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Abstract

Principal Component Analysis (PCA) is the most widely

used tool for linear dimensionality reduction and clustering.

Still it is highly sensitive to outliers and does not scale well

with respect to the number of data samples. Robust PCA

solves the first issue with a sparse penalty term. The second

issue can be handled with the matrix factorization model,

which is however non-convex. Besides, PCA based cluster-

ing can also be enhanced by using a graph of data similar-

ity. In this article, we introduce a new model called ‘Robust

PCA on Graphs’ which incorporates spectral graph regu-

larization into the Robust PCA framework. Our proposed

model benefits from 1) the robustness of principal compo-

nents to occlusions and missing values, 2) enhanced low-

rank recovery, 3) improved clustering property due to the

graph smoothness assumption on the low-rank matrix, and

4) convexity of the resulting optimization problem. Exten-

sive experiments on 8 benchmark, 3 video and 2 artificial

datasets with corruptions clearly reveal that our model out-

performs 10 other state-of-the-art models in its clustering

and low-rank recovery tasks.

1. Introduction

What is PCA? Given a data matrix X 2 R
p⇥n with n

p-dimensional data vectors, the classical PCA can be for-

mulated as learning the projection Q 2 R
d⇥n of X in a

d-dimensional linear space characterized by an orthonor-

mal basis U 2 R
p⇥d (1st model in Table 1). Traditionally,

U and Q are termed as principal directions and principal

components and the product UQ is known as the low-rank

approximation L 2 R
p⇥n of X . .

Applications of PCA: PCA has been widely used for

two important applications.

1. Dimensionality reduction or low-rank recovery.

2. Data clustering using the principal components Q in

the low dimensional space.

However, classical PCA formulation is susceptible to er-

rors in the data because of the quadratic term. Thus, an

outlier in the data might result in erratic principal compo-

nents Q which can effect both the dimensionality reduction

and clustering.

Robust dimensionality reduction using PCA: Candes

et al. [6] demonstrated that PCA can be made robust to out-

liers by exactly recovering the low-rank representation L
even from grossly corrupted data X by solving a simple

convex problem, named Robust PCA (RPCA, 2nd model in

Table 1). In this model, the data corruptions are represented

by the sparse matrix S 2 R
p⇥n. Extensions of this model

for inexact recovery [25] and outlier pursuit [22] have been

proposed.

The clustering quality of PCA can be significantly

improved by incorporating the data manifold information

in the form of a graph G [10, 24, 11, 20]. The underly-

ing assumption is that the low-dimensional embedding of

data X lies on a smooth manifold [2]. Let G = (V,E,A)
be the graph with vertex set V as the samples of X , E
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Table 1: A comparison of various PCA models and their properties. X 2 R
p⇥n is the data matrix, U 2 R

p⇥d and Q 2 R
d⇥n

are the principal directions and principal components in a d dimensional linear space (rank = d). L = UQ 2 R
p⇥n is

the low-rank representation and S 2 R
p⇥n is the sparse matrix. Φ, Φg and Φg

h 2 S
n⇥n characterize a simple graph or a

hypergraph G between the samples of X . k · kF , k · k⇤ and k · k1 denote the Frobenius, nuclear and l1 norms respectively.

Model Objective Constraints Parameters Graph? Factors? Convex?

1 PCA minU,Q kX − UQk2F UTU = I d no yes no

2 RPCA [6] minL,S kLk∗ + λkSk1 X = L+ S λ no no yes

3 PROPOSED minL,S kLk∗ + λkSk1 + γ tr(LΦLT) X = L+ S λ, γ YES NO YES

4 GLPCA [10] minU,Q kX − UQk2F + γ tr(QΦQT ) QQT = I

5 RGLPCA [10] minU,Q kX − UQk2,1 + γ tr(QΦQT ) d, γ

6 MMF [24] minU,Q kX − UQk2F + γ tr(QΦQT ) UTU = I yes yes no

7 MMMF [20] minU,Q,α kX − UQk2F + γ tr(Q(
P

g αgΦg)QT ) + βkαk2 UTU = I d, γ, β

8 MHMF [11] minU,Q,α kX − UQk2F + γ tr(Q(
P

g αgΦ
g
h
)QT ) + βkαk2 1T

α = 1

the set of pairwise edges between the vertices V and A
the adjacency matrix which encodes the weights of the

edges E. Then, the normalized graph Laplacian matrix

Φ 2 R
n⇥n which characterizes the graph G is defined as

Φ = D−1/2(D − A)D−1/2, where D is the degree matrix

defined as D = diag(di) and di =
P

j Aij . Assuming that

a p-nearest neighbors graph is available, several methods to

construct A have been proposed in the literature. The three

major weighting methods are: 1) binary, 2) heat kernel and

3) correlation distance [11].

