0.8, 1, 1.2}
w.r.t. their original resolutions. Then we average the three

scale outputs and get the final results from the network. The

performance of the three scales is shown in Table 3.

As shown above, our object regularization improves se-

mantic segmentation performance from 62.48% to 64.07%.

In comparison, combining the three different scales of FCN

yields the change from 62.48% to 62.57%. This shows that

our regularization is more effective to handle the flexible

receptive field.

Method Proposal CNN CRF

SDS [11] 34.3s [1] 17.9s -

CFM [3] 34.3s [1] 2.10s -

FCN-8s [24] - 0.21s -

DeepLab [2] - 0.13s 0.50s

Ours-crop - 1.77s 0.52s

Table 4. Running-time comparison of different methods on one

image with the original image resolution.

Efficiency Comparison In the following, we compare the

running time. The result is shown in Table 4. Our method is

evaluated on a NVIDIA Tesla K40 GPU. Running time of

other methods are quoted from respective papers.

Compared to SDS [11], the CFM [3] system reduces the

running time using the spatial pyramid pooling, which com-

putes features for the whole image only once. FCN-8s [24],

DeepLab [2] and our method save time using fully convo-

lution networks that reuse the convolution features. Object

proposal methods take time to generate object proposals,

where MCG can be used to gain reasonable performance.

Performance Comparison We compare our method with

others, including Hypercolumn [10], CFM [3], FCN [24],

TTI-zoomout [25], and DeepLab[2], on PASCAL VOC

2012 test set. The best results in Table 5 are mostly those of

[2] with the large receptive field model1.

Our method is effective in discriminating among objects

that could easily confuse previous systems. A visual com-

parison in Fig. 4 shows that our object regularized semantic

segmentation successfully separates the cow and bus cases,

which are difficult for that of [2]. The CRF method works

better on objects with very complex contours such as bird,

chair and plant. Our implemented CRF does not reach

the performance reported in [2], which has been explained

above.

Further, we compare our method with bottom-up seg-

mentation [3]. Results are shown in Fig. 5. The errors in

1https://bitbucket.org/deeplab/deeplab-public/
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Methods IoU aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

CFM [3] 61.8 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5

FCN-8s [24] 62.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1

Hyper [10] 62.6 68.7 33.5 69.8 51.3 70.2 81.1 71.9 74.9 23.9 60.6 46.9 72.1 68.3 74.5 72.9 52.6 64.4 45.4 64.9 57.4

TTI [25] 69.6 85.6 37.3 83.2 62.5 66 85.1 80.7 84.9 27.2 73.3 57.5 78.1 79.2 81.1 77.1 53.6 74 49.2 71.7 63.3

DeepLab [2] 66.4 78.2 51.3 74.2 59.2 60.2 82.3 75.7 78.3 26.7 66.6 54.5 73.9 68.4 78.8 76.8 52.4 74.8 46.4 66.0 55.4

DeepLab+CRF [2] 70.9 84.0 53.7 80.4 63.1 64.6 85.2 78.4 82.5 29.1 73.8 60.0 79.1 75.0 82.4 80.4 58.1 80.1 50.7 71.9 63.4

Ours 66.5 79.2 33.8 75.4 48.5 64.8 85.1 79.3 81.5 24.8 77.7 51.5 78.1 76.3 77.8 77.2 46.0 78.2 42.5 71.1 55.4

DeepLab+Our CRF 71.2 80.0 53.8 80.8 62.5 64.7 87.0 78.5 83.0 29.0 82.0 60.3 76.3 78.4 83.0 79.8 57.0 80.0 53.1 70.1 63.1

Table 5. Performance Comparison on Pascal VOC 2012 test set.

(a) Input (b) GT (c) Results [2] (d) Our results

Figure 4. Result comparison.

(a) Input (b) Results [3] (d) Our results

Figure 5. Result comparison.

the results of [3] are caused by erroneous initial object seg-

mentation. Our method alleviates this problem by resorting

to the flexible FCN system with the object and local ap-

pearance potentials, which does not need to perform explicit

segmentation.

Failure Case Analysis Our failure cases can be catego-

rized into three types, i.e., missing objects in the FCN map,

merged objects, and occluded objects. The incomplete table

in the first example of Fig. 6 is due to the foreground object

misclassified as background in FCN. The second example

contains two objects merged together by the FCN system.

(a) Input (b) Ground truth (c) FCN map (d) Final result

Figure 6. Three failure examples.

These errors cannot be well handled by our current frame-

work. Occlusion failure arises in the third example. Our

object scoring strategy favors large objects to help general

image segmentation. In case of serious occlusion, the bot-

tom prediction of small objects is not confident. This prob-

lem might be alleviated by back-propagating the error to the

FCN system, which will be part of our future work.

6. Conclusion

We have presented a novel object potential for seman-

tic segmentation. It solves the problem that the original

fully convolutional network lacks top-down object-level in-

formation. Our system enjoys the efficiency benefit yielded

from solving fully convolutional networks. Our proposed

message passing algorithm can efficiently identify object

scores. The object potential is also functionally comple-

mentary to current local appearance methods, as demon-

strated in our experiments. Our future work lies in extend-

ing our method to semi-supervised or unsupervised config-

uration.
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[20] L. Ladickỳ, P. Sturgess, K. Alahari, C. Russell, and P. H.

Torr. What, where and how many? combining object detec-

tors and crfs. In ECCV, pages 424–437. 2010.

[21] Y. Li, D. Tarlow, and R. Zemel. Exploring compositional

high order pattern potentials for structured output learning.

In CVPR, pages 49–56, 2013.

[22] G. Lin, C. Shen, I. Reid, et al. Efficient piecewise training

of deep structured models for semantic segmentation. arXiv

preprint arXiv:1504.01013, 2015.

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In ECCV, pages 740–755. 2014.

[24] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-

tional networks for semantic segmentation. arXiv preprint

arXiv:1411.4038, 2014.

[25] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich.

Feedforward semantic segmentation with zoom-out features.

arXiv preprint arXiv:1412.0774, 2014.

[26] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille.

Weakly-and semi-supervised learning of a dcnn for seman-

tic image segmentation. arXiv preprint arXiv:1502.02734,

2015.

[27] P. H. Pinheiro and R. Collobert. Recurrent convolu-

tional neural networks for scene parsing. arXiv preprint

arXiv:1306.2795, 2013.

[28] J. Platt et al. Probabilistic outputs for support vector ma-

chines and comparisons to regularized likelihood methods.

Advances in large margin classifiers, 10(3):61–74, 1999.

[29] S. Ramalingam, P. Kohli, K. Alahari, and P. H. Torr. Exact

inference in multi-label crfs with higher order cliques. In

CVPR, pages 1–8, 2008.

[30] A. G. Schwing and R. Urtasun. Fully connected deep struc-

tured networks. arXiv preprint arXiv:1503.02351, 2015.

[31] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost

for image understanding: Multi-class object recognition and

segmentation by jointly modeling texture, layout, and con-

text. IJCV, 81(1):2–23, 2009.

[32] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[33] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. Torr. Conditional ran-

dom fields as recurrent neural networks. arXiv preprint

arXiv:1502.03240, 2015.

2595


