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Abstract

Filter-based feature selection has become crucial in

many classification settings, especially object recognition,

recently faced with feature learning strategies that origi-

nate thousands of cues. In this paper, we propose a feature

selection method exploiting the convergence properties of

power series of matrices, and introducing the concept of in-

finite feature selection (Inf-FS). Considering a selection of

features as a path among feature distributions and letting

these paths tend to an infinite number permits the investi-

gation of the importance (relevance and redundancy) of a

feature when injected into an arbitrary set of cues. Rank-

ing the importance individuates candidate features, which

turn out to be effective from a classification point of view,

as proved by a thoroughly experimental section. The Inf-FS

has been tested on thirteen diverse benchmarks, comparing

against filters, embedded methods, and wrappers; in all the

cases we achieve top performances, notably on the classifi-

cation tasks of PASCAL VOC 2007-2012.

1. Introduction

In many modern classification scenarios, the number of

adopted features is usually very large, and it is continuously

growing due to several causes, from technological reasons

(Internet 2.0, Big Data) to methodological advancements

(e.g., deep learning). Obviously, the management of high-

dimensional data requires a strong feature selection to indi-

viduate irrelevant and/or redundant features and avoid over-

fitting [17]. Feature selection techniques can be partitioned

into three classes [17]: wrappers, which use classifiers to

score a given subset of features; embedded methods, which

inject the selection process into the learning of the classifier;

filter methods, which analyze intrinsic properties of data,

ignoring the classifier. Most of these methods can perform

two operations, ranking and subset selection: in the former,

the importance of each individual feature is evaluated, usu-

ally by neglecting potential interactions among the elements

of the joint set [8]; in the latter, the final subset of features

to be selected is provided. In some cases, these two opera-

tions are performed sequentially (first the ranking, then the

selection) [20, 5, 15, 37, 25, 36]; in other cases, only the se-

lection is carried out [16]. Generally, the subset selection is

always supervised, while in the ranking case, methods can

be supervised or not.

Generally, feature selection is NP-hard [17]; if there

are n features in total, the goal is to select the optimal

subset of m≪n, to evaluate
(

n
m

)

combinations; therefore,

suboptimal search strategies are considered (see Sec.2).

With the filters, features are first considered individually,

ranked, and then a subset is extracted, some examples

are MutInf [37], Relief-F [25], and SW Relief-F [36].

Conversely, with wrapper and embedded methods, subsets

of features are sampled, evaluated, and finally kept as the

final output, for instance, FSV [5, 15], SVM-RFE [20],

Ens.SVM-RFE [36], and SW SVM-RFE [36].

In this paper, we propose a filter algorithm, which per-

forms the ranking step in an unsupervised manner, followed

by a simple cross-validation strategy for selecting the best

m features. The most appealing characteristic of the ap-

proach is that it evaluates the importance of a given feature

while considering all the possible subsets of features. More-

over, the score of each feature is influenced by all the other

features of the set; this technique resembles the one for

building path integrals [29], customized for the data clus-

tering field [39] or the study of centralities on graphs [4].

The idea is to map the feature selection problem to an affin-

ity graph, and then to consider a subset of features as a path

connecting them. The cost of the path is given by the com-

bination of pairwise relationships between the features, here

modeled as a function of both the variance and correlation

of the features, embedded in a cost matrix. By construc-

tion, the method allows to use convergence properties of the

power series of matrices, and evaluate in an elegant fashion

the relevance and redundancy of a feature with respect to all

the other ones taken together. For this reason, we dub our

approach infinite feature selection (Inf-FS).

The results are impressive: our approach is exten-

sively tested on 13 benchmarks of cancer classification and
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prediction on genetic data (Colon [32], Lymphoma [9],

Leukemia [9], Lung181 [13], DLBCL [31]), handwritten

recognition (USPS [1, 6], GINA [2], Gisette [18]), generic

feature selection (MADELON [18]), and more extensively,

object recognition (Caltech 101-256 [24], PASCAL VOC

2007-2012 [10, 11]). We compare the proposed method on

these datasets, against eight comparative approaches, under

different conditions (number of features selected and num-

ber of training samples considered), overcoming all of them

in terms of stability and classification accuracy, and setting

the state of the art on 8 benchmarks, notably all the ob-

ject recognition datasets. Additionally, Inf-FS also allows

the investigation of the importance of different kinds of fea-

tures, and in this study, the supremacy of deep-layer ap-

proaches for feature learning has been shown on the object

recognition tasks.

