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Abstract

We present a novel approach for jointly estimating tar-

gets’ head, body orientations and conversational groups

called F-formations from a distant social scene (e.g., a

cocktail party captured by surveillance cameras). Differing

from related works that have (i) coupled head and body pose

learning by exploiting the limited range of orientations that

the two can jointly take, or (ii) determined F-formations

based on the mutual head (but not body) orientations of in-

teractors, we present a unified framework to jointly infer

both (i) and (ii). Apart from exploiting spatial and orien-

tation relationships, we also integrate cues pertaining to

temporal consistency and occlusions, which are beneficial

while handling low-resolution data under surveillance set-

tings. Efficacy of the joint inference framework reflects via

increased head, body pose and F-formation estimation ac-

curacy over the state-of-the-art, as confirmed by extensive

experiments on two social datasets.

1. Introduction

Following decades of research progress, head and body

pose estimation (PE) is now possible in challenging settings

where persons are captured at prohibitively low-resolution

with blurred facial and body parts, or moving unconstrained

in an environment with uneven illumination. Buoyed by the

success of PE algorithms that can robustly handle facial ap-

pearance variations [7, 36] and learn with limited training

data by exploiting anatomic constraints [5, 8], computer vi-

sion research has begun to focus on complex phenomena

like social interactions.

The ability to detect conversational groups or F-

formations [11] in social scenes (Fig.1 (left)) is critical for a

variety of applications such as surveillance, social robotics

Figure 1: Problem overview: (Left) Social scene from

the Coffeebreak dataset [12]. We jointly estimate conver-

sational groups and the head, body pose of conversing tar-

gets, both of which are non-trivial due to low-resolution

and extreme occlusions. Circles around targets’ feet posi-

tions denote body pose, arrows denote head pose, and lines

connecting the circles signify F-formations estimated us-

ing our method. (Center) Three member F-formation where

feet positions, head and body orientations are shown– corre-

sponding O-space is denoted using the blue ellipse. (Right)

Exemplar F-formations with two targets.

and behavior analysis. Formally, an F-formation arises nat-

urally in conversational settings whenever two or more indi-

viduals in close proximity orient their bodies such that each

of them has an easy, direct and equal access to every other

participant’s transactional segment [11]. For example, when

two persons interact, the typical formation arrangements

are vis-a-vis, L-shape and side-by-side (Fig.1 (right)). The

fact that F-formations are characterized by the shared phys-

ical locations and head, body orientations of interactors has

been exploited by several works [12, 33]. In these works,

an F-formation is typically computed by determining inter-

acting members and the center of the O-space [11], i.e., the

center of the smallest empty convex space encompassed by

the interactors (Fig.1 (center)).

Challenges in visual analysis of conversational groups
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are manifold (Fig.1 (left)). First, accurately determining

head and body pose of the conversing targets is non-trivial

due to the presence of heavy facial and bodily occlusions,

background clutter and the difficulty in characterizing body

pose due to extensive variability in clothing. Also, employ-

ing cues such as walking direction, as proposed in prior

works considering pedestrian scenes [5, 8], is ineffective as

F-formations are defined by relatively static arrangements

of individuals. State-of-the-art F-formation detection ap-

proaches [12, 33] rely on pre-trained head pose classifiers

and coarse orientation quantization. However, F-formation

discovery is hard when pose classifiers are not adapted to

the considered social scene.

To tackle the above problems, we present the first work

to jointly estimate targets’ head and body pose and F-

formations in a social scene captured by a surveillance cam-

era, as illustrated in Fig.1. Different from prior works which

have focused solely on (i) jointly learning head and body

pose of individuals based on anatomic constraints [5, 8], or

(ii) F-formation detection from spatial and head orientation

cues [12, 33], we present a joint framework to infer both (i)

and (ii). Our approach exploits the synergetic interaction-

interactor relationship, i.e., F-formations are characterized

by mutual locations and head, body orientations of interac-

tors, while conversely, interactors are constrained in terms

of the head and body pose they can exhibit, motivating the

need for joint learning. Specifically, our novel learning

framework (i) exploits both annotated and unlabeled data

to learn the range of joint head-body orientations of indi-

viduals, (ii) exploits positional and pose-based constraints

relating interactors to discover F-formations, and (iii) fur-

ther refines pose estimates of interactors based on the gained

knowledge concerning F-formations and vice-versa.

Our work has several unique aspects. Firstly, we use

body orientation as the primary cue for determining F-

formations. While prior works [12, 33] have acknowledged

the importance of body pose for deducing F-formations,

they nevertheless use head pose estimates in their analysis

given the adverse impact of occlusions on body pose esti-

mation. The use of head orientation is nevertheless spurious

as it is prone to frequent changes during social interactions.

