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Abstract

In this paper, we revisit the joint probabilistic data as-

sociation (JPDA) technique and propose a novel solution

based on recent developments in finding the m-best so-

lutions to an integer linear program. The key advantage

of this approach is that it makes JPDA computationally

tractable in applications with high target and/or clutter

density, such as spot tracking in fluorescence microscopy

sequences and pedestrian tracking in surveillance footage.

We also show that our JPDA algorithm embedded in a

simple tracking framework is surprisingly competitive with

state-of-the-art global tracking methods in these two appli-

cations, while needing considerably less processing time.

1. Introduction

Despite significant technical advances made in auto-

mated tracking of moving objects, multi-target tracking re-

mains a challenging task. Within computer vision, applica-

tions of multi-target tracking are exemplified by the tasks of

surveillance of a crowd of pedestrians [5, 25, 28, 29, 33, 44],

and of tracking dense cellular and sub-cellular structures in

biological sequences [11, 35] (Fig. 1). The main challenge

in these applications is to estimate the state of an unknown

and time-varying number of targets from a set of noisy and

uncertain measurements. Targets often remain undetected

due to occlusion, strong variation in appearance or other

detector failures. Moreover, the observations generally in-

clude a set of spurious measurements (clutter) not originat-

ing from any target. Therefore, one of the crucial steps in

the development of a reliable multi-target tracking systems

is data association, which assigns the detected measure-

ments to the existing targets in the presence of noise, clutter

and detection uncertainty.

Joint probabilistic data association (JPDA) [16], is an el-

egant method of associating the detected measurements in

each time frame with existing targets using a joint proba-

bilistic score. Proposed in the early 1980s, it is widely ac-

cepted as a reliable data association technique and it has in-
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Figure 1. Two sample frames from challenging multi-target track-

ing applications: Pedestrian tracking in a surveillance camera

(left) and spot tracking in fluorescence microscopy (right).

fluenced a degree of the recent literature in the visual track-

ing community [11, 28, 29, 32, 35, 39, 42]. However, naive

JPDA suffers from combinatorial complexity as it consid-

ers all possible assignments of measurements to targets to

calculate the joint probabilistic score. Therefore, with an

increasing number of targets and/or clutter, the technique is

intractable in almost all practical applications without the

use of heuristics such as gating. Even when gating is used,

for any given gate size there will be a degree of target and/or

clutter density that renders the method impractical. As a re-

sult, usually its application domain has been restricted to

multi-target tracking scenarios with few, well separated tar-

gets.

In this paper, we revisit the JPDA formulation but ad-

dress the issue of its complexity by leveraging the latest

developments in finding the m-best solutions of an integer

linear program. We propose a computationally tractable ap-

proximation to the original JPDA algorithm and show that it

takes only a fraction of the time to compute without forfeit-

ing performance. We demonstrate its applicability in prac-

tical applications with numerous targets and measurements

such as fluorescence spot tracking in biological sequences

and pedestrian tracking in crowded scenes. Moreover, we

show that our JPDA algorithm, along with a simple tracking

framework, can surprisingly perform on par, or even out-

perform state-of-the art multi-target tracking methods with

a considerable gain in processing time.

We make the following contributions: (i) We reformu-

late the calculation of individual JPDA assignment scores
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as a series of integer linear programs (ILPs) and approxi-

mate the joint score by the m-best solutions. This allows

us to obtain an extremely accurate estimate of the complete

JPDA by only considering a tiny fraction of its entire solu-

tion space. (ii) We propose a generic and highly efficient

way to calculate the m-best solutions for any binary lin-

ear program by using a binary tree partition method. (iii)

With a computationally tractable JPDA solution, we extend

our implementation to multi-frame (MF) JPDA to increase

robustness of data association. To the best of our knowl-

edge, this is the first practical implementation of MF-JPDA

for real-world applications. (iv) We show state-of-the-art

performance on cell and pedestrian tracking using only a

fraction of the computational time of previous methods.

2. Related Work

One of the earliest approaches for online tracking (or

state estimation of a dynamic target) is the Kalman fil-

ter [21]. This recursive Bayesian filter computes the opti-

mal state posterior when dealing with linear observation and

transition models as well as Gaussian noise. In contrast, the

particle filter [14] approximates the state density by a finite

number of samples (or particles). Both methods are inher-

ently designed to deal with one target only. To manage a

scenario with multiple objects, typically a greedy or local

assignment process is used to resolve data association [8].

The multi-hypothesis tracker (MHT) [11, 12, 34] is a

more principled formulation for data association based on

the Bayesian framework. It hypothesizes all possible data

associations over time and uses measurements that arrive

later in time to resolve ambiguities in the current frame.