The rest of the paper is organized as follows: Sec. 2 illus-

trates some related literature, mostly focusing on the com-

parative approaches we consider in this study. Sec. 3 details

the Inf-FS approach, also giving a formal justification of its

convergence properties. Extensive experiments are reported

in Sec. 4, and, finally, in Sec. 5, conclusions are given, and

future perspectives are envisaged.

2. Related Literature

Among the most used feature selection strategies, Relief-

F [25] is an iterative, randomized, and supervised approach

that estimates the quality of the features according to how

well their values differentiate data samples that are near

to each other; it does not discriminate among redundant

features, and performance decreases with few data. Simi-

lar problems affect SVM-RFE [20], which is an embedded

method that selects features in a sequential, backward elimi-

nation manner, ranking high a feature if it strongly separates

the samples by means of a linear SVM.

Both these methods have been improved by a sample

weighting policy, originating the SW SVM-RFE and SW

Relief-F [36], which in practice give more weight to those

samples that are close to the separating hyperplane. A bag-

ging extension of SVM-RFE, Ensemble SVM-RFE [36], ag-

gregates the results of several SVM-RFE selectors applied

to randomized training data and has been empirically shown

to be stronger than its original version. Other widely used

filters are based on mutual information, dubbed MutInf here

[37], which considers as a selection criterion the mutual in-

formation between the distribution of the values of a given

feature and the membership to a particular class; the Fisher

filter [16] computes a score for a feature as the ratio of in-

terclass separation and intraclass variance. Even in the last

two cases, features are evaluated independently, and the fi-

nal feature selection occurs by aggregating the m top ranked

ones.

Finally, for the wrapper method, we cite the feature se-

lection via concave minimization (FSV) [5], where the fea-

ture selection process is injected into the training of an SVM

by a linear programming technique.

The novelty of Inf-FS in terms of the state of the art

is that it assigns a score of “importance” to each feature

by taking into account all the possible feature subsets as

paths on a graph, bypassing the combinatorial problem

in a methodologically sound fashion. In this sense, the

work resembles the extraction of centrality measures on a

graph [4, 41], where the goal is to assign a score to each

node of a graph, indicating the number of times that node

is visited on whatever path of a given length. In the Inf-FS

formulation, each feature is a node in the graph, a path is a

selection of features, and the higher the centrality score, the

most important (or most different) the feature. As a notable

technical difference, in our case graphs are weighted, while

in [4, 41] they are not.

3. Inf-FS method

Given a set of feature distributions F = {f (1), ..., f (n)}
and x ∈ R representing a sample of the generic distribu-

tion f , we build an indirected fully-connected graph G =
(V,E); V is the set of vertices corresponding, one by one,

to each feature distribution, while E codifies (weighted)

edges, which model pairwise relations among feature dis-

tributions. Representing G as an adjacency matrix A, we

can specify the nature of the weighted edges: each element

aij of A, 1 ≤ i, j ≤ n, represents a pairwise energy term.

Energies have been represented as a weighted linear com-

bination of two simple pairwise measures linking f (i) and

f (j), defined as:

aij = ασij + (1− α)cij , (1)

where α is a loading coefficient ∈ [0, 1], σij =
max

(

σ(i), σ(j)
)

, with σ(i) being the standard deviation

over the samples {x} ∈ f (i), and the second term is

cij = 1 −
∣

∣Spearman(f (i), f (j))
∣

∣, with Spearman indi-

cating Spearman’s rank correlation coefficient.

In practice, aij connects two feature distributions, ac-

counting for the maximal feature dispersion and their corre-

lation.

Note that the standard deviation is normalized by the

maximum standard deviation over the set F and that

|Spearman(·, ·)| ∈ [0, 1], so the two measures are com-

parable in terms of magnitude. The idea is that, suppose

α = 0.5, a high aij indicates at least one feature among

f (i) and f (j) could be discriminant since it covers a large

feature space, and f (i) and f (j) are not redundant [12].

After this pairwise analysis of features, we want to indi-

viduate the energy associated to sets larger than two feature

distributions.

