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Abstract

We analyze functional manipulations of handheld ob-

jects, formalizing the problem as one of fine-grained grasp

classification. To do so, we make use of a recently developed

fine-grained taxonomy of human-object grasps. We intro-

duce a large dataset of 12000 RGB-D images covering 71

everyday grasps in natural interactions. Our dataset is dif-

ferent from past work (typically addressed from a robotics

perspective) in terms of its scale, diversity, and combination

of RGB and depth data. From a computer-vision perspec-

tive, our dataset allows for exploration of contact and force

prediction (crucial concepts in functional grasp analysis)

from perceptual cues. We present extensive experimental

results with state-of-the-art baselines, illustrating the role

of segmentation, object context, and 3D-understanding in

functional grasp analysis. We demonstrate a near 2X im-

provement over prior work and a naive deep baseline, while

pointing out important directions for improvement.

1. Introduction

Humans can interact with objects in complex ways, in-

cluding grasping, pushing, or bending them. In this work,

we address the perceptual problem of parsing such inter-

actions, with a focus on handheld, manipulatable objects.

Much previous work on hand analysis tends to focus on

kinematic pose estimation [17, 12]. Interestingly, the same

kinematic pose can be used for dramatically different func-

tional manipulations (Fig. 1), where differences are mani-

fested in terms of distinct contact points and force vectors.

Thus, contact points and forces play a crucial role when

parsing such interactions from a functional perspective.

Problem setup: Importantly, we wish to analyze

human-object interactions in situ. To do so, we make use of

wearable depth cameras to ensure that recordings are mo-

bile (allowing one to capture diverse scenes [33, 7]) and

passive (avoiding the need for specialized pressure sen-

sors/gloves [6, 24]). We make no explicit assumption about

the environment, such as known geometry [32]. However,

we do make explicit use of depth cues, motivated by the fact

Figure 1. Same kinematic pose, but different functions: We

show 3 images of near-identical kinematic hand pose, but very

different functional manipulations, including a wide-object grasp

(a), a precision grasp (b), and a finger extension (c). Contact re-

gions (green) and force vectors (red), visualized below each image,

appear to define such manipulations. This work (1) introduces a

large-scale dataset for predicting pose+contacts+forces from im-

ages and (2) proposes an initial method based on fine-grained

grasp classification.

that humans make use of depth for near-field analysis [15].

Our problem formulation is thus: given a first-person RGB-

D image of a hand-object interaction, predict the 3D kine-

matic hand pose, contact points, and force vectors.

Motivation: We see several motivating scenarios and

applications. Our long-term goal is to produce a truly

functional description of a scene that is useful for an au-

tonomous robot. When faced with a novel object, it will be

useful to know how if it can be pushed or grasped, and what

forces and contacts are necessary to do so [40]. A practi-

cal application of our work is imitation learning or learning

by demonstration for robotics [3, 16], where a robot can

be taught a task by observing humans performing it. Fi-

nally, our problem formulation has direct implications for

assistive technology. Clinicians watch and evaluate patients

performing everyday hand-object interactions for diagnosis

and evaluation [2]. A patient-wearable camera that enabled

automated parsing of object manipulations would allow for

long-term monitoring.

Why is this hard? Estimating forces from visual signals

typically requires knowledge of object mass and velocity,

which is difficult to reliably infer from a single image or
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even a video sequence. Isometric forces are even more dif-

ficult to estimate because no motion may be observed. Fi-

nally, even traditional tasks such as kinematic hand pose es-

timation are now difficult because manipulated objects tend

to generate significant occlusions. Indeed, much previous

work on kinematic hand analysis considers isolated hands

in free-space [43], which is a considerably easier problem.

Approach: We address the continuous problem of

pose+contact+force prediction as a discrete fine-grained

classification task, making use of a recent 73-class tax-

onomy of fine-grained hand-object interactions developed

from the robotics community [28]. Our approach is inspired

by prototype-based approaches for continuous shape esti-

mation that treat the problem as a discrete categorical pre-

diction tasks, such as shapemes [34] or poselets [5]. How-

ever, rather than learning prototypes, we make use of expert

domain knowledge to quantize the space of manipulations,

which allows us to treat the problem as one of (fine-grained)

classification. A vital property of our classification engine

is that it is data-driven rather than model-based. We put

forth considerable effort toward assembling a large collec-

tion of diverse images that span the taxonomy of classes.