In contrast, body pose is a more stable cue, and can bet-

ter express the geometrical F-formation arrangement. Sec-

ondly, in order to estimate body pose precisely, our learning

framework couples head and body pose learning as in [8],

but also handles occlusions by adopting multiple occlusion-

specific regression functions. Finally, temporal consistency

is also enforced to ensure smoothness in head, body and

F-formation estimates over time.

Contributions: (i) We present a novel framework for

jointly estimating individuals’ head, body orientations and

F-formations in social scenes. Via thorough experiments on

two challenging social datasets, we demonstrate the benefits

of our joint learning framework against competing pose and

F-formation estimation methods. (ii) In contrast to existing

methods, we employ body orientation as the primary cue for

estimating F-formations. Computation of precise body pose

estimates is achieved via coupled head and body pose learn-

ing, knowledge gained regarding F-formations and handling

varying levels of body occlusion with multiple regressors.

(iii) Our model also enforces temporal consistency with re-

spect to estimated pose and group memberships which is

particularly useful as tracking and cropping errors are com-

monplace in low-resolution surveillance videos.

2. Related Work

We now review prior work in topics most related to this

work, namely, head and body pose estimation (HPE and

BPE) from surveillance video, and detection of social in-

teractions and conversational groups from social scenes.

Head and body pose estimation. Recently, coarse head

and body PE from surveillance videos has been investi-

gated by many works [5, 7, 8, 16, 27, 36], as pose repre-

sents an important cue in surveillance and human behav-

ior analysis. Pioneering work in [27] proposes HPE with

eight directional classes. In [5], unsupervised HPE is pre-

sented by exploiting weak labels in the form of walking

direction of pedestrians. A similar idea is also exploited

in [7]. Chen et al. [8] novelly compute head pose by intro-

ducing two coupling factors, one between head and body

pose and another between body pose and velocity direc-

tion. Furthermore, they introduce classifier adaptation via

manifold learning. An adaptive transfer learning framework

for multi-view HPE under target motion is proposed by Ra-

jagopal et al. [26]. Yan et al. [36] address the same prob-

lem by modeling facial similarities and differences among

neighboring scene regions using multi-task learning. Re-

cent HPE approaches are able to cope with label noise [15]

and integrate temporal consistency [13].

BPE from surveillance video has been studied by few

works [19, 27], which only consider body orientation as a

link between walking direction and head pose, but do not

explicitly learn body pose classifiers. Recent works of Chen

et al. [8] and Liem et al. [21] demonstrate the benefits of

coupling HPE and BPE. However, most PE works focus

on pedestrian scenes involving non-interacting individuals,

while we expressly consider complex social scenes. Typ-

ically, prior approaches do not work well when targets re-

main static (for BPE), or are observed under large occlu-

sions (as most methods are monocular). For instance, ex-

periments in [5, 8] show poor PE performance when targets

are either static or their velocity is noisy. Similarly, Yan

et al. [36] alleviate the occlusion problem by considering

multi-view images, but do not implement specific strategies

for handling varying levels of body occlusion.
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Figure 2: Overview of our social scene analysis framework.

Social interactions and conversational groups. Recently,

there has been considerable interest in analyzing social in-

teractions and social scenes. Jimenez et al. , [22] propose

continuous HPE using Gaussian process regression, and

evaluate several methods for detecting dyadic interactions

in a video shot. Perez et al. [24] achieve spatio-temporal

localization of dyadic interactions from TV videos using a

structured SVM, combining information from local (pose-

based) and global (position-based) descriptors. Choi et al.

[10] recognize group activities by analyzing the spatial con-

figuration of group members. Other works have focused on

(i) detecting groups instead of individuals in static images

to overcome partial occlusions [14, 31] and (ii) leveraging

information about groups to improve multi-target tracking

performance [20, 25].

Detecting conversational groups or F-formations in so-

cial scenes has generated interest lately due to security and

commercial applications [12,29,30]. Cristani et al. [12] an-

alyze spatial arrangements and head orientations, and pro-

pose a voting strategy based on the Hough transform to de-

tect F-formations. This work is extended via multi-scale

analysis in [29]. Social interactions are detected in ego-

centric videos in [3]. Vascon et al. [33] propose a game-

theoretic approach for determining F-formations using po-

sition and head pose cues which allows for systematic in-

tegration of temporal information. While orientation rela-

tionships among interactors have been exploited for detect-

ing conversational groups, joint estimation of such groups

and the head, body pose of targets has not been attempted.

In this paper, we show that joint learning benefits both pose

and F-formation estimation.