Let γ = {v0 = i, v1, ..., vl−1, vl = j} denote a path

of length l between vertices i and j, that is, features f (i)
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and f (j), through other features v1, ..., vl−1. For simplicity,

suppose that the length l of the path is lower than the total

number of features n, and the path has no cycles, so no

features are visited more than once. In this setting, a path is

simply a subset of the available features that come into play.

We can then define the energy of γ as

Eγ =

l−1
∏

k=0

avk,vk+1
, (2)

where Eγ essentially accounts for the pairwise energies of

all the features’ pairs that compose the path, and it can be

assumed as the joint energy of the subset of features.

Now we relax the assumption of the presence of cycles,

and we define the set P
l
i,j as containing all the paths of

length l between i and j; to account for the energy of all

the paths of length l, we sum them as follows:

Rl(i, j) =
∑

γ∈P
l
i,j

Eγ , (3)

which, following standard matrix algebra, gives:

Rl(i, j) = Al(i, j),

that is, the power iteration of A.

Much attention should be paid to Rl, which now contains

cycles; in terms of feature selection, it is like if a single fea-

ture is considered more than once, possibly associated to it-

self (a self-cycle), or if two or more features are repeatedly

used (e.g., the path < 1, 2, 3, 1, 2, 3, 4 > connects feature

1 and 4 by a 3-variable cycle). Anyway, by extending the

path length to infinity, the probability of being part of a cy-

cle is uniform for all the features and is actually taken into

account by the construction of Rl, so a sort of normalization

comes into play.

Given this, we can evaluate the single feature energy

score for the feature f (i) at a given path length l as

sl(i) =
∑

j∈V

Rl(i, j) =
∑

j∈V

Al(i, j), (4)

In practice, Eq.4 models the role of the feature f (i) when

considered in whatever selection of n features; the higher

sl(i) is, the more energy is related to the i-th feature. There-

fore, a first idea of feature selection strategy could be that of

ordering the features decreasingly by sl, taking the first m

for obtaining an effective, nonredundant set. Unfortunately,

the computation of sl is expensive (O((l − 1) · n3)): as a

matter of facts, l is of the same order of n, so the compu-

tation turns out to be O(n4) and becomes impractical for

large sets of features to select (> 10K); Inf-FS addresses

this issue 1) by expanding the path length to infinity l → ∞
and 2) using algebra notions to simplify the calculations in

the infinite case.

3.1. Infinite sets of features

The passage to infinity implies that we have to calculate

a new type of single feature score, that is,

s(i) =

∞
∑

l=1

sl(i) =

∞
∑

l=1

(

∑

j∈V

Rl(i, j)
)

. (5)

Let S be the geometric series of matrix A:

S =

∞
∑

l=1

Al, (6)

It is worth noting that S can be used to obtain s(i) as

s(i) =

∞
∑

l=1

sl(i) = [(
∑

∞
l=1A

l)e]i = [Se]i, (7)

where e indicates a 1D array of ones. As it is easy to

note, summing infinite Al terms brings to divergence; in

such a case, regularization is needed, in the form of generat-

ing functions [14], usually employed to assign a consistent

value for the sum of a possibly divergent series. There are

different forms of generating functions [3]. We define the

generating function for the l-path as

š(i) =

∞
∑

l=1

rlsl(i) =

∞
∑

l=1

∑

j∈V

rlRl(i, j), (8)

where r is a real-valued regularization factor, and rl can be

interpreted as the weight for paths of length l. Thus, for

appropriate choices of r, we can ensure that the infinite sum

converges.

From an algebraic point of view, š(i) can be efficiently

computed by using the convergence property of the geomet-

ric power series of a matrix [23]:

Š = (I − rA)−1 − I, (9)

Matrix Š encodes all the information about the energy of

our set of features, the goodness of this measure is strongly

related to the choice of parameters that define the underly-

ing adjacency matrix A.

We can obtain final energy scores for each feature simply

by marginalizing this quantity:

š(i) = [Še]i, (10)

and by ranking in decreasing order the š(i) energy scores,

we obtain a rank for the feature to be selected. It is worth

noting that so far, no label information has been employed.

The ranking can be used to determine the number m of fea-

tures to select, by adopting whatever classifier and feeding it

with a subset of the ranked features, starting from the most

energetic one downwards, and keeping the m that ensures
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the highest classification score. This last operation resem-

bles the works on graph centrality [4] (see for an example

[41]), whose goal was to rank nodes in social networks that

would be visited the most, along whatever path in the struc-

ture of the network. In our case, the top entries in the rank

are those features more different w.r.t all the other ones, irre-

spective on the subsets of cues they lie. Procedure 1 reports

the sketch of our algorithm.