We experiment with both parametric and exemplar-based

classification architectures trained on our collection.

Our contributions: Our primary contribution is (1)

a new “in-the-wild”, large-scale dataset of fine-grained

grasps, annotated with contact points and forces. Impor-

tantly, the data is RGB-D and collected from a wearable per-

spective. (2) We develop a pipeline for fine-grained grasp

classification exploiting depth and RGB data, training on

combinations of both real and synthetic training data and

making use of state-of-the-art deep features. Overall, our

results indicate that grasp classification is challenging, with

accuracy approaching 20% for a 71-way classification prob-

lem. (3) We describe a simple post-processing exemplar

framework that predicts contacts and forces associated with

hand manipulations, providing an initial proof-of-concept

system that addresses this rather novel visual prediction

task.

2. Related Work

Hand pose with RGB(D): Hand pose estimation is a

well-studied task, using both RGB and RGB-D sensors as

input. Much work formulates the task as articulated track-

ing over time [25, 23, 22, 4, 31, 42, 44], but we focus on

single-image hand pose estimation during object manipu-

lations. Relatively few papers deal with object manipu-

lations, with the important exceptions of [39, 38, 27, 26].

Most similar to us is [32], who estimate contact forces dur-

ing hand-object interactions, but do so in a “in-the-lab” sce-

nario where objects of known geometry are used. We focus

on single-frame “in-the-wild” footage where the observer is

instrumented, but the environment (and its constituent ob-

jects) are not.

Egocentric hand analysis: Spurred by the availability

of cheap wearable sensors, there has been a considerable

amount of recent work on object manipulation and grasp

analysis from egocentric viewpoints [11, 8, 18, 7, 13]. The

detection and pose estimation of human hands from wear-

able cameras was explored in [36]. [8] propose a fully auto-

matic vision-based approach for grasp analysis from a wear-

able RGB camera, while [18] explores unsupervised clus-

tering techniques for automatically discovering common

modes of human hand use. Our work is very much inspired

by such lines of thought, but we take a data-driven perspec-

tive, focusing on large-scale dataset collection guided by a

functional taxonomy.

Grasp taxonomies: Numerous taxonomies of grasps

have been proposed, predominantly from the robotics com-

munity. Early work by Cutkosky [9] introduced 16 grasps,

which were later extended to 33 by Felix et al [14], fol-

lowing a definition of a grasp as a “static hand postures

with which an object can be held with one hand”. Though

this excluded two-handed, dynamic, and gravity-dependent

grasps, this taxonomy has been widely used [37, 8, 7]. Our

work is based on a recent fine-grained taxonomy proposed

in [28], that significantly broadens the scope of manipu-

lations to include non-prehensile object interactions (that

are technically not grasps, such as pushing or pressing) as

well as other gravity-dependent interactions (such as lift-

ing). The final taxonomy includes 73 grasps that are an-

notated with various qualities (including hand shape, force

type, direction of movement and effort).

Datasets. Because grasp understanding is usually ad-

dressed from a robotics perspective, the resulting meth-

ods and datasets developed for the problem tend to be tai-

lored for that domain. For example, robotics platforms of-

ten require an unavoidable real-time constraint, limiting the

choice of algorithms, which also (perhaps implicitly) lim-

ited the difficulty of the data in terms of diversity (few sub-

jects, few objects, few scenes). We overview the existing

grasp datasets in Table 1 and tailor our new dataset to “fill

the gap” in terms of overall scale, diversity, and annotation

detail.

Dataset View Cam. Sub. Scn Frms Label Tax.

YALE [7] Ego RGB 4 4 9100 Gr. 33

UTG [8] Ego RGB 4 1 ? Gr. 17

GTEA [13] Ego RGB 4 4 00 Act. 7

UCI-EGO [36] Ego RGB-D 2 4 400 Pose ?