3. Framework for Analyzing Social Scenes

3.1. Overview

In this section, we describe our approach to jointly infer

conversational groups and the head and body pose of each

target in a social scene. An overview of our social scene

analysis pipeline is presented in Fig.2. Given a distant video

of a social gathering (e.g., cocktail party), we first apply

multi-target tracking to estimate the feet positions of per-

sons in the scene. Thanks to several state-of-the-art tracking

methods [6, 18, 34], we can now deal with complexities in

social scenes due to occlusion and clutter. Target feet posi-

tions are estimated with the multi-target tracking approach

in [18] and are used for head localization and cropping via

a 3D head-plus-shoulder model registered through shape

matching as in [36]. Each target’s body region is determined

as the portion between head and feet coordinates. We also

estimate the extent of occlusion for each target by account-

ing for shape-projections of targets closer to the camera.

In practice, we associate a binary occlusion mask to each

of the computed body crops. Camera calibration informa-

tion is used for tracking, head/body localization, as well as

for occlusion detection. We then extract visual descriptors

for the head and body regions (see Subsection 3.2.3). Tar-

gets’ positions, head and body features along with occlusion

masks are input to our joint learning algorithm that outputs

for each target (i) head and body pose and (ii) F-formation

membership as described in the following.

3.2. Inferring head, body pose and F­formations

3.2.1 Problem setting

We consider a NT -frame video depicting NK persons in-

volved in a social gathering. Each target k is character-

ized by a time-dependent triplet (xB

kt,x
H

kt,pkt), providing

for each frame t the body and head descriptors denoted by

xB

kt ∈ XB and xH

kt ∈ Xh respectively, and the target’s feet

position pkt ∈ IR2. Here, XB and XH represent the fea-

ture spaces associated to body and head samples respec-

tively. Information concerning all video targets is collected

in S = {(xB

kt,x
H

kt,pkt)}kt, with k ∈ 〈NK〉 and t ∈ 〈NT 〉,
where 〈N〉 = {1, . . . , N} for notational convenience.

The goal of the inference task is to estimate the body

pose αB

kt ∈ [0, 2π), the head pose αH

kt ∈ [0, 2π) and the

conversational group membership zkt ∈ 〈NK〉 of each tar-

get k at each frame t. As in previous works considering a

low resolution setting [26, 36], we estimate only the head

and body pan. F-formations are determined by all targets

sharing the membership zkt (i.e. at frame t two targets k
and h belong to the same group if zkt = zht). Singleton

conversational groups represent non-interacting targets.

In addition to the social scene information provided by

S , we exploit annotated training sets TB = {(x̂B

i ,y
B

i )}NB

i=1 ⊆
XB × Y and TH = {(x̂H

i ,y
H

i )}NH

i=1 ⊆ XH × Y to enhance the

head and body pose estimation capabilities of our model.

Each training sample in T⋄, where ⋄ ∈ {B, H}, is a de-

scriptor x̂
⋄

i for head/body with an associated pose label

y⋄
i . The pose labels are NC-dimensional binary vectors1

1Most available datasets on HBPE in low resolution settings only pro-

vide quantized pose annotations.
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with a single non-zero entry indexing an angle in α =
[α1, . . . , αNC

]⊤ ∈ [0, 2π)NC (i.e., Y ∈ {0, 1}NC , where

NC denotes the number of quantized angles).
For convenience, we also define a re-parametrization of

α in terms of a matrix of 2-dimensional vectors:

A =

[

cosα1 · · · cosαNC

sinα1 · · · sinαNC

]

. (1)

In the following the ⋄ is used as a placeholder for H or B.

3.2.2 Jointly inferring pose and F-formations

The inference problem that we face is semi-supervised, as

we have both annotated data from T = (TB, TH) and non-

annotated observations S from the video under analysis.

The head and body pose annotations from T implicitly pro-

vide a prior for estimating the pose of targets in S . No an-

notation of F-formations is used during learning.

In order to exploit the distribution of descriptors corre-

sponding to annotated data and scene targets, we introduce

two regression functions fB and fH for the body and head

pose respectively, which are two unknowns in our model.

Intuitively, f⋄ : X⋄ → IRNC provides for each sample in

X⋄, a prediction for the pose label in Y that is relaxed to

a real vector in IRNC . The output of f⋄ can be used to lin-

early combine the columns of A in (1), which are a vectorial

representation of the discretized angles in α. The resulting

2-dimensional vector A f⋄(x
⋄

kt) ∈ IR2 can finally be cast

in polar coordinates to recover the pose angles α⋄

kt corre-

sponding to x⋄

kt in S .