Procedure 1 Infinite Feature Selection

Input: F = {f (1), ..., f (n)} , α

Output: š energy scores, for each feature

Building the graph

for i = 1 : n do

for j = 1 : n do

σij = max(std(f (i)), std(f (j)))
cij = 1− |Spearman(f (i), f (j))|
A(i, j) = ασij + (1− α)cij

end for

end for

Letting paths tend to infinite

r = 0.9
ρ(A)

Š = (I − rA)−1 − I

š = Š e

return š

3.2. Convergence analysis

In this section, we want to justify the correctness of the

method in terms of convergence. The value of r (used in

the generating function) can be determined by relying on

linear algebra [23]. Consider {λ0, ..., λn−1} eigenvalues of

the matrix A, drawing from linear algebra, we can define

the spectral radius ρ(A) as:

ρ(A) = max
λi∈{λ0,...,λn−1}

(

|λi|
)

.

For the theory of convergence of the geometric series of

matrices, we also have::

lim
l→∞

Al = 0 ⇐⇒ ρ(A) < 1 ⇐⇒

∞
∑

l=1

Al = (I−A)−1−I.

Furthermore, Gelfand‘s formula [28] states that for every

matrix norm, we have:

ρ(A) = lim
k−→∞

||Ak||
1
k .

This formula leads directly to an upper bound for the spec-

tral radius of the product of two matrices that commutes,

given by the product of the individual spectral radii of the

two matrices, that is, for each pair of matrices A and B, we

have:

ρ(AB) ≤ ρ(A)ρ(B).

Starting from the definition of š(i) and from the following

trivial consideration:

rlAl =
(

rlI
)

Al = [(rI)A]
l
,

we can use Gelfand‘s formula on the matrices rI and A and

thus obtain:

ρ
(

(rI)A
)

≤ ρ(rI)ρ(A) = rρ(A). (11)

For the property of the spectral radius: liml→∞ (rA)
l
=

0 ⇐⇒ ρ(rA) < 1. Thus, we can choose r, such as 0 < r <
1

ρ(A)
; in this way we have:

0 < ρ(rA) = ρ
(

(rI)A
)

≤ ρ(rI)ρ(A)

= rρ(A) <
1

ρ(A)
ρ(A) = 1 (12)

that implies ρ(rA) < 1, and so:

Š =
∞
∑

l=1

(rA)l = (I − rA)−1 − I

This choice of r allows us to have convergence in the sum

that defines š(i). Particularly, in the experiments, we use

r =
0.9

ρ(A)
, leaving it fixed for all the experiments. For the

computational complexity of Inf-FS, see the next section.

4. Experiments

The experimental section has three main goals. The

first is to explore the strengths and weaknesses of Inf-FS,

also considering eight comparative approaches: four filters,

three embedded methods, and one wrapper (see Table 2).

The Inf-FS overcomes all of them, although it ignores class

membership information, being completely unsupervised.

The second goal is to show how Inf-FS, when associated

to simple classification models, allows the definition of

top performances on benchmarks of cancer classification

and prediction on genetic data (Colon [32], Lymphoma [9],

Leukemia [9], Lung181 [13], DLBCL [31]), handwritten

recognition (USPS [1, 6], GINA [2], Gisette [18]), generic

feature selection (MADELON [18]) and, more extensively,

object recognition (Caltech 101-256 [24], PASCAL VOC

2007-2012 [10, 11]). Regarding the object recognition

tasks, the third goal is to present a study that indicates which

of the features commonly used in the recognition literature

(bags of words and convolutional features) are the most ef-

fective, essentially confirming the supremacy of the deep

learning approaches.

For setting the best parameters (the mixing α, the C of

the linear SVM, and the number of features to consider on

the object recognition datasets), we use only the training set
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Figure 1. Ranking tendency of Inf-FS in the linear and periodic

cases. The curve represents the density profile of a given feature

(only the first four original features are reported) of being in a

particular ranking position.