In this paper we propose a novel convex method to im-

prove the clustering and low-rank recovery applications of

PCA by incorporating spectral graph regularization to the

Robust PCA framework. Extensive experiments reveal that

our proposed model is more robust to occlusions and miss-

ing values as compared to 10 state-of-the-art dimensionality

reduction models.

2. Main Idea & Proposed Model

The main contributions of our work are:

1. Exact recovery of the low-rank representation L from

grossly corrupted data X .

2. Recovery of the low-rank representation L that also re-

veals the underlying class separation.

3. High cluster purity in the low dimensional space even

when no clean data is available.

4. A simple convex optimization problem with minimal

parameters to achieve these objectives.

The figure on page 1 illustrates the main idea of our

work.

Without any doubt the contributions 1 and 4 are given by

the work of Candes et al. [6], namely Robust PCA (RPCA,

2nd model in Table 1). Thus, as a first step, we propose

that instead of utilizing a classical PCA-like model so as to

explicitly learn principal directions U and principal compo-

nents Q of data X , one can directly recover the low-rank

matrix L itself (L = UQ).

Secondly and more importantly, to achieve contributions

2 and 3 we propose: The low-rank matrix L itself lies on

a smooth manifold and it can be recovered directly on this

manifold. Our proposed model is as follows:

min
L,S

kLk⇤ + λkSk1 + γ tr(LΦLT ), (1)

s.t. X = L+ S,

where the sparse errors in the data are modeled by S and

L is the low-rank approximation of X . Parameters λ and

γ control the amount of sparsity of S and smoothness of L
on the graph Φ respectively. We will define our graph in

Section 6.3.

Generalization of Robust PCA: We call our proposed

model (1) Robust PCA on Graphs. It is a direct extension of

the Robust PCA proposed by Candes et al. [6] with smooth-

ness manifold regularization. That is, setting γ = 0 in our

model (1) we obtain the standard model of [6].

3. Related Works: Factorized PCA Models
Both manifold regularization and robustness techniques

for PCA have been proposed in the literature, either sepa-

rately or combined [10, 24, 11, 20]. Following the classical

PCA model they explicitly learn two factors U and Q such

that X ⇡ UQ. We will, therefore refer to these models

as factorized PCA models. Furthermore, unlike our model,

some of these works [10] assume the graph smoothness of

principal components Q (instead of L = UQ).

Jiang et al. proposed Graph Laplacian PCA (GLPCA)

[10] (4th model in Table 1) which leverages the graph

regularization of principal components Q using the term

tr(QΦQT ) for clustering in the low dimensional space (see

also [1]). They also proposed a robust version of their model

(5th model in Table 1) and demonstrated the robustness of

principal components Q to occlusions in the data.

Zhang and Zhao [24] proposed Manifold Regularized

Matrix Factorization (MMF, 6th model in Table 1) which

exploits the orthonormality constraint on the principal di-

rections U (contrary to [10]) to acquire a unique low-rank

matrix L = UQ for any optimal pair U , Q. In this case we

have tr(QΦQT ) = tr(UQΦ(UQ)T ) = tr(LΦLT ), there-

fore this model implicitly assumes the graph smoothness of
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L. The extensions of this model with an ensemble of graph

and hypergraph regularization terms have been proposed by

Tao et al. [20] and Jin et al. [11] respectively (7th and 8th

models in Table 1).

Shortcomings of state-of-the-art: Although the mod-

els proposed in [10, 24, 11, 20] leverage the graph to learn

enhanced class structures, they still suffer from numerous

problems. Most of these models are not robust to data cor-

ruptions [24, 11, 20]. Those which leverage the robustness

suffer from non-convexity [10]. An ensemble of graphs or

hypergraphs leverages the non-linearity of data in an effec-

tive manner [11, 20]. However, it makes the models non-

convex and the resulting alternating direction methods can

get stuck in local minima.