However, the complexity of the algorithm and the compu-

tational costs of this exhaustive search are considerable. In

practice, heuristic pruning and merging techniques are usu-

ally combined with the MHT to restrict the exponentially

growing number of hypotheses. In contrast to the (multi-

frame) JPDA that maintains the contributions from all po-

tential hypotheses from all tracks, the MHT prunes out in-

valid hypotheses for each track independently and deleted

terms are completely discarded [7], making it impossible to

recover from errors.

The joint probabilistic data association (JPDA) fil-

ter [16], which we review in more detail in the next sec-

tion, is another approach for finding an optimal target-to-

measurement assignment. Unfortunately, in its pure form,

its computational complexity prohibits many real-world ap-

plications with a large number of targets. To alleviate the

computational burden, different approximations of JPDA

have been proposed. However, many of them use heuris-

tic techniques and often sacrifice the tracking accuracy to

make their algorithm computationally tractable [2, 38]. Oh

et al. [31] proposed a more principled JPDA approxima-

tion based on Markov chain Monte Carlo (MCMC) data

association. While such sampling schemes offer a practi-

cal approach to approximating high-dimensional problems,

they may suffer from poor mixing leading to slow conver-

gence and the random elements can make reproducing ex-

periments difficult.

Many of the most successful recent approaches in the

vision literature [e.g. 5, 10, 24, 28, 32, 46] are so-called

offline, or batch processing techniques and follow a rather

different strategy from the ones described above. Typically,

a sequence of frames is considered at once and the state and

data association of all targets are inferred jointly by optimiz-

ing a predefined objective. The main differences between

methods lie in the exact formulations of the objective and

the trade-off between modeling accuracy and tractability.

Discretizing the state space and making simplifying as-

sumptions about conditional dependences reduces the com-

plexity of multi-target tracking and allows one to achieve

the global optimum by LP-relaxation [20, 43], min-cost

flow [10, 32, 46], or k-shortest paths algorithms [5].

Moving to a continuous state representation [28] or in-

cluding more sophisticated terms, such as exclusion con-

straints [29], leads to more complex optimization prob-

lems that can only be solved to local optimality. Fur-

ther examples that belong to that second class include

quadratic boolean programming [24], generalized clique

problems [45], maximum weight-independent set [9] and

many more. While such methods show remarkable perfor-

mance, the introduced delay in the output limits their appli-

cability to offline applications in surveillance or video anal-

ysis.

In this work we revisit JPDA, a classical online ap-

proach, and demonstrate its power when combined with

recent advances in optimization. Surprisingly, when com-

bined with our novel principled approximation method, it

is able to outperform many recent techniques while taking

only a fraction of their time to process.

3. Joint Probabilistic Data Association

Let x1
t , ..., x

N
t and z1t , ..., z

M
t be the states of all N tar-

gets and all M measurements at time t, respectively. The

state vector xj
t contains all relevant dynamic information

about the jth target, e.g. its position and velocity, while the

measurements contain what can be directly observed from

the sequences, e.g. noisy and cluttered detected positions.

Let pt(d
j
i = 1), simply denoted by pt(d

j
i ), be the assign-

ment (or data association) probability representing that the

measurement index i ∈ [M ]0 , {0, 1, ...,M}1 is generated

by target j ∈ [N ] , {1, ..., N} at time t. Here, 0 is a place-

holder for a ‘dummy’ (or missed) detection. Under a linear

Gaussian model, pt(d
j
i ) is obtained as follows:

1For notational simplicity, we assume that all measurements can be

assigned to all targets. However, if JPDA is followed by gating, only a

subset of measurements can be assigned to each individual target.
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pt

(

dji

)

∝

{

(1− pD)β if i = 0,

pD · N (zit; x̂
j
t ,ΣS) otherwise,

(1)

where x̂j
t is the predicted position of the jth target at time t,

pD is the detection probability and β is the false detection

(clutter) density. Here, N (·) is the normal distribution and

ΣS is the innovation covariance matrix of the Kalman filter.

The joint probabilistic data association (JPDA) algo-

rithm calculates a marginalized probability qt(d
j
i = 1), sim-

ply denoted by qt(d
j
i ), on the joint data association space Θ.

By definition, Θ consists of all possible combinations of

measurement-to-target assignments such that (a) each mea-

surement (except for the dummy hypothesis i = 0) is as-

signed to at most one target, and (b) each target is uniquely

assigned to a measurement. This space can be described by

a set of binary vectors as follows:

Θ =
{

θ =
(

dji

)

i∈[M ]0, j∈[N ]

∣

∣

∣

∣

dji ∈ {0, 1} (2)

∧
∑N

j=1 d
j
i 6 1, ∀i ∈ [M ] (a)

∧
∑M

i=0 d
j
i = 1, ∀j ∈ [N ]

}

, (b)

where |Θ| =: nh is the total number of joint assignments

and θ ∈ Θ ⊆ B
N×(M+1) is a binary vector representing

one possible solution to the data association problem.