(or the validation sets in the PASCAL series), implementing

a 5-fold cross validation. For a fair comparative evaluation,

we adopt the same protocols used in the selected compar-

ative approaches (partition of the dataset, cross-validation,

and other settings). Other specific validation protocols are

explained in the following subsections.

4.1. Synthetic experiment

In this experiment, we use synthetic data to gain insights

into when Inf-FS can correctly rank the representative fea-

tures, resembling the analysis done in [40]. The Inf-FS al-

lows dealing with the set of initial features as if they con-

stitute a weighted graph, with the weights modeling a sim-

ilarity relation between features. Therefore, the design of

the similarity relation suggests the scenarios where the ap-

proach has to be preferred.

In our case, we use Spearman rank correlation plus a

variance score (see Eq. 1). Spearman individuates when

features are connected with linear or nonlinear monotonic

correlations, and in such cases, the approach is expected to

work well. In case the features are connected in a more

complicated manner (that is, via periodic relations), the ap-

proach does not work nicely. To show this, we first extract

from the IRIS dataset 150 samples and 4 (independent) fea-

tures. In a first case, 16 features are artificially generated as

the linear convex combination of the 4 original ones. In the

second case, the 16 features are generated by using a peri-

odic function, that is, the linear convex combination of the

sin of the features.

On these data, Inf-FS is expected to rank the four origi-

nal features first, followed by the other ones. For the sake

of generalization, we repeat the experiment 20 times, each

one with diverse mixing coefficients. Results are shown in

Fig.1. As expected, the Inf-FS works definitely better in the

first case, as shown in Fig.1A, keeping the first 4 features in

the top position, while in the second (see Fig.1B), it starts

to produce very different orderings.

4.2. Datasets

Datasets are chosen for letting Inf-FS deal with diverse

feature selection scenarios, as shown on Table 1. In the de-

tails, we consider the problems of dealing with few training

samples and many features (few train in the table), unbal-

anced classes (unbalanced), or classes that severely overlap

(overlap), or whose samples are noisy (noise) due to: a)

complex scenes where the object to be classified is located

(as in the VOC series) or b) many outliers (as in the genetic

datasets, where samples are often contaminated, that is, ar-

tifacts are injected into the data during the creation of the

samples). Lastly we consider the shift problem, where the

samples used for the test are not congruent (coming from

the same experimental conditions) with the training data.

Table 1 also reports the best classification performances

so far (accuracy or average precision depending on the

task), referring to the studies that produced them.

4.3. Comparative approaches

Table 2 lists the methods compared, whose details can

be found in Sec. 2. Here we just note their type, that is,

f = filters, w = wrappers, e = embedded methods, and

their class, that is, s = supervised or u = unsupervised

(using or not using the labels associated with the training

samples in the ranking operation). Additionally, we report

their computational complexity (if it is documented in the

literature); finally, we report their timing when applied

to a randomly generated dataset consisting of 20 classes,

10k samples, and 1k features (features follow a uniform

distribution (range [0,1000])), on an Intel i7-4770 CPU

3.4GHz 64-bit, 16.0 GB of RAM, using MATLAB ver.

2015a. Note that only four of them have publicly available

codes (that is, Relief-F [25] , FSV [5, 15], Fisher [16],

and MutInf [37]), while in the other cases, we refer to the

results reported in the literature.

The complexity of our approach is O(n2.37 + n2

2 T ), the

calculation of the matrix inversion for an n × n matrix re-

quires O(n2.37) [35], and the second term O(n
2

2 T ) comes

from the estimate of ai,j energies. This complexity allows

our approach to obtain the timing that is the second best

among the ones whose codes are publicly available.

4.4. Exp. 1: Varying the cardinality of the selected
features

In the first experiment, we consider the protocol of [36],

which starts with a pool of features characterizing the train-

ing data. These features are selected, generating differ-

ent subsets of different cardinalities. The training data de-

scribed by the selected features is then used to learn a linear

SVM, subsequently employed to classify the test samples.