Notation & Terminology: Throughout this article k·kF ,

k · k⇤ and k · k1 denote the Frobenius, nuclear and l1
norms respectively. We will refer to the regularization term

tr(QΦQT ) as principal components graph regularization.

Note that the graph regularization involves principal com-

ponents Q, not principal directions U . We will also refer to

the regularization term tr(LΦLT ) as low-rank graph regu-

larization. RPCA and our proposed models (2nd and 3rd

models in Table 1) which perform exact low-rank recovery

by splitting X = L+S will be referred to as non-factorized

PCA models. A comparison of various PCA models intro-

duced so far is presented in Table 1. Note that only RPCA

and our proposed model leverage convexity and enjoy a

unique global optimum with guaranteed convergence.

4. Comparison with Related Works

The main differences between our model (1) and the var-

ious state-of-the-art factorized PCA models [10, 24, 17, 11,

20] are, as summarized in Table 1, the following.

Non-factorized model: Instead of explicitly learning the

principal directions U and principal components Q, it learns

their product, i.e. the low-rank matrix L. Hence, (1) is a

non-factorized PCA model.

Exact low-rank recovery: Unlike factorized models we

target the exact low-rank recovery by modeling the data ma-

trix as the sum of low-rank L and a sparse matrix S.

Different graph regularization term: Model (1) is

based on the assumption that it is the low-rank matrix L that

is smooth on the graph, and not just the principal compo-

nents matrix Q. Therefore we replace the principal compo-

nents graph term tr(QΦQ>) with the low-rank graph term

tr(LΦL>). Note that as explained in Section 3, the two

terms are only equivalent if orthogonality of U is further

assumed, as in [24, 17, 11, 20] and not in [10].

4.1. Advantages over Factorized PCA Models

Robustness to gross corruptions for clustering & low-

rank recovery: The low-rank graph tr(LΦLT ) can be more

realistic than the principal components graph tr(QΦQT ). It

allows the principal directions U to benefit from the graph

regularization as well (recall that L = UQ). Thus, our

model enjoys an enhanced low-rank recovery and class sep-

aration even from grossly corrupted data. For details, please

refer to Sections 7 & 8 (also see Fig. 12 in supplementary

material).

Convexity: It is a strictly convex problem and a unique

global optimum can be obtained by using standard meth-

ods like an Alternating Direction Method of Multipliers

(ADMM) [4].

One model parameter only: Our model does not re-

quire the rank of L to be specified up-front. The nuclear

norm relaxation enables the automatic selection of an ap-

propriate rank based on the parameters λ and γ. Further-

more, as illustrated in our experiments, the value λ =
1/
p

max(n, p) proposed in [6] gives very good results. As

a result, the only unknown parameter to be selected is γ,

and for this we can use methods such as cross validation

(For additional details please see Figs. 15 & 16 in the sup-

plementary material).

5. Optimization Solution

We use an ADMM [4] to rewrite Problem (1):

min
L,S,W

kLk⇤ + λkSk1 + γ tr(WΦWT )

s.t. X = L+ S, L = W.

Thus, the augmented Lagrangian and iterative scheme are:

(L, S,W )k+1 = argmin
L,S,W

kLk⇤ + λkSk1 + γ tr(WΦWT )

+ hZk
1 , X − L− Si +

r1
2
kX − L− Sk2F

+ hZk
2 ,W − Li+

r2
2
kW − Lk2F ,

Zk+1

1 = Zk
1 + r1(X − Lk+1 − Sk+1),

Zk+1

2 = Zk
2 + r2(W

k+1 − Lk+1),

where Z1 2 R
p⇥n and Z2 2 R

p⇥n are the lagrange mul-

tipliers and k is the iteration index. Let Hk
1 = X − Sk +

Zk
1 /r1 and Hk

2 = W k + Zk
2 /r2, then this reduces to the

following updates for L, S and W as:

Lk+1 = prox 1
(r1+r2)

kLk⇤

⇣r1H
k
1 + r2H

k
2

r1 + r2

⌘

,

Sk+1 = prox λ

r1
kSk1

⇣

X − Lk+1 +
Zk
1

r1

⌘

,

W k+1 = r2(γΦ+ r2I)
−1

⇣

Lk+1 −
Zk
2

r2

⌘

,

where proxf is the proximity operator of the convex func-

tion f as defined in [7]. The details of this solution, algo-

rithm, convergence and computational complexity are given

in the supplementary material Sections A.1, A.2 & A.3.
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6. Experimental Setup

We use the model (1) to solve two major PCA-based

problems.