Ours Ego RGB-D 8 > 5 12, 000 Gr. 71

Table 1. Object manipulation datasets. [7] captured 27.7 hours

but labelled only 9100 frames with grasp annotations. While our

dataset is balanced and contains the same amount of data for each

grasp, [7] is imbalanced in that common grasps appear much more

often than rare grasps (10 grasps suffice to explain 80% of the

data). [8] uses the same set of objects for the 4 subjects.
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Figure 2. GUN-71: Grasp Understanding dataset. We have captured (from a chest-mounted RGB-D camera) and annotated our own

dataset of fine-grained grasps, following the recent taxonomy of [28]. In the top row, the “writing tripod” grasp class exhibits low variability

in object and pose/view across 6 different subjects and environments. In the second row, “flat hand cupping” exhibits high variability in

objects and low variability in pose due to being gravity-dependent. In the third row, “trigger press” exhibits high variability in objects and

pose/view. Finally, in bottom, we show 6 views of the same grasp captured for a particular object and a particular subject in our dataset.

3. GUN-71: Grasp UNderstanding Dataset

We begin by describing our dataset, visualized in Fig. 2.

We start with the 73-class taxonomy of [28], but omit

grasps 50 and 61 because of their overly-specialized nature

(holding a ping-pong racket and playing saxophone, respec-

tively), resulting in 71 classes.

3.1. Data capture

To capture truly in-the-wild data, we might follow the

approach of [7] and monitor unprompted subjects behaving

naturally throughout the course of a day. However, this re-

sults in a highly imbalanced distribution of observed object

manipulations. [7] shows that 10 grasps suffice to explain

80% of the object interactions of everyday users. Balanced

class distributions arguably allow for more straightforward

analysis, which is useful when addressing a relatively unex-

plored problem. Collecting a balanced distribution in such a

unprompted manner would be prohibitively expensive, both

in terms of raw data collection and manual annotation. In-

stead, we prompt users using the scheme below.

Capture sessions: We ask subjects to perform the 71

grasps on personal objects (typical for the specific grasp),

mimicking real object manipulation scenarios in their home

environment. Capture sessions were fairly intensive and la-

borious as a result. We mount Intel’s Senz3D, a wearable

time-of-flight sensor [20, 10, 29], on the subjects’s chest us-

ing a GoPro harness (as in [36]). We tried to vary the types

of objects as much as possible and considered between 3

and 4 different objects per subject for each of the 71 grasps.

For each hand-object configuration, we took between 5 and

6 views of the manipulation scene. These views correspond

to several steps of a particular action (opening a lid, pouring

water) as well as different 3D locations and orientation of

the hand holding the object (with respect to the camera).

Diversity: This process led to the capture of roughly

12,000 RGB-D images labeled with one of the 71 grasps.

We captured 28 objects per grasp, resulting in 28 × 71 =
1988 different hand-object configurations with 5-6 views

for each. We consider 8 different subjects (4 males and 4

females) in 5 different houses, ensuring that “house mates”

avoid using the same objects to allow leave-one-out exper-

iments (we can leave out one subject for testing and en-

sure that the objects will be novel as well). Six of our

eight subjects were right handed. To ensure consistency, we

asked the two left-handed subjects to perform grasps with

their right hand. We posited that body shape characteristics

might effect accuracy/generalizability, particularly in terms

of hand size, shape, and movement. To facilitate such anal-

ysis, we also measured arm and finger lengths for each sub-

ject.
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Figure 3. Contact point and forces. We show the 3D hand model for 18 grasps of the considered taxonomy. We also show the contact

points (in green) and forces (in red) corresponding to each grasp. The blue points help visualize the shape of the typical object associated

with each of these 18 grasps. We can observe that power grasps have wider contact areas on finger and palm regions, while precision grasps

exhibit more localized contact points on finger tips and finger pads.

4. Synthetic (training) data generation

3D hand-object models: In addition to GUN-71, we

construct a synthetic training dataset that will be used dur-

ing our grasp-recognition pipeline. To construct this syn-

thetic dataset, we make use of synthetic 3D hand models.

We obtain a set of 3D models by extending the publicly-

available Poser models from [39] to cover the selected

grasps from [28]’s taxonomy (by manually articulating the

models to match the visual description of grasp).

Contact and force annotations: We compute contact

points and applied forces on our 3D models with the follow-

ing heuristic procedure. First, we look for physical points of

contact between the hand and object mesh. We do this by in-

tersecting the triangulated hand and object meshes with the

efficient method of [30]. We produce a final set of contact

regions by connected-component clustering the set of 3D

vertices lying within an intersection boundary. To estimate

a force vector, we assume that contact points are locally sta-

ble and will not slide along the surface of the object (imply-

ing the force vector is normal to the surface of the object).