Assignment of targets to F-formations is modeled indi-

rectly by letting each target vote for the center of the F-

formation he/she belongs to. In practice, we introduce a la-

tent 2-dimensional vector ckt for each target k ∈ 〈NK〉 and

frame t ∈ 〈NT 〉, which intuitively represents the voted cen-

ter of the F-formation for target k in frame t. We assume

these centers, which will become additional unknowns of

our model, to be stacked into a 2 × NKNT -dimensional

matrix C. We denote by C = IR2×NKNT , the set of all such

matrices. Given C, the corresponding F-formation assign-

ments zkt can be easily recovered as shown in [17]. Intu-

itively, two targets k and h are considered members of the

same group, i.e., zkt = zht, if their voted centers ckt and

cht for the O-space center are close enough.
Our goal is to jointly infer the head and body poses and

F-formations, i.e.to find pose regressors and center votes
that minimize the following loss, given T and S:

min LP (fB, fH; T ,S) + LF (fB,C;S)

s.t. fB ∈ FB, fH ∈ FH, C ∈ C ,
(2)

whereF⋄ is the space of pose regressors f⋄ (details on pose

regressor spaces are given in Subsection 3.2.3). The loss in

(2) has two terms. The first term, LP , enforces pose regres-

sors to reflect the distribution of annotated samples in T

under a regularization that also accounts for the manifold of

unlabeled samples in S . The second term, LF , enforces the

body pose estimates of the targets in S to be consistent with

the F-formations’ center votes given by C. Given the opti-

mal solution to (2), we recover the head, body pose α⋄

kt and

F-formation assignment zkt of each target at every frame as

discussed above. We now describe LP and LF in detail.

The pose-related loss term. The pose-related loss term LP

decomposes into three terms:

LP (fB, fH; T ,S) =
∑

⋄∈{H,B}

L⋄(f⋄; T⋄,S) + LC(fB, fH;S) . (3)

The first two loss terms penalize pose regressor errors with

respect to the annotated training sets under harmonic reg-

ularization also accounting for the data manifold of S . To

this end, we introduce two graph-based manifolds GH and

GB for the available head and body samples. For each

⋄ ∈ {H, B}, the graph is defined as G⋄ = (V⋄, E⋄, ω⋄),
where V⋄ comprises all body/head samples (depending on

⋄) from T⋄ and S , the first N⋄ being samples from T⋄ and

the rest from S . In total, V⋄ contains N⋄ + NKNT ele-

ments, the ith one denoted by v⋄
i ∈ X⋄. For all annotated

samples in V⋄, i.e., ∀i ∈ 〈N⋄〉, we indicate the correspond-

ing pose label by y⋄
i . The set E⋄ ⊆ 〈|V⋄|〉2 indexes pairs

of neighboring vertices, while ω⋄
ij ≥ 0 is a non-negative

weight indicating the strength of the (i, j)-edge connection.

More details will be given in Subsection 3.2.3.
Given GH and GB, we define the loss term L⋄ as

L⋄(f ; T⋄,S) =

N⋄
∑

i=1

‖f(v⋄
i )− y

⋄
i ‖

2
M + λR‖f‖

2
F⋄

+ λU

∑

(i,j)∈E⋄

ω
⋄
ij‖f(v

⋄
i )− f(v⋄

j )‖
2
M , (4)

where ‖ ·‖F⋄
is a semi-norm for the function space F⋄, and

‖a‖M =
√
a⊤Ma is a semi-norm on IRNC induced by the

symmetric, positive semi-definite matrix M ∈ IRNC×NC ,

which accounts for the semantic mapping from the pose la-

bel vectors ∈ IRNC to angles in α (see Subsection 3.2.3).
The first term in L⋄ measures the prediction error of

f ∈ F⋄ with respect to the annotated training set; the sec-
ond term regularizes f in the respective function space; the
last term performs harmonic regularization of f with re-
spect to the manifold of data samples in T⋄ and S . Fi-
nally, we have two free nonnegative parameters λR and
λU to balance the contribution of the regularization terms.
Note that losses akin to (4) are typically encountered in the
context of semi-supervised learning [38]. The last term in
(3) enforces consistency between head and body poses pre-
dicted on S by penalizing configurations violating human
anatomic constraints (e.g., head and body oriented in oppo-
site directions):

LC(fB, fH;S) = λC

NK
∑

k=1

NT
∑

t=1

‖fB(x
B

kt)− fH(x
H

kt)‖
2
M , (5)
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Figure 3: (left) O-space of the F-formation involving three

targets k, r and q and their body pose. (center) Direction

vectors d(.) obtained via body pose regressor are shown us-

ing blue arrows, while c(.) (yellow points) denote voted cen-

ter locations. By minimizing (2), we refine body pose and

F-formation estimates to arrive at the least loss configura-

tion (right), where the voted centers for each target cluster

at the O-space centroid. For sake of simplicity, we illustrate

the minimization of (2) for a single frame t and for λT = 0.

where λC is a free, nonnegative parameter.