1. Data clustering in low-dimensional space with cor-

rupted and uncorrupted data (Section 7 ).

2. Low-rank recovery from corrupted data (Section 8).

Our extensive experimental setup is designed to test the

robustness and generalization capability of our model to a

wide variety of datasets and corruptions for the above two

applications. Precisely, we perform our experiments on 8

benchmark, 3 video and 2 artificial datasets with 10 dif-

ferent types of corruptions and compare with 10 state-of-

the-art dimensionality reduction models as explained in sec-

tions 6.1 & 6.2.

6.1. Setup for Clustering

6.1.1 Datasets

All the datasets are well-known benchmarks. The 6 image

databases include CMU PIE1, ORL2, YALE3, COIL204,

MNIST5 and USPS data sets. MFeat database 6 con-

sists of features extracted from handwritten numerals and

the BCI database7 comprises of features extracted from a

Brain Computer Interface setup. Our choice of datasets is

based on their various properties such as pose changes, ro-

tation (for digits), data type and non-negativity, as presented

in Table 2 in the supplementary material.

6.1.2 Comparison with 10 models

We compare the clustering performance of our model with

k-means on the original data X and 9 other dimensionality

reduction models. These models can be divided into two

categories.

1. Models without graph: 1) classical Principal Com-

ponent Analysis (PCA) 2) Non-negative Matrix Factoriza-

tion (NMF) [13] and 4) Robust PCA (RPCA) [6].

2. Models with graph: These models can be further di-

vided into two categories based on the graph type. a. Prin-

cipal components graph: 1) Normalized Cuts (NCuts)

[19], 2) Laplacian Eigenmaps (LE) [2], 3) Graph Lapla-

cian PCA (GLPCA) [10], 4) Robust Graph Laplacian PCA

(RGLPCA) [10], 5) Manifold Regularized Matrix Factor-

ization (MMF) [24], 6) Graph Regularized Non-negative

Matrix Factorization (GNMF) [5], b. Low-rank graph:

Our proposed model.

Table 2 and Fig. 8 in the supplementary material give a

summary of all the models.
1http://vasc.ri.cmu.edu/idb/html/face/
2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3http://vision.ucsd.edu/content/yale-face-database
4http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
5http://yann.lecun.com/exdb/mnist/
6https://archive.ics.uci.edu/ml/datasets/Multiple+Features
7http://olivier.chapelle.cc/ssl-book/benchmarks.html

6.1.3 Corruptions in datasets

Corruptions in image databases: We introduce three

types of corruptions in each of the 6 image databases:

1. No corruptions.

2. Fully corrupted data. Two types of corruptions are

introduced in all the images of each database: a) Block oc-

clusions ranging from 10 to 40% of the image size. b) Miss-

ing pixels ranging from 10% to 40% of the total pixels in

the image. These corruptions are modeled by placing zeros

uniformly randomly in the images.

3. Sample specific corruptions. The above two types of

corruptions (occlusions and missing pixels) are introduced

in only 25% of the images of each database.

Corruptions in non-image databases: We introduce

only full and sample specific missing values in the non-

image databases because the block occlusions in non-image

databases correspond to an unrealistic assumption. Exam-

ple missing pixels and block occlusions in the image are

shown in Fig. 9 in the supplementary material.

Pre-processing: For NCuts, LE, PCA, GLPCA,

RGLPCA, MMF, RPCA and our model we pre-process the

datasets to zero mean and unit standard deviation along

the features. Additionally for MMF all the samples are

made unit norm as suggested in [24]. For NMF and GNMF

we only pre-process the non-negative datasets to unit norm

along the samples. We perform pre-processing after intro-

ducing the corruptions.

6.1.4 Clustering Metric

We use clustering error to evaluate the clustering perfor-

mance of all the models considered in this work. The clus-

tering error is E = ( 1n
Pk

r=1
nr) ⇥ 100, where nr is the

number of misclassified samples in cluster r. We report

the minimum clustering error from 10 runs of k-means (k

= number of classes) on the principal components Q. This

procedure reduces the bias introduced by the non-convex

nature of k-means. For RPCA and our model we obtain

principal components Q
0

via SVD of the low-rank matrix

L = UΣQ
0

during the nuclear proximal update in every

iteration. For more details of the clustering error evalua-

tion and parameter selection scheme for each of the mod-

els, please refer to Fig. 10 and Table 3 of the supplementary

material.