We estimate this normal direction by simply reporting the

average normal of vertices within each contact region. Note

this only produces an estimate of the force direction, and

not magnitude. Nevertheless, we find our heuristic proce-

dure to produce surprisingly plausible estimates of contact

points and force directions for each 3D model ( Fig. 3).

Synthetic training data: We use our 3D models to gen-

erate an auxiliary dataset of synthetic depth data, annotated

with 3D poses, grasp class label, contacts, and force di-

rection vectors. We additionally annotate each rendered

depth map with a segmentation mask denoting background,

hand, and object pixels. We render over 200, 000 training

instances (3, 000 per grasp). We will release our models,

rendering images, as well as GUN-71 (our dataset of real-

world RGB-D images) to spun further research in the area.

5. Recognition pipeline

We now describe a fairly straightforward recognition

system for recognizing grasps given real-world RGB-D im-

ages. Our pipeline consists of two stages; hand segmenta-

tion and fine-grained grasp classification.

5.1. Segmentation

The first stage of our pipeline is segmenting the hand

from background clutter, both in the RGB and depth data.

Many state-of-the-art approaches [8, 38, 39] employ user-

specific skin models to localize and segment out the hand.

We want a system that does not require such a user-specific

learning stage and could be applied to any new user and

environment, and so instead make use of depth cues to seg-

ment out the hand.

Depth-based hand detection: We train a P -way clas-

sifier designed to report one of P = 1500 quantized hand

poses, using the approach of [35]. This classifier is trained

on the synthetic training data, which is off-line clustered

into P pose classes. Note that the set of pose classes P
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Figure 4. Segmentation. We show the different steps of our seg-

mentation stage: the depth map (a) is processed using a K-way

pose classifier [35], which reports a quantized pose detection k and

associated foreground prior bik (b) and mean depth µik(c) (used

to compute a posterior following Eq. 1). To incorporate bottom-up

RGB cues, we first extract superpixels (e) and then label superpix-

els instead of pixels to produce a segmentation mask (f). This pro-

duces a segmented RGB image in (g) , which can then be cropped

(h) and/or unsegmented (i). We concatenate (deep) features ex-

tracted from (d), (g), (h), and (i) to span a variety of resolutions

and local/global contexts.

is significantly larger than the set of fine-grained grasps

K = 71. We use the segmentation mask associated with

this coarse quantized pose detection to segment out the hand

(and object) from the test image, described further below.

Pixel model: We would like to use hand detections

to generate binary segmentation masks. To do so, we

use a simple probabilistic model where xi denotes the

depth value of pixel i and yi ∈ {0, 1} is its binary fore-

ground/background label. We write the posterior probabil-

ity of label yi given observation xi, all conditioned on pose

class k as:

p(yi|xi, k) ∝ p(yi|k)p(xi|yi, k) (1)

which can easily derived from Bayes rule . The first term on

the right-hand-side is the “prior” probability of pixel i being

fg/bg, and the second term is a “likelihood” of observing a

depth value given a pose class k and label:

p(yi = 1|k) = bik Bernoulli (2)

p(xi|yi = 1, k) = N(xi;µik, σ
2

ik) Normal (3)

p(xi|yi = 0, k) ∝ constant Uniform (4)

We use a pixel-specific Bernoulli distribution for the prior,

and an univariate Normal and Uniform (uninformative) dis-

tribution for the likelihood. Intuitively, foreground depths

tend to be constrained by the pose, while the background

will not be. Given training data of depth images x with

foreground masks y and pose class labels k, it is straight-

forward to estimate model parameters {bik, µik, σik} with

maximum likelihood estimation (frequency counts, sample

means, and sample variances). We visualize the pixel-wise

Bernoulli prior bik and mean depth µik for a particular class

k in Fig. 4-b and Fig. 4-c.

RGB-cues: Thus far, our segmentation model does

not make use of RGB-based grouping cues such as color

changes across object boundaries. To do so, we first com-

pute RGB-based superpixels [1] on a test image and reason

about the binary labels of superpixels rather than pixels:

labelj = I
⇣ 1

|Sj |

X

i∈Sj

p(yi|xi, k) > .5
⌘

(5)

where Sj denotes the set of pixels from superpixel j. We

show a sample segmentation in Fig. 4. Our probabilistic ap-

proach tends to produce more reliable segmentations than

existing approaches based on connected-component heuris-

tics [19].