Let Θj
i ⊂ Θ be a subset that includes all hypotheses that

assign the measurement i to target j such that Θj
i = {θ ∈

Θ | dji = 1}. The JPDA probability qt(d
j
i ) is calculated by

marginalizing over this subset:

qt

(

dji

)

=
∑

θ∈Θj

i

p(θ), (3)

where

p(θ) =
∏

∀r∈[M ]0
∀k∈[N ]

(

pt
(

dkr
)

)dk
r

. (4)

Finally, all joint data association probabilities qt(d
j
i )i∈[M ]0

are normalized and used to update the jth target’s state [16].

The accuracy of JPDA can be enhanced by taking the

assignments in the subsequent frames into consideration

(analogous to so-called Kalman smoothing vs. Kalman fil-

tering). This extension, known as the JPDA-smoothing [26]

or multi-frame JPDA (MF-JPDA) [37], conditions the prob-

ability qt(d
j
i ) on both future and past information. How-

ever, this exacerbates the combinatorial explosion, and so

has almost never been used in a practical application.

4. Our Solution

Even the traditional (single-frame) JPDA is often in-

tractable because the sum over all possible combinations in
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Figure 2. Rewriting the data association in Eq. (6) as an ILP. In this

example, two targets (circles) and two measurements (I,II) and a

dummy node (0) yield a 6×6 constraint matrix A that ensures

that at most one incoming edge for each measurement (a) and that

exactly one outgoing edge for each target (b) can be selected. Note

that equality constraints (6b) are introduced by including negative

entries so that both 6 and > constraints are enforced. The dummy

node corresponds to a missed detection.

Eq. (3) involves a potentially huge number of terms. Our

approach to address this is to approximate qt(·) as the sum

over the m highest probability hypotheses, which in most

cases account for all but a tiny fraction of the total probabil-

ity mass:

qt

(

dji

)

≈
∑

θ∈∆j

i

p(θ). (5)

Here, ∆j
i = {θ ∈ Θm | dji = 1} and Θm ⊂ Θ is a subset

of the m most likely hypotheses (|Θm|=m≪nh). In other

words, if we sorted all possible solutions in Θ according to

their association probability qt(·), Θ
m would contain only

the top m entries that carry most of the probability mass.

We approach this in two stages. First, we reformulate

the data association problem as an integer linear program

(ILP). Solving this ILP will yield the best (i.e. maximum

likelihood) data association. We then show how the sec-

ond, third, etc. best solutions can be obtained successively

in an efficient manner, yielding an approximation of qt(d
j
i )

in Eq. (5) based on the m-best solutions of the problem

maxθ∈Θ p(θ).

4.1. Data association as an integer linear program

We first rewrite the data association problem as a mini-

mization:

C∗
1 =min

θ∈Θ
− log (p(θ)) (6)

=min
∑

∀r∈[M ]0
∀k∈[N ]

−
(

log
(

pt(d
k
r )
)

· dkr

)

s. t.
∑Nt

k=1 d
k
r 6 1 ∀r ∈ [M ] (a)

∑Mt

r=0 d
k
r = 1 ∀k ∈ [N ], (b)

The constraints (6a), (6b) ensure that at most one target is

associated with each measurement and exactly one mea-

surement is associated with each target. The value of θ
which attains the minimum value of (6) is the maximum
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likelihood data association. It is easy to see that this prob-

lem can be reformulated exactly as an integer linear pro-

gram (ILP) [40]:

C∗
1 = min

y∈{0,1}n
CTy s.t. Ay 6 b, (7)

where y = [y1, · · · , yn]
T is a binary vector of length n =

N(M +1) such that yl = dkr , and C = [c1, · · · , cn]
T is the

cost vector with cl = − log
(

pt(d
k
r )
)

. Fig. 2 illustrates the

form of A, y and b for a toy example.

5. Approximation by the m-best Solutions

Solving the ILP in Eq. (7) is straightforward using LP-

relaxation2. However, recall that we seek, not just the best

assignment, but the best m solutions to obtain an accurate

approximation of the JPDA assignment probability. Let C∗
m

denote the mth smallest objective value, and y(m) the solu-

tion that attains this value:

C∗
m = CTy(m), (8a)

y(1) = argminy C
Ty, s. t. Ay 6 b, (8b)

y(m) = argminy C
Ty, s. t.

{

Ay 6 b,
∀k<m : y 6= y(k).

(8c)

The inequality constraints in Eq. (8c) can not be handled by

general ILP solvers. However, since y is binary in our case,

the constraints y 6=y(k) can be reformulated as

〈y,y(k)〉 < ‖y(k)‖1, (9)

i.e. y differs from y(k) in at least one bit3. As a result, a

naive approach to find the m-best solutions suggests itself:

for k=1, ...,m: (i) solve an ILP using standard solvers such

as [18] to obtain y(k); (ii) add constraints (9) and repeat.