6.2. Setup for Low-Rank Recovery
Since the low-rank ground truth for the 8 benchmark

datasets used for clustering is not available, we perform the

following two types of experiments.
1. Quantitative evaluation of the normalized low-rank

reconstruction error using corrupted artificial datasets.

2. Visualization of the recovered low-rank representa-

tions for 1) occluded images of the CMU PIE dataset

and 2) static background of 3 different videos8.

8https://sites.google.com/site/backgroundsubtraction/test-sequences
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6.3. Normalized Graph Laplacian
In order to construct the graph Laplacian Φ, the pairwise

Euclidean distance is computed between each pair of the

vectorized data samples (xi, xj). Let Ω be the matrix which

contains all the pairwise distances, then Ωij , the Euclidean

distance between xi and xj is given as:

Case I: Block Occlusions

Ωij =

s

kMij ◦ (xi − xj)k22
kMijk1

,

where Mij 2 {0, 1}p is the vector mask corresponding to

the intersection of uncorrupted values in xi and xj . Thus

M l
ij =

⇢

1 if features xl
i & xl

j observed,
0 otherwise

Thus, we detect the block occlusions and consider only the

observed pixels.

Case II: Random Missing Values: We use a Total

Variation denoising procedure and calculate Ωij using the

cleaned images.

Let ωmin be the minimum of all the pairwise distances

in Ω. Then the adjacency matrix A for the graph G is con-

structed by using

Aij = exp
⇣

−
(Ωij − ωmin)

2

σ2

⌘

Finally, the normalized graph Laplacian Φ = I −
D−1/2AD−1/2 is calculated, where D is the degree ma-

trix. Note that different types of data might call for differ-

ent distance metrics and values of σ2, however for all the

experiments and datasets used in this work the Euclidean

distance metric and σ2 = 0.05 work well. All the models

are evaluated using the same graph construction technique.

A detailed example with corrupted and uncorrupted images

is given in Fig. 11 of supplementary material.

7. Clustering in Low Dimensional Space
Fig. 1 presents experimental results for the first impor-

tant application of our model, i.e. clustering. Fig. 2 il-

lustrates the principal components Q for three classes of

occluded CMU PIE data set in 3-dimensional space. Our

model outperforms others in most of the cases with differ-

ent types and levels of occlusions (please refer to Tables 4, 5

& 6 in the supplementary material for additional results).

In the next few paragraphs we elaborate further on 1) the

advantage of graph over non-graph models, 2) the advan-

tage of low-rank graph over principal components graph.

Throughout the description of our results, the comparison

with RPCA is of specific interest because it is a special case

of our proposed model.

7.1. Is the Graph Useful?
Our model performs better than k-means, standard PCA,

NMF and RPCA which do not leverage the graph.

Example case I: CMU PIE database with no pose

variation: Consider the case of CMU PIE dataset in Fig. 1.

This dataset does not suffer from pose changes and we ob-

serve that our model attains as low as 0% error when there

are no corruptions in the data. Furthermore, we attain low-

est error even with the increasing levels of occlusions and

missing pixels. This can also be observed visually from

Fig. 2 where the principal components for our model are

better separated than others.

Example case II: COIL20 database with pose varia-

tion: Our model outperforms RPCA and other non-graph

models also for the COIL20 database which suffers from

significant pose changes. Thus, even a graph constructed

using the simple scheme of Section 6.3 enhances the ro-

bustness of our model to gross data corruptions and pose

changes. Similar conclusions can be drawn for all the other

databases as well. Please note that the results on YALE

dataset are worse due to changes in the facial expressions in

this dataset.

7.2. Low-Rank or Principal Components Graph?

We compare the performance of our model with NCuts,

LE, GLPCA, RGLPCA, MMF & GNMF which use princi-

pal components graph. It is obvious from Fig. 1 that our

model outperforms the others even for the datasets with

pose changes. Similar conclusions can be drawn for all the

other databases with corruptions and by visually comparing

the principal components of these models in Fig. 2 as well.