5.2. Fine-grained classification

We use the previous segmentation stage to produce fea-

tures that will be fed into a K = 71-way classifier. We use

state-of-the-art deep networks – specifically, Deep19 [41] –

to extract a 3096 dimensional feature. We extract off-the-

shelf deep features extracted for (1) the entire RGB image,

(2) a cropped window around the detected hand, and (3)

a segmented RGB image (Fig. 4 (d,g,h,i)). We resize each

window to a canonical size (of 224 x 224 pixels) before pro-

cessing. The intuition behind this choice is to mix high and

low resolution features, as well as global (contextual) and

local features. The final concatenated descriptors are fed

into a linear multi-class SVM for processing.

Exemplar matching: The above stages return an esti-

mate for the employed grasp and a fairly accurate quan-

tized pose class, but it is still quantized nonetheless. One

can refine this quantization by returning the closest syn-

thetic training example belonging to the recognized grasp

and the corresponding pose cluster. We do this by return-

ing the training example n from quantized class k with the

closest foreground depth:

NN(x) = min
n∈Classk

X

i

yni (x
n
i − µik)

2 (6)

We match only foreground depths in the nth synthetic train-

ing image xn, as specified by its binary label yn. Because

each synthetic exemplar is annotated with hand-object con-

tact points and forces from its parent 3D hand model, we

can predict forces and contact points by simply transferring

them from the selected grasp model to the exemplar location

in the 3D space.
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6. Experiments

For all the experiments of this section, we use a leave-

one-out approach where we train our 1-vs-all SVM classi-

fiers on 7 subjects and test on the last 8th subject. We repeat

that operation with the 8 subjects and average the results.

When analyzing our results, we refer to grasps by their id#.

In the supplementary material, we include a visualization of

all grasps in our taxonomy.

Baselines: We first run some “standard” baselines:

HOG-RGB, HOG-Depth, and an off-the-shelf deep RGB

feature [41]. We obtained the following average classifica-

tion rate: HOG-RGB (3.30%), HOG-Depth (6.55%), con-

catenated HOG-RGB and HOG-Depth (6.55%) and Deep-

RGB (11.31%). Consistent with recent evidence, deep fea-

tures considerably outperform their hand-designed counter-

parts, though overall performance is still rather low (Tab. 2).

Segmented/cropped data: Next, we evaluate the role

of context and clutter. Using segmented RGB im-

ages marginally decreases accuracy of deep features from

11.31% to 11.10%, but recognition rates appear are more

homogeneous. Looking at the individual grasp classifica-

tion rates, segmentation helps a little for most grasps but

hurts the accuracy of “easy” grasps where context or ob-

ject shape are important (but removed in the segmentation).

This includes non-prehensile “pressing” grasps (interacting

with a keyboard) and grasps associated with unique ob-

jects (chopsticks). Deep features extracted from a cropped

segmentation and cropped detection increase accuracy to

12.55% and 13.67%, respectively, suggesting that some

amount of local context around the hand and object helps.

Competing methods: [38, 8] make use of HOG tem-

plates defined on segmented RGB images obtained with

skin detection. Because skin detectors did not work well

on our (in-the-wild) dataset, we re-implemented [8] us-

ing HOG templates defined on our depth-based segmen-

tations and obtained 7.69% accuracy. To evaluate re-

cent non-parametric methods [38], we experimented with

a naive nearest neighbor (NN) search using the different

features extracted for the above experiments and obtained

6.10%, 6.97%, 6.31% grasp recognition accuracy using

Deep-RGB, cropped-RGB and cropped+segmented-RGB.

For clarity, these replace the K-way SVM classifier with

a NN search. The significant drop in performance suggests

that the learning is important, implying that our dataset is

still not big enough to cover all possible variation in pose,

objects and scenes.

Cue-combination: To take advantage of detection and

segmentation without hurting classes where context is im-

portant, we trained our SVM grasp classifier on the con-

catenation of all the deep features. Our final overall classi-

fication rate of 17.97% is a considerable improvement over

a naive deep model 11.31% as well as (our reimplementa-

tion of) prior work 7.69%. The corresponding recognition

rates per grasp and confusion matrices corresponding to this

classifier are given in Fig. 5.