This kind of approach has been taken in some previous

work for finding m-best solutions, [e.g. 3, 4]. However, the

number of constraints grows with k. In the next section we

present a much more efficient strategy that removes redun-

dant constraints and inactive variables, thereby simplifying

the problem with each kth-best iteration instead of aggravat-

ing it, yielding sub-linear increase in running time.

5.1. Binary Tree Partition method

Instead of iteratively adding new constraints, Fromer and

Globerson [17] show that m-best problems can be solved

by iteratively solving a series of constrained second-best

problems. Solutions are found in order from k = 1 (best)

to k = m. Finding the kth-best solution assumes that the

feasible set Fk has been partitioned into k−1 disjoint sets

F1
k , ...,F

k−1
k . The kth solution y(k) is found by searching

2The relaxation is tight because A is an assignment matrix (cf. [19]).
3In practice, 〈y,y(k)〉 ≤ ‖y(k)‖1 − 1 is used instead.

Algorithm 1: Binary Tree Partition for JPDA

input : C,A,b,m

output: y(k), k = 1, . . . ,m

1 y(1)
= argminy CTy s. t. Ay 6 b;

2 y(2)
= argminy CTy s. t. Ay 6 b, 〈y(1),y〉 < ‖y(1)‖1;

3 Select arbitrary j ∈ {i|y
(1)
i 6= y

(2)
i };

4 F1
3 = {y ∈ B

n|Ay 6 b, 〈y,y(1)〉 < ‖y(1)‖1, yj = y
(1)
j };

5 F2
3 = {y ∈ B

n|Ay 6 b, 〈y,y(2)〉 < ‖y(2)‖1, yj = y
(2)
j };

6 y1
3 = argminy∈F1

3
CTy;

7 y2
3 = argminy∈F2

3
CTy;

8 for k = 3, . . . ,m do

9 lk = argminl C
Tyl

k, y(k)
= y

lk
k ;

10 F l
k+1 = F l

k, y
l
k+1 = yl

k, ∀l < k, l 6= lk;

11 Select arbitrary jk ∈ {i|y
(lk)
i 6= y

(l)
i };

12 F
lk
k+1 = F

lk
k ∩ {y|〈y(k),y〉 < ‖y(lk)‖1, yjk = y

(lk)
jk

};

13 Fk
k+1 = Fk

k ∩ {y|〈y(k),y〉 < ‖y(k)‖1, yjk = y
(k)
jk

};

14 Remove constraints 〈y(k),y〉 < ‖y(k)‖1 from F
lk
k+1;

15 Remove constraints 〈y(lk),y〉 < ‖y(lk)‖1 from Fk
k+1;

16 yl
k+1 = argminy∈Fl

k+1
CTy, l ∈ {lk, k};

all sets. To proceed to the (k+1)th solution they add the con-

straint y 6= y(k); however this is redundant for all sets ex-

cept for F lk
k , which contains y(k). Therefore, the previous

solutions can be retained for all sets except this one, which

is partitioned into two disjoint sets. The optimal value of

the objective over these two sets can then be obtained via

solving two second-best problems. This results in k disjoint

sets, whose union is the feasible set of (k+1)-best problem,

and the process is repeated.

As [17] is designed for multi-label integer programming

(IP), they need a specific IP solver that can handle con-

straints like y 6= y(k) and yi 6= y
(k)
i . However, in our case

the variables are binary, so we note that 1) the constraint

y 6=y(k) is redundant in all sets except that containing y(k),

and 2) yi 6= y
(k)
i fixes the value of yi as yi = 1 or yi = 0.

This is an assignment rather than a constraint and there-

fore reduces the dimensionality of y by 1. Combining these

observations leads to our streamlined form of Fromer and

Globerson’s approach, summarized in Alg. 1.

5.2. Calculation of m

In the previous sections we presented an efficient way to

obtain the m-best solutions of an ILP with the assumption

that m is known. However, we want to calculate m such

that the probability mass error between the approximated

and exact JPDA scores for all target-to-measurements as-

signments is less than a small threshold ǫ:

E =
∑

θ⊆Θ

p(θ)−
∑

θ⊆Θm

p(θ) < ǫ. (10)
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Figure 3. Left: Noisy and cluttered detections. Right: Ground

truth trajectories (solid lines) versus the tracking results (circle

markers) using 3F-JPDA100.

It can be proved4 that a tight upper bound for this error is

E 6 (nh −m) exp(−C∗
m). Therefore, for any case, m can

be automatically calculated such that this tight upper bound

error is less ǫ.