The F-formation-related loss term. The second term of

the objective function in (2) is specifically defined to ex-

ploit the relationship between targets’ body orientation and

F-formations. Our purpose is to exploit the targets’ group

membership for refining body pose estimates as group

members tend to orient towards the O-space center and,

conversely, to accurately detect F-formations from body

pose estimates of interacting targets.
The following loss term depends on a body regressor

fB ∈ FB, and on a matrix of votes C ∈ C concerning F-
formation center for each target and at each frame:

LF (fB,C;S) = λF

NK
∑

k=1

NT
∑

t=1

‖ckt − (pkt +DA fB(x
B

kt))‖
2
2

+ γc

NK
∑

k,h=1

NT
∑

t=1

‖ckt − cht‖1 + λT

NK
∑

k=1

NT
∑

t=2

‖ckt − ck(t−1)‖1

(6)

where ‖ · ‖p is the p-norm, and λF , D, γc and λT are non-

negative, free parameters.

Since interactors typically orient their bodies towards the

O-space center, we expect the center vote of each target at

each frame to be located D units from the target in the di-

rection predicted by the body pose regressor, where D de-

notes the expected target distance from a hypothetical O-

space center (akin to previous works [12, 33]). The body

orientation for the kth target at frame t in IR2 is obtained

as A fB(x
B

kt), since the output of f is the prediction of the

pose label. Hence, his/her ideal F-formation center position

ckt is given by pkt + dkt, where dkt = DA fB(x
B

kt). This

is accounted by the first term in (6). The second term in-

duces a spatial clustering of the center votes of all targets at

each frame, which is regulated by the parameter γc: large

values of γc tend to favor the concentration of the votes into

few cluster points, while low values reduce the mutual in-

fluence of the targets’ votes. Computed cluster centroids

represent putative O-space centers of F-formations in the

scene. Note that the 1-norm induces the centroids of tar-

gets belonging to the same F-formation to merge. Finally,

the third term enforces temporal consistency of the targets’

center votes, given the fact that conversational groups do

not change rapidly over time.

In contrast to prior works which use head orientations to

infer F-formations, we propose a coupled inference frame-

work. The loss term LF allows for coupled estimation of

body pose and O-space centroids via the center votes of tar-

gets (Fig.3). Indeed, we exploit the fact that body pose is a

more stable cue than head pose for inferring F-formations,

and this reflects via improved F-formation and body pose

estimation accuracy as discussed in Section 4.

3.2.3 Implementation details

We model each regressor f⋄ as a generalized, linear function
parametrized by a matrix Θ ∈ IRNC×M⋄ , i.e.

f⋄(x;Θ) = ΘΦ⋄(x) , (7)

where Φ⋄ : X⋄ → IRM⋄ is a feature mapping. The set of
all regressors f⋄ is thus given by

F⋄ = {f⋄(x;Θ) : Θ ∈ IR
NC×M⋄} . (8)

In light of the surjection between parameters Θ ∈
IRNC×M⋄ and regressors f⋄ ∈ F⋄, we can re-write the

minimization in (2) with variables ΘB ∈ IRNC×MB and

ΘH ∈ IRNC×MH , by substituting f⋄ with its definition in

(7) and by taking the following seminorm on the space F⋄:

‖f(·;Θ)‖F⋄
= ‖Θ‖F , where ‖ ·‖F denotes the Frobenious

norm. Note that the feature mapping Φ⋄ can be specified by

implicitly defining a kernel function, as in kernel methods.

In our experiments we consider a linear kernel.

To facilitate comparisons with previous works [8,26], we

consider HOG features to describe the head and body re-

gions. Head crops are first normalized to 20×20 pixels and

HOG features are computed over 4×4 cells. Similarly, body

images are resized to 80× 60 pixels, and HOG features are

extracted over 4× 4 cells. Similar to previous works [8,26]

and consistently with annotations of most datasets in low-

resolution setting, we set NC = 8.

The graph-based data manifolds G⋄ = (V⋄, E⋄, ω⋄),
used in (4) for harmonic regularization of pose regressors,

are defined such that head/body samples similar in ap-

pearance should correspond to similar pose. Specifically,

(i, j) ∈ E⋄ if the ith sample v⋄
i ∈ V⋄ is among the k-nearest

neighbors of the jth sample v⋄
j ∈ V⋄ under the standard Eu-

clidean metric. Moreover, temporal smoothing is enforced

by imposing that (i, j) ∈ E⋄ if samples v⋄
i and v⋄

j corre-

spond to samples x⋄

kt and x⋄

kt′ in S , where |t− t′| = 1, i.e.,

they correspond to the same target in contiguous frames.

Also, we do not impose any preference over edges and set a

constant strength equal to one, i.e., ω⋄
ij = 1. The metric ma-

trix M adopted in (4) and in (5) is defined as M = A⊤A,
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and the parameters λR, λU , λC , λF , λT and γc are fixed

using a validation set. Details are provided in Section 4.