Grasp classification Confusion matrix

(a) (b)
Figure 5. RGB Deep feature + SVM. We show the individual

classification rates for the 71 grasps in our dataset (a) and the cor-

responding confusion matrix in (b).

Features Acc. top 20 top 10 min max

HOG-RGB 3.30 7.20 9.59 0.00 28.54

HOG-Depth 6.55 12.96 15.74 0.66 26.18

HOG-RGBD 6.54 13.76 19.24 0.00 45.62

Deep-RGB [41] 11.31 25.92 35.28 0.69 61.39

Deep-RGB(segm.) 11.10 21.56 26.51 0.69 29.46

HOG-RGB (cropped) 5.84 11.22 14.03 0.00 27.85

Deep-RGB (cropped) 13.67 27.32 36.95 1.22 55.35

HOG-RGB (crop.+segm.) [8] 7.69 15.23 18.65 0.69 30.77

HOG-Depth (crop.+segm.) 10.68 22.04 27.99 0.52 42.40

Deep-RGB (crop.+segm.) 12.55 22.89 27.85 0.69 37.49

Deep-RGB (All) 17.97 36.20 44.97 2.71 68.48

Table 2. Grasp classification results. We present the result ob-

tained when training a K-way linear SVM (K=71) with different

types of features: HOG-RGB, HOG-Depth and Deep-RGB fea-

tures, on the whole workspace, i.e. entire image, on a cropped

detection window or on cropped and segmented image.

View Acc. top 20 top 10 min max

All (All) 17.97 36.20 44.97 2.71 68.48

Best scoring view 22.67 47.53 59.04 0 79.37

Table 3. View selection. We present grasp recognition results ob-

tained when training a K-way linear SVM on a concatenation of

Deep features. We present the results obtained when computing

the average classification rate over 1) the entire dataset and 2) over

the top scoring view of each hand-object configuration.

71 Gr. [28] 33 Gr. [14] 17 Gr. [9]

All views 17.97 20.50 20.53

Best scoring view 22.67 21.90 23.44

Table 4. Grasp classification for different sized taxonomies. We

present the results obtained for K = 71 [28], K = 33 [14] and

K = 17 [9], smaller taxonomies being obtained by selecting the

corresponding subsets of grasps.

Easy cases: High-performing grasp classes (Fig. 5) tend

to be characterized by limited variability in terms of view-

point (i.e. position and orientation of the hand w.r.t camera)
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and/or object: eg. opening a lid (#10), writing (#20), hold-

ing chopsticks (#21), measuring with a tape (#33), grab-

bing a large sphere such as a basketball (#45), using screw-

driver (#47), trigger press (#49), using a keyboard (#60),

thumb press (#62), holding a wine cup (#72). Other high-

performing classes tend to exhibit limited occlusions of the

hand: hooking a small object(#15) and palm press (#55).

Common confusions: Common confusions in Fig. 6

suggest that finger kinematics are a strong cue captured by

deep features. Many confusions correspond to genuinely

similar grasps that differ by small details that might be eas-

ily occluded by the hand or the manipulated object: “Large

diameter” (#1) and “Ring” (#31) are both used to grasp

cylindrical objects, except that “Ring” only uses thumb and

index finger. When the last three fingers are fully occluded

by the object, it is visually impossible to differentiate them

(see Fig. 6-c). “Adduction-Grip” (#23) and “Middle-over-

Index”(#51) both involve grasping an object using the in-

dex and middle finger. Abduction-Grip holds the object be-

tween the two fingers, while Middle-over-Index holds the

object using the pad of the middle finger and nail of the in-

dex finger (see Fig. 6-f).

Figure 6. Common confusions. The confusions occur when some

fingers are occluded (a and c) or when the poses are very simi-

lar but the functionality (associated forces and contact points) is

different (b, d, e and f).

Best view: To examine the effect of viewpoint, we se-

lect the top-scoring view for each grasp class, increasing

accuracy from 17.97% to 22.67% (Tab. 3). Comparing the

two sets of recognition rates, best-view generally increases

the performance of easy grasps significantly more than dif-

ficult ones - e.g., the average recognition rate of the top

20 grasps grow from 36.20% to 47.53%, while the top 10

grasps grows from 44.97% to 59.04%. This suggests that

some views may be considerably more ambiguous than oth-

ers.