The dataset used in [36] and considered here is the

Colon. The experiment serves to understand how well im-
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Name # samples # classes # feat. few train unbal. (+/-) overlap noise shift SoA

USPS [1, 6] 1.5K 2 241 X 97.4% [27]

GINA [2] 3153 2 970 X 99.7% [2]

Gisette [19] 13.5K 2 5K X 99.9% [19]

Colon [32] 62 2 2K X (40/22) X 89.6% [26]

Lymphoma [9] 45 2 4026 X 93.8%* [34]

Leukemia [9] 72 2 7129 X (47/25) X X 97.2%* [36]

Lung181 [13] 181 2 12533 X (31/150) X X 98.8%* [36]

DLBCL [31] 77 2 7129 X (19/58) X 93.3%* [30]

MADELON [19] 4.4K 2 500 X 98.0% [19]

Caltech-101 [24] 8K 102 n.s. X 91.4%* [22]

Caltech-256 [24] 30K 257 n.s. X X X 77.6%* [7]

VOC 2007 [10] 10K 20 n.s. X X 82.4%* [7]

VOC 2012 [11] 20K 20 n.s. X X 83.2%* [7]

Table 1. Panorama of the used datasets, together with the challenges for the feature selection scenario, and the state of the art so far. The

abbreviation n.s. stands for not specified (for example, in the object recognition datasets, the features are not given in advance). We indicate

with an asterisk each instance where our approach, together with a linear SVM, defines the new top performance.

Acronym TypeCl. Compl. Time

(sec.)

SVM-RFE [20] e s O(T 2nlog2n) N/A

Ens.SVM-RFE [36] e s O(KT 2nlog2n) N/A

SW SVM-RFE [36] e s O(T 2nlog2n) N/A

Relief-F [25] f s O(iTnC) 656.9

SW Relief-F [36] f s O(iTnC) N/A

FSV [5, 15] w s N/A 1414.6

Fisher [16] f s ∼ O(iCT ) 0.12

MutInf [37] f s ∼ O(n2T 2) 8.61

Ours f u O(n2.37(1 + T )) 4.05

Table 2. List of the feature selection approaches considered in the

experiments, specified according to their Type, class (Cl.), com-

plexity (Compl.), and Time spent on a standard feature selection

task (see Sec. 4.3). As for the complexity, T is the number of

samples, n is the number of initial features, K is a multiplicative

constant, i is the number of iterations in the case of iterative algo-

rithms, and C is the number of classes. The complexity of FSV

cannot be specified since it is a wrapper (it depends on the chosen

classifier).

portant features are ranked high by a feature selection algo-

rithm. Table 3 presents the results in terms of AUC.

The Inf-FS outperforms all the competitors at all the fea-

tures’ cardinalities, being very close to the absolute state of

the art. On all the other datasets, Table 4 lists the scores

obtained by averaging the results of the different cardinali-

ties of the features considered. Even in this case, the results

show Inf-FS as overcoming the other competitors.

4.5. Exp. 2: CNN on object recognition datasets

This section starts with a set of tests on the object recog-

nition datasets, that is, Caltech 101-256 and PASCAL VOC

2007-2012. The Caltech benchmarks have been taken into

account due to their high number of object classes.

The second experiment considers as features the cues

extracted with convolutional neural network (CNN) [38].

Colon

# Features

Sel. Method 10 50 100 150 200

SVM-RFE 76.4 77.5 79.2 79.4 80.1

Ens. SVM-RFE 80.3 79.4 78.6 78.6 79.4

SW SVM-RFE 79.5 81.2 78.4 76.2 76.2

ReliefF 78.8 80.1 78.5 77.5 76.1

SW ReliefF 78.3 79.6 78.1 76.4 75.4

Fisher 84.2 86.2 87.1 86.0 86.9

MutInf 80.1 83.0 82.9 83.3 83.4

FSV 81.3 83.2 84.0 83.9 84.7

Ours 86.4 89 89.4 89.3 89

Table 3. Average accuracy results while varying the cardinality of

the selected features.

Varying the # of the selected features - other datasets

Dataset FSV Fisher MutInf ReliefF Ours

GINA 84.2 87.1 77.7 87.7 89.3

USPS 91.2 88.6 92.1 92.0 94.1

Lymphoma 92.6 97.7 88.7 97.5 97.9*

Leukemia 98.2 99.7 91.9 95.0 100*

Lung181 99.7 99.7 97.0 96.8 99.8*

DLBCL 92.5 97.7 88.7 97.5 98.0*

MADELON 66.7 71.3 59.9 66.6 74.6

GISETTE 61.6 73.9 51.7 62.9 87.3

Table 4. Varying the cardinality of the selected features. AUC (%)

on different datasets of SVM classification, averaging the perfor-

mance obtained with the first 10, 50, 100, 150, and 200 features

ordered by our Inf-FS algorithm. Each asterisk indicates a new

top score (being an average of scores, the genuine top score for

Lymphoma is 98% - 100 features and for DLBCL is 98.3% - 150

features).