3.2.4 Optimization

By taking (8) as the regressors’ space and by rewriting

the minimization in (2) in terms of Θ⋄ as mentioned in

Subsection 3.2.3, we obtain a convex optimization problem

with variables (ΘB,ΘH,C), which can be reformulated as

a Quadratic Program (QP). The convexity is implied by the

fact that we have a sum of positively-rescaled terms being

the composition of a norm (or semi-norm) with an affine

function of the variables to be optimized. Accordingly, any

local solver can be used to find a global solution, irrespec-

tive of the initial starting point.
The optimization strategy we propose involves al-

ternating updates of ΘB, ΘH and C. Before delv-
ing into details, we introduce the following matrices:

X⋄ = (x⋄
11, . . . ,x

⋄

NKNT
), X̂⋄ = (x̂⋄

1, . . . , x̂
⋄

N⋄
), Y ⋄ =

(y⋄
1, . . . ,y

⋄

N⋄
) and V ⋄ = (X̂⋄,X⋄). Moreover, let L⋄ de-

note the Laplacian matrix of the graph G⋄ defined in Sub-
section 3.2.2, and let:

E⋄ = λRI + (X̂⋄X̂
⊤

⋄ + λUV ⋄L⋄V
⊤
⋄ + λCX⋄X

⊤
⋄ )⊗M ,

F ⋄ = M
[

Y ⋄X̂
⊤

⋄ + λCΘ⋆X⋆X
⊤
⋄

]

,

where (⋄, ⋆) ∈ {(H, B), (B, H)}, ⊗ is the Kronecker product

and I is a properly-sized identity matrix. In the following

we briefly describe our iterative optimization framework.

Further details are provided in the supplementary material.

Update of ΘH. The optimization problem in (2) is

quadratic and unconstrained in ΘH. Accordingly, the up-

date rule that we find by setting the first-order derivatives to

zero has the following closed-form (derivation omitted):

vec(ΘH)← E−1
H

vec(F H) ,

where vec(·) denotes vectorization of a matrix.
Update of ΘB. Similarly, the update for ΘB is given by

vec(ΘB)←
[

EB + λFD
2
XBX

⊤
B ⊗A

⊤
A
]−1

vec(G) ,

where G = F B + λFDA⊤(C − P )X⊤

B
.

Update of C. Computing a minimizer of (2) with respect

to C (with Θ⋄ fixed) is equivalent to finding a minimizer of

LF with respect to C, as LP does not depend on C. The re-

sulting optimization problem can be solved efficiently with

the alternating direction method of multipliers [9].

3.2.5 Handling Occlusions

We now show how the proposed framework can be extended

to integrate information about body occlusions. To factor

in the level of occlusion while estimating body pose, we

first calculate an occlusion map using the camera geometry

Table 1: Mean HBPE error (degrees).

CP CB

Method Head Body Head Body

AUX (λU = λF = λC = λT = 0) 58.2 65.3 64.3 68.6

AUX + SS (λF = λC = λT = 0) 51.3 54.7 56.8 58.6

AUX + SS + H/B (λF = λT = 0) 49.4 53.6 52.8 55.6

AUX + SS + H/B + FF (λT = 0) 46.5 50.3 46.6 49.4

AUX + SS + H/B + FF + T 45.8 48.2 45.3 47.4

AUX + SS + H/B + FF + T + O 44.5 46.6 44.2 46.9

Chen et al. [8] 48.3 51.7 56.1 57.3

and target locations (Subsection 3.1). Based on the detected

level of occlusion, we propose to learn multiple occlusion-

specific regression functions for body pose estimation and

invoke the appropriate model in (6). A similar strategy has

been used by previous pedestrian detection works [23, 35]

producing significant improvement over single classifiers.

To our knowledge, no prior work has adopted such an ap-

proach for estimating body pose. In this work, we con-

sider O = 4 different pose regressors fo
B

, o = 1, . . . , O.

In previous approaches [23, 35], a convex combination of

the occlusion-specific classifier scores is considered at test

time. Differently, to keep the computational cost limited,

we partition the body samples extracted from the social

scene into four groups, according to the detected level of

occlusion (a region is considered occluded if at least 50% of

the pixels are not visible). Similarly, we generate four sets

of virtual samples from the auxiliary training dataset, cre-

ating artificial occlusions. In this way, solving (2) with the

proposed iterative approach (see Subsection 3.2.4) reduces

to solving a set of O independent optimization problems

while learning fo
B

and fH. Conversely, while learning C,

the appropriate occlusion-specific regressor fo
B

is invoked

for each sample xB

k,t, according to its occlusion level. While

our approach can be also used to model head occlusions, we

consider only body occlusions as they more severely impact

PE performance and to keep the computational cost limited.