6. Experimental Results

6.1. Evaluation on simulations

To evaluate the speed and accuracy of our m-best JPDA

tracker, we first apply it on a simulated scenario with

three moving targets crossing each other (Fig. 3). Each

target’s state is given by its position and velocity xt =
(xp, ẋv, yp, ẏv) and the motion is modeled by the discrete

update equation xt = Fxt−1 + η, where F = diag[F1,F1]
is a constant velocity model and η is Gaussian noise with

covariance Q = diag[Q1,Q1] representing unmodeled ac-

celeration. F and Q take their textbook values as in:

F1 =

[

1 τ
0 1

]

, Q1 = qd

[

τ3/3 τ2/2
τ2/2 τ

]

, (11)

where τ = 1 is the sampling period and qd = 0.02 is the

process noise parameter. Both noisy and spurious detection

points zt = (x̂p, ŷp) were generated according to a detec-

tion probability pD = 0.7 with added zero-mean Gaussian

noise with covariance qm = 0.1 and a uniform clutter den-

sity β with a false positive rate λ=3. To simulate long term

occlusion, when multiple targets come very close to one an-

other (distance less than 1), only one of them is detected and

the others are missed (see Fig. 3 left). In the following, we

report averaged results over 100 Monte Carlo experiments.

We evaluate based on observations from individual frames

(JPDA, JPDAm) and by including neighboring frames (3F-

JPDA, 3F-JPDAm).

Fig. 4 (left) represents the probability mass approxima-

tion error E from Eq. (10), which is introduced by our ap-

proximation. As expected, the error decreases exponen-

tially with growing m. Empirically, the error reaches less

than 1% after m>30 best solutions. This figure also shows

how the averaged processing time (green line) increases

sub-linearly with m. In this experiment, our 3F-JPDAm

4Proof provided in the supplementary files.
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Figure 4. Left: Probability mass approximation error E (cf. Eq. 10)

and processing time in seconds for 3F-JPDA. Right: Tracking er-

ror measured as the OSPA-T location error versus the number of

m-best solutions for JPDAm and 3F-JPDAm. In both cases the

solution converges to the minimum error for small m.

requires less than 2 seconds for any value of m6100 whilst

3F-JPDA takes on average 57 seconds per simulation run

to complete. To show how the approximation error affects

the tracking results, Fig. 4 (right) depicts the location er-

ror of the OSPA-T metric [36], representing both track ac-

curacy and label switching as a single number, versus the

value of m. This confirms our claim from Eq. 5 that by

selecting the best few solutions, we can reach the same ac-

curacy as JPDA and 3F-JPDA, but with considerably lower

processing time. Note that we deliberately designed a com-

putationally tractable scenario for 3F-JPDA and compared

with our 3F-JPDAm over 100 experiments. The difference

in processing time can be significantly larger in real-world

applications, as we will see in the following section.

6.2. Evaluation on real­world data

Implementation details. The core JPDA algorithm does

not include a mechanism to deal with a time-varying num-

ber of targets. A principled extension of JPDA, known as

integrated JPDA (IJPDA) [13], has been proposed for that

purpose. However, IJPDA adds a considerable computa-

tional complexity to the JPDA algorithm. For simplicity, we

use a heuristic initiation and termination scheme proposed

in [35]: (i) any detection that is not claimed by an existing

target is initiated as a new target; (ii) a track is terminated

if the number of consecutive missed detection assignments

reaches a specified threshold Td. In this latter case the esti-

mated states for this track are deleted from the frame where

the missed detection first occurred. In addition, all tracks

with a life span shorter than a threshold LS are removed.

We will show that even with this simple scheme, we can

perform as well as, or even better than, the state-of-the art

methods in real-world applications using only a set of sparse

detections and a simple dynamic model.

For practical reasons we make use of a gating procedure

that excludes the set of detections whose Mahalanobis dis-

tance exceeds a predefined threshold dG. As noted in Sec. 1,

gating can make JPDA tractable in cases where the num-

ber of interacting targets and the measurements inside their

gates are small. Thus we only use our approximation when
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the estimated number of possible assignments exceeds a

threshold. Since the total number of hypotheses nh cannot

be accurately predicted when JPDA is followed by gating,

we cannot make direct use of the calculation in Eq. (10).

Therefore, we fix m=100 throughout all our experiments.

In our experience this value is enough to reach the same

tracking accuracy as complete JPDA.

Complexity and runtime. The time complexity to find

the kth-best solution of an ILP for the naive approach

(see Sec. 5) is O((A+ k)1.5B2), where B = MN and

A = M +N [30]. This becomes computationally pro-

hibitive for large k. In contrast, our proposed approach

takes O(A1.5(B−Dk)
2) time, where Dk is a monotonic

increasing function of k. This yields a sub-linear increase

in running time as k increases (cf. Sec. 6.1, Fig. 4).

Our code was implemented using MATLAB and was run

on a desktop PC (Intel Core i7− 4790 , 3.60 GHz CPU, 16
GB RAM), making use of the Gurobi ILP solver (version

5.6.3, 64bit). We report the average processing time per

frame of the tracking methods in the following experiments.