The CNN features have been pre-trained on ILSVRC (we

adopt the MatConvNet distribution [33]), using the 4,096-

dimension activations of the penultimate layer as image fea-

tures, L2-normalized afterwards. We do not perform fine
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tuning, so the features are fixed, given a dataset. This will

help future comparisons.

The classification results on the Caltech series have been

produced by considering three random splits of training and

testing data, averaging the results. For the PASCAL series,

mean average precision (mAP) scores have been reported,

while in the Caltech case, we show the average accuracies.

Table 5 presents the results, where the percentages of the se-

lected features are enclosed in parentheses. As for the com-

parative approaches, we evaluate only those whose codes

are publicly available.

Object recognition by CNN features

Methods Datasets

VOC’07 VOC’12 Cal.101 Cal.-256

Relief-F 80.4 82.7 90.8 79.8

(81%) (96%) (81%) (81%)

Fisher 80.7 82.9 90.9 79.9

(81%) (87%) (81%) (81%)

MutInf 80.6 82.8 90.9 79.9

(88%) (92%) (81%) (81%)

FSV 80.8 81.6 89.7 79.6

(86%) (89%) (81%) (81%)

Ours 83.5 84.0 91.8 81.5

(88%) (89%) (81%) (81%)

Table 5. Feature selection on the object recognition datasets. The

numbers in parentheses are the percentages of features kept by the

approach after the cross-validation phase.

As visible, the combination of our Inf-FS method and a

simple linear SVM classifier gives the state of the art in all

the datasets (see Table 1 for the current top scores). No-

tably, the top scores so far have been implemented by CNN

features plus SVM, which can be considered the framework

we adopt without the feature selection. As for the percent-

age of the selected features, Inf-FS is somewhat in line with

the other comparative approaches.

4.6. Exp. 3: Varying the number of input samples

The availability of training samples for the feature selec-

tion operation is an important aspect to consider: actually,

in some cases, it is difficult to deal with consistent quan-

tities of data, especially in biomedical scenarios. For this

sake, we consider the PASCAL VOC 2007 dataset (with

plenty of data), and we evaluate our approach (and the com-

parative ones of the previous section) while diminishing the

cardinality of the training + validation dataset, uniformly re-

moving images from all the 20 classes, going from 5K sam-

ples to 600 circa. In all these cases, we keep 1K features for

the final classification. Other than calculating the accuracy

measures, we investigate how stables are the partial ranked

lists produced, that is, how often the same subsets of fea-

tures are selected with the same ordering. For this reason,

we employ the stability index based on Jensen-Shannon Di-

vergence DJS , proposed by [21], with a [0,1] range, where

0 indicates completely random rankings and 1 means stable

rankings. Interestingly, the index accounts for both the abil-

ity of having subsets of features a) with the same elements

and b) ordered in the same way, where the differences at the

top of the list are weighted more than those at the bottom.

Table 6 presents interesting results since Inf-FS is the more

Stability analysis - PASCAL VOC 2007

Method #Images mAP DJS

Relief-F

5,011 80.4% 1.0

2,505 80.3% 0.81

1,252 78.2% 0.64

626 74.4% 0.44

Fisher

5,011 80.7% 1.0

2,505 80.3% 0.95

1,252 78.2% 0.84

626 74.6% 0.69

MutInf

5,011 80.6% 1.0

2,505 80.3% 0.88

1,252 78.2% 0.64

626 74.5% 0.34

FSV

5,011 80.8% 1.0

2,505 80.1% 0.90

1,252 78.1% 0.87

626 74.4% 0.86

Ours

5,011 83.5% 1.0

2,505 81.9% 0.99

1,252 79.8% 0.97

626 76.5% 0.94

Table 6. Stability analysis: mAP scores by reducing the number of

training images, and the DJS index taking into account the first

1K ranked features.

stable even with 626 images, but at the same time, espe-

cially going from 5,011 to 2,505 images, it lowers more the

final accuracy. This is probably because the pruned-away

images could be those that the classifier uses to discrimi-

nate among the classes.