4. Experimental Results

4.1. Datasets and Experimental Setup

Datasets. We found only two datasets with time-continuous

F-formation annotations for evaluating our algorithm, and

present experimental results on the same.

The CocktailParty dataset [37] (CP) contains a 30-

minute video recording of a cocktail party in a 30m2 room

involving six subjects. The social event is recorded using

four synchronized wall-mounted cameras (512 × 384 pix-

els, jpeg). Consistently with previous works [12,33], we use

data from camera 1. This sequence is challenging for video

analysis due to low-resolution of the targets’ faces, back-

ground clutter as well as frequent and persistent occlusions.

Target positions are logged via a tracker, while head and

body orientations are manually assigned to one of NC = 8
class labels denoting a quantized 45◦ head/body pan, for

4665



Table 2: Performance on F-formations detection (F1-score).

Method CP CB

AUX (λU = λC = λT = 0) 0.79 0.78

AUX + SS (λC = λT = 0) 0.80 0.82

AUX + SS + H/B (λT = 0) 0.82 0.84

AUX + SS + H/B + T 0.85 0.85

AUX + SS + H/B + T + O 0.85 0.86

those frames where F-formation annotations are available.

F-formation annotations are available every five seconds.

The CoffeeBreak dataset [12] (CB) again depicts a so-

cial event and comprises a maximum of 14 targets, orga-

nized in groups of 2-3 persons. Target positions are an-

notated using a tracker, while head and body pose are an-

notated by an expert to incorporate eight classes (original

dataset has only head annotations with four classes). F-

formations are annotated for two sequences of lengths 45

and 75 frames respectively.

We additionally use samples extracted from the DPOSE

dataset [26] as auxiliary labeled data for training. DPOSE

contains head pose measurements acquired using inertial

sensors, while body pose in each frame is determined us-

ing walking direction as in [5]. Note that in our approach

only labels from DPOSE are used during learning while the

annotations in CB and CP are only used for evaluation.

Experimental Setup. Algorithm parameters are fixed using

a small validation set. Specifically, λU = 0.5, λF = 0.2,

λC = 0.2, λR = 0.1 and these values are identical for the

two datasets. Parameter D, which indicates the associated

O-space radius, is set equal to 0.5 meters on the ground

plane. This is consistent with previous approaches [12, 33],

and with sociological studies [11] which fix an upper bound

of about 1.2 m for the typical distance between interacting

targets in casual/personal relations. As different temporal

smoothness constraints need to be enforced for the CP and

CB datasets due to social dynamics and frequency of anno-

tated frames. temporal parameter λT is set to 0.1 and 0.01

respectively. Finally, the parameter γc is particularly impor-

tant and its role is discussed in the following subsection.

To evaluate HPE and BPE accuracy, we use the mean

angular error (in degrees). Specifically, given a sample x⋄

kt

from the social scene, the associated head/body pose α⋄

kt

is recovered by computing α⋄

kt = atan2(a⋄sin, a
⋄
cos), where

a⋄ = [a⋄cos, a
⋄
sin]

T = A f⋄(x
⋄

kt). F-formation estimation

accuracy is evaluated using F1-score [12,33]. In each frame

we consider a group as correctly estimated if at least T · |G|
of the members are correctly found and if no more than

1 − (T · |G|) non-members are wrongly identified, where

|G| is the cardinality of the group G and T = 2/3.

Our method runs on a desktop with a quad-core Intel

processor (3.3GHz) and 8GB RAM. The tracking and

head/body localization modules, implemented in C++, run

in real-time. The HBPE and F-formation detection are

coded in MATLAB and take about 1 sec each 10 frames.
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Figure 4: (left) F1-score computed with annotated data.

(right) F1-score at varying γc (best viewed in color).

4.2. Results and Discussion

Head, body pose estimation (HBPE). We firstly evaluate

the effectiveness of our joint estimation framework on head

and body pose estimation. Table 1 shows the average HPE,

BPE errors on the CP and CB datasets. Maximum error of

about 68◦ is obtained for both datasets when the objective

function only involves the loss term corresponding to auxil-

iary labeled data (AUX). However, incorporating data from

the analyzed social scene (AUX + SS) and coupling head

and body pose learning (AUX + SS + H/B) as in (5) consid-

erably reduces HBPE error for both datasets. Thereafter, in-

tegrating the F-formation (FF) term in (6) further improves

pose estimates by about 3◦ and 6◦ for CP and CB respec-

tively. This improvement confirms the benefit of jointly es-

timating body pose of interactors and F-formations. Includ-

ing additional information concerning occlusions (O) and

temporal consistency (T) further reduces HBPE error, im-

plying that all cues considered in this work are beneficial.