Evaluation performance measures. To evaluate the per-

formance of the tracking methods in the fluorescence

spot tracking application, we employ the same Optimal

Sub-Pattern Assignment metric for tracks (OSPA-T), used

in [11] and [35]. This error metric can be seen as the sum of

cardinality and location errors. The cardinality error can be

interpreted as errors related to missed or false tracks while

the location error combines both track accuracy and the la-

beling (or mismatch) errors.

For quantitative comparison with previous pedestrian

tracking methods and for consistency with their evaluation

scheme, we used the popular CLEAR MOT performance

measures [6]. The multi-object tracking accuracy (MOTA)

combines errors such as false positives (FP), false negatives

(FN) and identity switches (IDs) into a single number. The

multi-object tracking precision (MOTP) measures the lo-

calization accuracy of trajectories. Mostly lost (ML) and

mostly tracked (MT) scores [25] respectively represent how

many targets are tracked for less than 20% and more than

80% of their life span based on ground truth trajectories

(GT). We also report the tracking recall and precision.

6.2.1 Fluorescence spot tracking

We first apply our proposed JPDAm and 3F-JPDAm in a

challenging biological application: tracking numerous sub-

cellular structures in fluorescence microscopy sequences.

These structures are seen as small moving bright spots that

can appear or disappear from the field of view or be oc-

cluded by other structures. Our sequences include 300
frames and comprise a time-varying number of targets (on

average ≈ 204 spots per frame) moving inside a cell mem-

brane with an effective region ≈ 230×230 pixels.

Method Location↓ Cardinality↓ OSPA-T↓ Time↓
(Pixel) (Pixel) (Pixel) (Sec.)

MHT [11] 5.38 1.94 7.32 0.23

JPDA [35] 2.14 4.06 6.20 2.38

JPDA100 2.14 4.06 6.20 0.20

3F-JPDA100 1.94 3.22 5.16 3.13

Table 1. The averaged location, cardinality and OSPA-T errors

and processing time per frame of the spot trackers. JPDA100

matches the error of JPDA with lower computation time, while

3F-JPDA100 reduces overall error at higher computational cost.

We compare the results of our proposed single frame

JPDA (JPDA100) and three frames JPDA (3F-JPDA100) on

these sequences against two state-of-the-art spot tracking

methods: IMM-JPDA [35] and MHT [11]. To evaluate the

performance of all algorithms fairly, the same detections

were provided for all competing tracking methods using the

spot detector proposed in [11]. Moreover, since a single

motion model (constant velocity) describes the dynamic be-

havior of our structures in this application sufficiently well,

a single motion model implementation of all tracking meth-

ods was used5. All parameters for all methods were either

directly estimated or tuned manually on a training sequence

(a 30 frame movie). We used the same value for all param-

eters that are in common between the methods: detection

probability pD =0.77; clutter rate λ=1; gate size dG =4;

dynamic noise qd=0.1; and measurement noise qm=1. For

all JPDA techniques including the IMM-JPDA method, the

termination and track deletion parameters were set as Td=8
and LS =2. Note that increasing the depth or the gate size

for MHT does not yield noticeable performance improve-

ment, but significantly slows down the computation.

In Tab. 1, the average processing time6 and the tracking

results for all aforementioned methods are reported. Ac-

cording to the OSPA-T value, all JPDA algorithms track

more accurately than MHT in this application. However,

since we used a heuristic for track initiation and termina-

tion, all JPDA algorithms have higher cardinality errors due

to higher numbers of false tracks compared to MHT, which

has a principled way for target initiation and termination.

The overall performance superiority of JPDA is mainly due

to its reliability of dealing with long occlusion and complex

data association, which are frequent in this application.

As expected, our JPDA100 performs as accurately as

JPDA [35], but more than 10 times faster on average. This

faster performance is mainly due to a few frames involving

many interacting targets, which take around 640 seconds for

JPDA while our JPDAm requires only 1.5 seconds. In this

application, 3F-JPDA is computationally intractable; based

on our knowledge of its cost relative to the JPDA, we esti-

mate that it would take several weeks to complete on this

5Therefore, we abbreviate IMM-JPDA [35] as JPDA in Table 1.
6The average processing time for MHT is reported based on a Java im-

plementation, available on http://icy.bioimageanalysis.org.
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Figure 5. Our tracking results on a fluorescence microscopy sequence (top row, cropped for better readability) using 3F-JPDA100 and PETS

S2.L2 (second row) and TUD-Stadtmitte (bottom) using JPDA100.

dataset. However, 3F-JPDA100 is highly efficient and has

overall a lower OSPA-T value compared to other methods.

6.2.2 Pedestrian tracking

We demonstrate the performance of our method for vi-

sual tracking in surveillance by evaluating our results on

the popular PETS 2009 video sequences [15], in particular

those with high target density: S1.L1-2, S1.L2-1, S2.L2 and

S2.L3. We also include the sequence (TUD-Stadtmitte) [1]

with a very different setup captured from a low angle. In

all videos, tracking is performed in image coordinates us-

ing publicly available detections provided by [28] as input.