4.7. Exp. 4: Evaluating the mixing α

The coefficient α of Eq. 1 drives the algorithm in weight-

ing the maximum variance of the features and their corre-

lation. As previously stated, in all the experiments, we se-

lect α by cross-validation on the training set. In this sec-

tion, we show how different values of α are generally ef-

fective for the classification. For this purpose, we examine

all the datasets analyzed so far, fixing the percentage of the

selected features to 80% of the starting set, and we keep the

C value of the SVM that gave the best performance. We

then vary the value of α in the interval [0,1] at a 0.1 step,
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Figure 2. Evaluating the mixing α: normalized average score and

related error bar (see Sec. 4.7)

keeping the classification accuracies/mAP obtained therein;

given a dataset, all the classification scores with the differ-

ent α values are normalized by the maximum performance.

These normalized scores of all the experiments are then av-

eraged, so having a normalized averaged score close to 1

means that with that α value, all the methods performed at

their best. Fig. 2 illustrates the resulting curve, showing

interesting and desirable characteristics. At α = 0 (only

correlation is accounted), the performance is low, rapidly

increasing until α = 0.2 where a peak is reached. After

that, the curve is decreasing, even if close to 1, there are

some oscillations. At α = 1 (only maximum variance is

considered), the approach works at 70% of its capabilities,

on average. Analyzing the error bars (showing the 2.5 stan-

dard deviation intervals) is very informative, as it tells that

the value of α = 0.2 represents the best mix of the two

feature characteristics.

4.8. Exp. 5: Augmenting the features

For our final study, we extend the kinds of features

used for the object recognition datasets, including a 1,024-

dimension BoW. The idea is to see if augmenting the de-

scriptions of the images will improve the classification per-

formance; at the same time, analyzing the kept features can

give insights into the relevance of the features that come

into play. Specifically, four word dictionaries of 256 entries

have been calculated on a subset of 10% of the datasets

VOC07/12 respectively, extracting dense PHOW features

(SIFT have been extracted on 7-pixel squared cells with a

5-pixel step). Subsequently, 4-cell spatial histograms have

been computed, ending with a 1,024-dimension representa-

tion for each image. Each histogram bin is thus a feature.

BoWs have been concatenated to CNN features, resulting

in a 5,120 feature set. As for the protocol, we have fixed

the number of features to be selected at 85%, representing a

valid compromise among the percentages chosen by the dif-

ferent approaches on the sole CNN (see Table 5). Table 7

shows the results.

CNN + BoW

Datasets

VOC’07 VOC’12

Methods (mAP) (mAP)

Relief-F 81.6 83.5

([76%,24%]) ([75%,25%] )

Fisher 81.9 83.9

([93%,7%]) ([95%,5%] )

MutInf 80.7 83.8

([97%,3%]) ([92%,8%] )

FSV 81.1 83.9

([98%,2%]) ([98%,2%] )

Ours 83.6* 84.1*

([91%,9%] ) ([93%,7%] )

Table 7. Feature selection on augmented feature descriptions. See

the text.

It is evident that adding a further kind of cue is gener-

ally useful. With inf-FS the increase is minimal, probably

because we are close to an intrinsic upper bound, given the

features and the classifier. The numbers enclosed in square

brackets (Table 7) show the percentages of the kept features,

with CNN in the first position and BoW in the second po-

sition. In all the cases (except the relief-F method), CNN

tends to be preferred to BoW, witnessing its expressivity.

Moreover, the ordering of the features (not shown here) in-

dicates that in almost all the cases, most of the CNN features

(95% circa) are ranked ahead of the BoW ones.

5. Conclusions

In this paper we present the idea of considering feature

selection as a regularization problem, where features are

nodes in a graph, and a selection is a path through them. The

application of our approach to all the 13 datasets against 8

competitors, at most, (employing simple linear SVM) con-

tributes to top performances, notably setting the absolute

state of the art on 8 benchmarks; The Inf-FS is also ro-

bust with a few sets of training data, performs effectively

in ranking high the most relevant features, and has a very

competitive complexity. This study also points to many fu-

ture directions; focusing on the investigation of different

relations among the features: for example, nonlinearities

between the features can be encoded by theoretical infor-

mation measures, instead of simple correlations. Finally,

for the sake of repeatability, the source code will be posted

online to provide the material needed to replicate our exper-

iments.
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