Unlike factorized models, the principal directions U in

the low-rank graph tr(LΦLT ) benefit from the graph regu-

larization as well and show robustness to corruptions. This

leads to a better clustering in the low-dimensional space

even when the graph is constructed from corrupted data

(please refer to Fig. 12 of the supplementary material for

further experimental explanation).

7.3. Robustness to Graph Quality

We perform an experiment on the YALE dataset with

35% random missing pixels. Fig. 3 shows the variation in

clustering error of different PCA models by using a graph

constructed with decreasing information about the mask.

Our model still outperforms others even though the qual-

ity of graph deteriorates with corrupted data. It is essential

to note that in the worst case scenario when the mask is not

known at all, our model performs equal to RPCA but still

better than those which use a principal components graph.

8. Low-Rank Recovery

8.1. Low-Rank Recovery from Artificial Datasets

To perform a quantitative comparison of exact low-rank

recovery between RPCA and our model, we perform ex-

periments on 2 artificial datasets as in [6]. Note that only

RPCA and our model perform exact low-rank recovery so

we do not present results for other PCA models. We gener-

ate low-rank square matrices L = ATB 2 R
n⇥n (rank d =

2816
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Figure 1: Clustering error of various dimensionality reduction models for CMU PIE, ORL, YALE & COIL20 datasets.

The compared models are: 1) k-means without dimensionality reduction 2) Normalized Cuts (NCuts) [19] 3) Laplacian

Eigenmaps (LE) [2] 4) classical Principal Component Analysis (PCA) 5) Graph Laplacian PCA (GLPCA) [10] 6) Robust

Graph Laplacian PCA (RGLPCA) [10] 7) Manifold Regularized Matrix Factorization (MMF) [24] 8) Non-negative Matrix

Factorization [13] 9) Graph Regularized Non-negative Matrix Factorization (GNMF) [5], 10) Robust PCA (RPCA) [6] and

11) Robust PCA on Graphs (proposed model). Two types of full and partial corruptions are introduced in the data: 1) Block

occlusions and 2) Random missing values. The numerical errors corresponding to this figure along with additional results on

MNIST, USPS, MFeat and BCI datasets are presented in Tables 4, 5 & 6 of the supplementary material.

Figure 2: Principal components Q of three classes of CMU PIE data set in 3 dimensional space. Only ten instances of each

class are used with block occlusions occupying 20% of the entire image. Our proposed model (on the lower right corner)

gives well-separated principal components without any clustering error.
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Figure 3: Effect of lack of information about the corruptions

mask on the clustering error. YALE dataset with 35% ran-

dom missing pixels is used for this experiment. Our model

(last bar in each group) outperforms the others.

0.02n to 0.3n) with A and B independently chosen d ⇥ n
matrices with i.i.d. Gaussian entries of zero mean and vari-

ance 1/n. We introduce 6% to 30% errors ρ = kSk0/n
2

in these matrices from an i.i.d. Bernoulli distribution for

support of S with two sign schemes.

1. Random signs: Each corrupted entry takes a value ±1
with a probability ρ/2.

2. Coherent signs: The sign for each corrupted entry is

coherent with the sign of the corresponding entry in L.

Fig. 4 compares the variation of log normalized low-rank

reconstruction error log(kL − L̂kF /kLkF ) with rank (x-

axis) and error (y-axis) between RPCA (b and d) and our

model (a and c). The larger and darker the blue region,

the better is the reconstruction. The first two plots corre-

spond to the random sign scheme and the next ones to co-

herent sign scheme. It can be seen that for each (rank,error)

pair the reconstruction error for our model is less than that

for RPCA. Hence, the low-rank graph helps in an enhanced

low-rank recovery.

8.2. Low-Rank Recovery from Corrupted Faces

We use the PCA models to recover the clean low-rank

representations from a set of occluded images of CMU PIE

dataset as shown in Fig. 5. None of the factorized models

using principal components graph is able to perfectly sepa-

rate the block occlusion from the actual image. This is not

surprising because these models (except RGLPCA) are not

robust to gross errors. Our model is able to separate the oc-

clusion better than all the models. Even though it inherits

the robustness from RPCA, we observe that the robust re-

covery of the low-rank representation L is greatly enhanced

by using the low-rank graph. Please refer to Fig. 13 in the

supplementary material for more results.