As discussed above, we use a constant velocity model for

tracking pedestrians in image space. Empirically, we find

our results are not sensitive to the exact parameter settings.

To achieve best performance, we manually tune them on a

different PETS sequence (S1.L2-2), and then fix them for

all test sequences at pD =0.89, λ=3, dG=5.48, qd=0.5,

qm=7, Td=45 and LS=15.

In Tab. 2, we compare our results against several state-

of-the art methods applied on the same sequences. Previous

figures are taken from [28, 29, 41] and the same evaluation

script is used to quantify our results. All metrics are com-

puted in 3D with a 1m hit/miss threshold. For a meaning-

ful comparison to other methods, we present the results for

the entire image, and for a cropped tracking area for each

sequence. Since the number of occlusions and crossing tar-

gets in this application is significantly lower than in fluores-

cence spot tracking, 3F-JPDA100 does not yield a noticeable

improvement compared to JPDA100. Moreover, full JPDA

has exactly the same results as JPDA100, but requires higher

processing time. Therefore, we only report the results of

JPDA100 in this setting.

The performance measures in Tab. 2 indicate that the

results of JPDA100 produce an increased number of false

tracks (higher FP) compared to the other methods. As dis-

cussed, this is mainly due to the heuristic track initiation

and termination used. Nevertheless, we can still outperform

state-of-the-art methods w.r.t. MOTA in most sequences.

The main reason is JPDA’s ability to robustly maintain tar-

gets’ identities through long occlusions resulting in higher

MT and lower FN and IDs. The processing time of JPDA100

is between 0.001 and 0.046 seconds per frame, easily en-

abling its use in real-time applications.

MOTChallenge. In addition to the above experiments, we

also present our results7 on MOTChallenge, a recent multi-

target tracking benchmark [23], featuring a number of se-

quences with substantially varying properties, such as the

number of targets present, camera motion, target density,

etc. Tab. 2 (bottom) shows our performance along with the

top three competitors with available corresponding publica-

tions at the time of submission. Although we only rely on

the provided detections and a simple dynamic model, our

approach shows very competitive performance, while being

one to two orders of magnitude faster. We achieve the over-

7http://motchallenge.net/results/2D_MOT_2015/
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Dataset Method MOTA MOTP GT MT ML FP FN IDs Recall Prec.
(Sequence) % ↑ % ↑ ↑ ↑ ↑ ↑ ↓ % ↑ % ↑