We also compare our approach with the state-of-the-art

for joint HBPE [8]. It is worth noting that other recent meth-

ods [5,7,36] operating on a low resolution setting only con-

sider head pose and do not estimate body pose. Evidently,

the algorithm from [8] performs similar to the AUX + SS

+ H/B setting in our approach, as both these methods fo-

cus on coupled learning of head and body pose of individ-

uals. However, our algorithm performs significantly better

than [8] when the social context is taken into account, as al-

ternative cues (e.g., velocity direction) are ineffective when

targets are mostly static and heavily occluded.

F-formation estimation. The benefit of our joint learning

framework on F-formation estimation can be noted from Ta-

ble 2. Similar to HBPE experiments, using unlabeled sam-

ples from the social scene in addition to auxiliary data is

beneficial for F-formation estimation. This is consistent

with our expectation that accurate estimation of the body

pose of interacting targets can aid detection of conversa-

tional groups. Incorporating additional information such as

H/B coupling, temporal consistency and occlusion-specific

classifiers in our framework further raises the F1-score.

In order to conceive the best F-formation detection per-

formance using our method, we computed detection ac-

curacy using target positions and the ground-truth head
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Table 3: F-Formation estimation evaluation via precison

(pre), recall (rec) and F1-scores (F1).

CP CB

Method pre rec F1 pre rec F1

IRPM [4] 0.67 0.65 0.66 0.68 0.50 0.57

IGD [32] 0.81 0.61 0.70 0.69 0.65 0.67

HVFF lin [12] 0.59 0.74 0.65 0.73 0.86 0.79

HVFF ent [28] 0.78 0.83 0.80 0.81 0.78 0.79

HVFF ms [29] 0.81 0.81 0.81 0.76 0.86 0.81

Game-Th. [33] 0.86 0.82 0.84 0.83 0.89 0.86

Our method 0.87 0.83 0.85 0.84 0.88 0.86

and body pose labels (Fig.4 (left)). A significant increase

in F-formation detection performance is observed when

pose cues are used along with positional information, and

maximum performance is achieved with position and body

pose cues, which confirms our intuition that body pose is

more important than head pose for detecting F-formations.

A comparison with state-of-the-art F-formation estimation

approaches for the two datasets is presented in Table 3.

These include frustrum-based (IRPM [4], IGD [32]), Hough

transforms-based (HVFF lin [12], HVFF ent [28], HVFF

ms [29]) and Game-theoretic [33] methods. We obtain F1-

scores of 0.85 and 0.86 on CP and CB, thereby achieving

best performance on CP and state-of-the-art results on CB.

It is worth noting that some previous works use orientation

annotations available with datasets and do not automatically

estimate the pose. Moreover, most previous approaches are

based on sampling techniques, therefore the performance

may vary significantly among different runs.

Finally, we examine the effect of the clustering parame-

ter γc on F-formation detection performance (Fig.4 (right)).

Low values of γc preclude clustering of target positions and

result in only singleton groups being discovered, thereby

implying low F1-scores. Conversely, large γc values result

in multiple F-formations to merge as all O-space centroids

are constrained to be close to each other in such cases (see

(Eqn.6)), which again adversely impacts detection perfor-

mance. Interestingly, for both datasets, γc values in the

range [0.2, 0.4] correspond to the best performance.

Qualitative Results. Fig.5 depicts some qualitative results

associated with our method on the CP dataset. Specifically

we compare the inferred body poses and F-formations with

ground truth annotations. Fig.5(top) shows one case where

body pose is mostly accurately estimated and one conver-

sational groups is correctly detected. Fig.5(center-bottom)

depicts two challenging situations where our method fails.

In Fig.5(center) one subject is close to a conversational

group with other three targets and his pose is wrongly es-

timated, leading to a incorrect F-formation detection. In

Fig.5(bottom), despite the body pose of all the targets is

correctly estimated, our algorithm is not able to detect two

conversational groups. This leaves room for further improv-

ing our method, e.g.by adopting a multiscale approach or

considering a time-varying parameter γc.

Figure 5: CP dataset: qualitative results. (left) Original

frames. (right) Estimates body pose and F-formations com-

pared with ground truth annotations. Ellipses indicate tar-

gets, arrows emerging from the ellipses indicate body pose.

Members of the same group are shown in the same color.

5. Conclusions

We present a novel approach to jointly learn head, body

pose of targets and F-formations from social scenes. Our

algorithm uniquely exploits the interaction-interactor rela-

tionship in terms of positional and pose cues to infer the

above from low-resolution and crowded scenes involving

extreme occlusions. Joint learning improves both pose

and F-formation estimation accuracy, and we outperform

the state-of-the-art on two social datasets upon incorporat-

ing information concerning occlusions and temporal consis-

tency. Future work involves extending the current method-

ology to multi-view settings, and incorporating multimodal

cues obtained from wearable sensors (e.g., infra-red) [1,2].
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