8.3. Low-Rank Background Extraction from Videos

Static background separation from the dynamic fore-

ground is an interesting application of low-rank recovery.

We use 3 videos 8 (1000 frames each) to recover the static

low-rank background. The graph Laplacian Φ is con-

structed between the frames of videos without utilizing any

prior information about sparse errors. The low-rank ground

truth is not available for these videos so we present a visual

comparison between RPCA and our model for one of the

frames in Fig. 6. The RPCA model (middle) is unable to

completely remove the person in the middle of the frame

and his shadow from the low-rank frame. However, the

presence of graph in our model (right) helps in a better re-

covery of the static background, which in this case is the

empty shopping mall lobby. The pictures are best viewed

on a computer screen on the electronic version of this arti-

cle. Complete videos for our model can be found here 9

10 11. For more results please refer to Fig. 14 of supplemen-

tary material.

9. Parameter Selection Scheme for Our Model

There are two parameters for our model: 1) Sparsity

penalty λ and 2) Graph regularization penalty γ. The pa-

rameter λ can be set approximately equal to 1/
p

max(n, p)
where n is the number of data samples and p is the dimen-

sion. This simple rule, as suggested by Candes et al. [6]

works reasonably well for our clustering & low-rank recov-

ery error experiments. After fixing λ, the parameter γ can

be easily selected by cross-validation. The minimum clus-

tering error always occurs around this value of λ, irrespec-

tive of the size, number of classes and % of corruptions in

the datasets. Due to lack of space we present the detailed

results on the variation of clustering & low-rank recovery

error over the (λ, γ) grid in Figs. 15 & 16 of the supple-

mentary material.

10. Comparison of Computation Times

We corrupt different sizes of the CMU PIE dataset (n =

300, 600 and 1200) with 20% occlusions and compute the

time for one run of each model which gives the minimum

clustering error (Fig. 7). Clearly, RGLPCA has the highest

computation time, followed by our proposed model. How-

ever, the trade-off between the clustering error and compu-

tational time is worth observing from Figs. 1 and 7 (more

details in the supplementary material Table 7). The large

computation time of our model is dominated by the expen-

sive SVD step in every iteration.

11. Conclusion

We present ‘Robust PCA on Graphs’, a generalization of

the Robust PCA framework which leverages spectral graph

regularization on the low-rank representation. The pro-

posed model targets exact low-rank recovery and enhanced

clustering in the low-dimensional space from grossly cor-

rupted datasets by solving a convex optimization prob-

lem with minimal parameters. Experiments on several

9https://vid.me/GN0X
10https://vid.me/vR6d
11https://vid.me/RDgN
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(a) Our model, random signs (b) RPCA, random signs (c) Our model, coherent signs (d) RPCA, coherent signs

Figure 4: Variation of Log normalized low-rank reconstruction error on artificial data (Section 8.1) with (rank, error). The

larger and darker the blue area, the lower reconstruction error of the model.
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Figure 5: Clean low-rank recovery of one image of the CMU PIE data set corresponding to each of the PCA models. The

images of one person are corrupted by 10% block occlusions. 1st figure shows the actual occluded image, 2nd and 3rd

figures show the whitened occluded and un-occluded images. Since PCA requires whitening, the recovered low-rank images

in figures 4 to 8 should resemble the un-occluded whitened image.

Figure 6: One frame of the recovered background from a video of a shopping mall lobby. left) actual frame, middle) recovered

low-rank background using Robust PCA and right) recovered background using our proposed model. The presence of graph

in our model enables better recovery and removes all the walking people from the frame.
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Figure 7: Computation time of different models for CMU

PIE dataset with 20% occlusions.

benchmark datasets reveal that clustering using our low-

rank graph regularization scheme outperforms various other

state-of-the-art factorized PCA based models which use

principal components graph regularization. Experiments

for exact low-rank recovery from artificial datasets and

static background separation from videos demonstrate its

ability of to perform an enhanced low-rank recovery. More-

over, it is also robust w.r.t. the graph construction strategy

and performs well even when the graph is constructed from

corrupted data. Our future work will involve the theoretical

investigation of the model and cost reduction by using ran-

domized algorithms for SVD [21], parallel processing [18]

or other methods [15, 16]. We will also work on foreground

extraction and present quantitative results as in [3].
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