Pirsiavash et al. [32] 45.4 66.8 36 9 14 6 1367 38 47.1 99.5

Berclaz et al. [5] 51.5 64.8 36 16 14 98 1151 4 55.5 93.6

PETS Wen et al. [41] 57.1 54.8 36 18 8 34 1071 4 58.6 97.8

(S1.L1-2) Milan et al. [28] 57.9 59.7 36 19 11 148 918 21 64.5 91.8

JPDA100 70.0 64.8 36 21 5 108 658 10 74.5 94.7

Milan et al. [29] 60.0 61.9 44 21 11 169 1349 22 64.9 93.7

JPDA100 63.5 64.5 44 17 9 112 1279 13 66.7 95.8

Berclaz et al. [5] 19.5 60.6 43 4 29 64 2950 7 21.4 92.6

PETS Milan et al. [28] 30.8 49.0 43 7 20 227 2308 61 38.5 86.4

(S1.L2-1) JPDA100 32.8 59.8 43 9 20 230 2238 52 40.3 86.8

Milan et al. [29] 29.6 58.8 42 2 21 27 3494 42 30.9 98.3

JPDA100 32.8 57.6 42 5 15 218 3108 76 38.6 89.9

Pirsiavash et al. [32] 45.0 64.1 74 7 17 199 4257 137 49.0 95.4

Berclaz et al. [5] 24.2 60.9 74 7 40 193 6117 22 26.8 92.1

PETS Wen et al. [41] 62.1 52.7 74 27 3 640 2402 125 71.2 90.3

(S2.L2) Milan et al. [28] 56.9 59.4 74 28 12 622 2881 99 65.5 89.8

JPDA100 58.3 59.3 74 22 6 910 2468 103 70.5 86.6

Milan et al. [29] 58.1 59.8 43 11 1 549 3592 167 65.1 92.4

JPDA100 58.2 58.5 43 11 0 1051 3108 143 69.8 87.2

Pirsiavash et al. [32] 43.0 63.0 44 5 18 46 1760 52 46.0 97.0

Berclaz et al. [5] 28.8 61.8 44 5 31 45 2269 7 30.4 95.7

PETS Wen et al. [41] 55.3 53.2 44 12 9 149 1272 36 61.0 93.0

(S2.L3) Milan et al. [28] 45.4 64.6 44 9 18 169 1572 38 51.8 90.9

JPDA100 53.9 61.6 44 15 17 162 1320 20 59.5 92.3

Milan et al. [29] 39.8 65.0 44 8 19 115 2493 27 43 94.2

JPDA100 48.0 62.3 44 13 18 161 2092 23 52.2 93.4

Berclaz et al. [5] 45.8 56.7 9 1 1 117 261 5 63.1 79.2

TUD Milan et al. [28] 71.1 65.5 9 7 0 92 108 4 84.7 86.7

(Stadtmitte) JPDA100 57.9 60.0 9 4 1 120 172 6 75.7 81.7

Milan et al. [29] 56.2 61.6 10 4 0 134 357 15 69.1 85.6

JPDA100 58.9 59.8 10 4 1 116 349 10 69.8 87.4

2D MOT CEM [28] (1.1 fps) 19.3 70.7 721 8.5 46.5 14180 34591 813 43.7 65.4

Challenge SegTrack [27] (0.2 fps) 22.5 71.7 721 5.8 63.9 7890 39020 697 36.5 74.0

(Benchmark) MotiCon [22] (1.4 fps) 23.1 70.9 721 4.7 52.0 10404 35844 1018 41.7 71.1

JPDA100 (32.6 fps) 23.8 68.2 721 5.0 58.1 6373 40084 365 34.8 77.0

Table 2. Quantitative comparison results of our JPDA100 with other state-of-the-art trackers on the pedestrian datasets. The red and blue

colors indicate the best and the second best performing tracker on each metric. For each sequence, results above the line are for a cropped

tracking region, while below the line use the entire frame.

all lowest number of ID switches, which once again con-

firms the power of joint data association. Please note that

the JPDA algorithm solves the data association problem in

an online manner, whereas the closest previous approaches

belong to the class of batch processing techniques.

7. Conclusion

In this paper, we revisited the JPDA algorithm and pro-

posed an efficient and accurate approximation. We demon-

strated the validity of our approach on two challenging

multi-target tracking applications with noisy detections and

substantial occlusion. In spite of the heuristic nature of the

track initiation scheme, we showed that JPDA performs on

par or even better than state-of-the-art methods in molecular

applications and pedestrian tracking.

Our future work will explore more general applications

of this approach. JPDA is just one example of an associa-

tion/matching method used in computer vision, and we be-

lieve that our method can also be used to increase the scale

and speed at which other such methods can be applied.
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object tracking using k-shortest paths optimization. PAMI,

33(9):1806–1819, Sept. 2011.
[6] K. Bernardin and R. Stiefelhagen. Evaluating multiple object

tracking performance: The CLEAR MOT metrics. Image

and Video Processing, 2008(1):1–10, May 2008.
[7] S. S. Blackman and R. Popoli. Design and Analysis of Mod-

ern Tracking Systems. Artech House, 1999.
[8] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier,

and L. Van Gool. Robust tracking-by-detection using a de-

tector confidence particle filter. In ICCV 2009.
[9] W. Brendel, M. Amer, and S. Todorovic. Multiobject track-

ing as maximum weight independent set. In CVPR 2011.
[10] A. A. Butt and R. T. Collins. Multi-target tracking by La-

grangian relaxation to min-cost network flow. In CVPR 2013.
[11] N. Chenouard, I. Bloch, and J.-C. Olivo-Marin. Multiple

hypothesis tracking for cluttered biological image sequences.

PAMI, 35(11):2736–2750, 2013.
[12] I. J. Cox and S. L. Hingorani. An efficient implementation of

Reid’s multiple hypothesis tracking algorithm and its evalu-

ation for the purpose of visual tracking. PAMI, 18(2), 1996.
[13] J. Dezert, N. Li, and X.-R. Li. Theoretical development of an

integrated JPDAF for multitarget tracking in clutter. In Proc.

Workshop ISIS-GDR/NUWC, ENST, 1998.
[14] A. Doucet, S. Godsill, and C. Andrieu. On sequential monte

carlo sampling methods for bayesian filtering. Statistics and

Computing, 10(3):197–208, 2000.
[15] J. Ferryman and A. Shahrokni. PETS2009: Dataset and chal-

lenge. In Winter-PETS, 2009.
[16] T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar track-

ing of multiple targets using joint probabilistic data associa-

tion. IEEE J. Oceanic Eng., 8(3):173–184, 1983.
[17] M. Fromer and A. Globerson. An LP view of the M-best

MAP problem. NIPS, 22:567–575, 2009.
[18] Gurobi, Inc. Gurobi optimizer reference manual, 2015.
[19] I. Heller and C. B. Tompkins. An extension of a theorem of

dantzig. Annals of Mathematics Studies., 38(1), 1956.
[20] H. Jiang, S. Fels, and J. J. Little. A linear programming

approach for multiple object tracking. In CVPR 2007.
[21] R. E. Kalman. A new approach to linear filtering and predic-

tion problems. Transactions of the ASME–Journal of Basic

Engineering, 82(Series D):35–45, 1960.
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