Comparison to state-of-the-art. We now compare

our results to those systems evaluated on previous grasp

datasets. Particularly relevant is [8], which presents vi-

sual grasp recognition results in similar settings, i.e. ego-

centric perspective and daily activities. In their case, they

consider a reduced 17-grasp taxonomy from Cutkosky [9],

obtaining 31% with HOG features overall and 42% on a

specific “machinist sequence” from [7]. Though these re-

sults appear more accurate than ours, its important to note

that their dataset contains less variability in the background

and scenes, and, crucially, their system appears to require

training a skin detector on a subset of the test set. Addi-

tionally, it is not clear if they (or indeed, other past work)

allow for the same subject/scene to be included across the

train and testset. If we allow for this, recognition rate dra-

matically increases to 85%. This highly suggestive of over-

fitting, and can be seen a compelling motivation for the dis-

tinctly large number of subjects and scenes that we capture

in our dataset.

Evaluations on limited taxonomies: If we limit our tax-

onomy to the 17 grasps from [8], i.e. by evaluating only the

subset of 17 classes, we obtain 20.53% and 23.44% (best

view). See Tab. 4. These numbers are comparable to those

reported in [8]. Best-view may be a fair comparison because

[7] used data that was manually labelled, where annota-

tors were explicitly instructed to only annotate those frames

that were visually unambiguous. In our case, subjects were

asked to naturally perform object manipulations, and the

data was collected “as-is”. Finally, if we limit our taxonomy

to the 33 grasps from Feix et al. [14], we obtained 20.50%
and 21.90% (best view). The marginal improvement when

evaluating grasps from smaller taxonomies suggests that the

new classes are not much harder to recognize. Rather, we

believe that overall performance is somewhat low because

our dataset is genuinely challenging due to diverse subjects,

scenes, and objects.

Force and contact point prediction: Finally, we

present preliminary results for force and contact prediction.

We do so by showing the best-matching synthetic 3D ex-

emplar from the detected pose class, along with its contact

and force annotations. Fig. 7 shows frames for which the

entire pipeline detection + grasp recognition + exemplar

matching led to an acceptable prediction. Unfortunately, we

are not able to provide a numerical evaluation as obtaining

ground-truth annotation of contact and forces is challeng-

ing. One attractive option is to use active force sensors,
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Figure 7. Force and contact points prediction. We show frames for which the entire pipeline detection + grasp recognition + exemplar

matching led to an acceptable prediction of forces and contact points. For each selected frame, we show from top to bottom: the RGB

image, the depth image with contact points and forces (respectively represented by green points and red arrows, the top scoring 3D exemplar

with associated forces and contact points, and finally the RGB image with overlaid forces and contact points.

either embedded into pressure-sensitive gloves worn by the

user or through objects equipped with force sensors at pre-

defined grasp points (as done for a simplified cuboid object

in [32]). While certainly attractive, active sensing some-

what violates the integrity of a truly in-the-wild, everyday

dataset.

7. Conclusions

We have introduced the challenging problem of under-

standing hands in action, including force and contact point

prediction, during scenes of in-the-wild, everyday object

manipulations. We have proposed an initial solution that

reformulates this high-dimensional, continuous prediction

task as a discrete fine-grained (functional grasp) classifica-

tion task. To spur further research, we have captured a new

large scale dataset of fine-grained grasps that we will re-

lease together with 3D models and rendering engine. Im-

portantly, we have captured this dataset from an egocentric

perspective, using RGB-D sensors to record multiple scenes

and subjects. We have also proposed a pipeline which ex-

ploits depth and RGB data, producing state-of-the-art grasp

recognition results. Our first analysis show that depth in-

formation is crucial for detection and segmentation, while

the richer RGB feature allows for a better grasp recogni-

tion. Overall, our results indicate that grasp classification is

challenging, with accuracy approaching 20% for a 71-way

classification problem.

We have used a single 3D model per grasp. In future

work, it would be interesting to (1) model within-grasp vari-

ability, capturing the dependence of hand kinematics on

object shape and size and (2) consider subject-specific 3D

hand shape models [21], which could lead to more accu-

rate set of synthetic exemplars (and associated forces and

contacts).
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