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Abstract

Previous joint/guided filters directly transfer the struc-

tural information in the reference image to the target one.

In this paper, we first analyze its major drawback – that is,

there may be completely different edges in the two images.

Simply passing all patterns to the target could introduce

significant errors. To address this issue, we propose the

concept of mutual-structure, which refers to the structural

information that is contained in both images and thus can

be safely enhanced by joint filtering, and an untraditional

objective function that can be efficiently optimized to yield

mutual structure. Our method results in necessary and im-

portant edge preserving, which greatly benefits depth com-

pletion, optical flow estimation, image enhancement, stereo

matching, to name a few.

1. Introduction

Image filters are fundamental tools widely used in image

editing [11], denoise [10, 2], optical flow [25, 24], stereo

matching [14, 12, 29] and image restoration [18, 27]. Sev-

eral filters process a single image to either preserve edges

[2, 9, 30, 11, 28, 15, 7] or remove texture [31, 26]. An-

other group of filters, involving joint bilateral filter [2] and

guided image filter [11], can take extra images as reference

or guidance.

Joint filters are fundamentally helpful in several tasks.

For example, in stereo matching, joint bilateral and guided

image filters were employed to aggregate the cost volume

[29, 12]. For depth refinement and completion, correspond-

ing RGB images were used in joint filtering [17]. The com-

mon property is to employ an additional image during the

course of target image filtering. The reference image pro-

vides structural guidance of how the filter should perform.

Thus structural-preserving or removal on the target image

can be achieved locally depending on what is contained in

the reference image.

Analysis of Joint Filter Joint filter makes a basic assump-

tion on the reference images, i.e., they should contain cor-

(a) Input (b) Reference (c) Bilateral Filter

(d) Guided Filter (e) Ours (f) Ground Truth

Figure 1. Joint image filtering on a structure-inconsistent image

pair. (a) and (b) are the target and reference images respectively.

(c) and (d) are the results of bilateral and guided image filtering re-

spectively, which transfer color-image edges to depth. (e) is our re-

sult that does not contain the texture patterns and unwanted edges

from (b), and (f) is the ground truth.

rect structural information. Otherwise, the guidance could

be insufficient, or even wrong locally.

However, many practical tasks with images in

RGB/depth [13], flash/no-flash [18], optical flow field/RGB

[25], disparity map/RGB [14, 12], RGB/NIR [27],

day/night [19] commonly contain inconsistent structures,

such as noise, holes, texture, shadow, highlight and multi-

spectrum data. They easily cause trouble to the filtering

process.

One example is shown in Figure 1, where (a) and (b) are

the input and reference images. Because (b) is with extra

edges not related to depth and the input image (a) is noisy,

joint filter generates unwanted structures as shown in (c)

and (d). It is thus necessary in joint filtering to choose cor-

rect edges since many of them are not suitable.

Our Mutual-Structure for Joint Filtering We in this pa-

per address the structure inconsistency problem and propose

the concept of mutual-structure to enhance the capability of

joint processing in restoring structure based on common in-

formation in target and reference images. The main contri-

bution is the principle not to completely trust the reference

13406



image in affinity definition. Instead, we take possible differ-

ence between the reference and target images into account

and estimate their mutual structures as a new reference for

joint filtering. Our result for Figure 1 is shown in (e), which

does not transfer those erroneous reference edges and tex-

tures.

This goal is achieved via a new objective function con-

sidering the common information between the target and

reference images, which we will detail later. This frame-

work is general to handle images with diverse structure or

in different spectral configuration. It optimally suppresses

information that does not present commonly in input im-

ages.

Our method benefits a large group of applications, in-

cluding depth/RGB image restoration, stereo matching,

shadow detection, matching outlier detection, joint segmen-

tation and cross-field image restoration. Our code is pub-

licly available for further employment and evaluation.

2. Background and Motivation

We review joint/guided image filters. The methods can

be categorized into local and global ones.

Local Joint Methods Local joint filters are mostly

the joint extension of single-image edge-preserving filters.

Weighted mean filter includes anisotropic diffusion [5], bi-

lateral filter [2, 8, 15, 3, 28, 30], guided filter [11], and

geodesic distance based filter [4, 9]. They define differ-

ent types of affinities between neighboring pixels consid-

ering color difference and spatial distance. The affinity is

then set as weights to locally smooth images. Edges can

be preserved because large affinities are yielded in low con-

trast regions while low affinities are set along edges. The

joint extension of these weighted mean filters sets affinity

weights according to another reference image.

Another line is weighted median [14, 32], which imposes

weights for different pixels under an affinity definition when

computing medians. A joint weighted median filter can be

constructed by computing weights from the reference im-

age. Another general mode filter is presented in [23].

Global Joint Schemes Global methods optimize func-

tions. They include total variation (TV) [20], weighted

least squares (WLS) [6], and scale map scheme [27]. These

methods restore images by optimizing functions involving

all or many pixels and containing regression terms defined

in the weighted L1 or L2 norm. Similar to local filter, joint

global optimization is yielded after calculating the weights

based on the reference image.

To preliminarily summarize related work, almost all joint

image filters identify important structures based on the ref-

erence image. These methods work best when the ref-

erence data contain all useful information. Contrary to

(a) Day Image (b) Night Image

(c) Mutual Structures (e) Smooth Regions(d) Inconsistent Structures

Figure 2. Examples of image structure correlation in a day/night

image pair. (a)-(b) Day and night images respectively. (c) Mutual

structure patch close-ups. (d) Inconsistent structure patches. (e)

Smooth patches. The images are from the time-lapse video of [22].

these approaches that are based on the perfect-reference-

structure assumption, our method considers possibly incon-

sistent edges, noise, texture, shadow and highlight. These

issues are common for natural images and captured multi-

spectral data. We explain our method in following sections.

3. Mutual-Structure for Joint Filtering

Images, even paired and registered, are hardly with the

same structures. We roughly categorize the difference

into three types using the illustration in Figure 2 where a

day/night image pair is presented.

• Mutual structures As shown in (c), mutual struc-

tures can be intuitively understood as common edges

arising in the corresponding two patches. These edges

are not necessarily with the same magnitude. The gra-

dient direction can also be reversed.

• Inconsistent structures Inconsistent structures are

different patterns between the two patches. There may

be many such structures in an image pair as shown in

Figure 2(d). When one edge appears only in one image

but not the other, it is regarded as inconsistent.

• Smooth regions There are common low-variance

smooth patches in images. They are easily influenced

by noise and other visual artifacts as shown in (e).

Among these types of joint structures, inconsistent edges

generally cause big problems when transforming erroneous

patterns to the target image. In this paper, we aim to find the

mutual-structure in both input images and let it guide the

joint filtering process. Accordingly, we not only filter the

target image, but as well optimize the reference under our
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formulation of mutual-structure based on a structure simi-

larity measure.

We give the definitions that will be used later in this pa-

per. We denote I0 and G0 as the target and reference images

respectively. The filtering output and updated reference im-

age with mutual structures are denoted as I and G respec-

tively. We also denote by p = (x, y)T pixel coordinates.

I0,p, G0,p, Ip and Gp are pixel intensities in I0, G0, I and

G. We process channels separately and use N(p) to denote

pixel set in the patch centered at p. The number of pixels in

N(p) is |N |.

4. Mutual-Structure Formulation

We measure structure similarity between corresponding

patches in I and G, and then define corresponding con-

straints. An objective function to jointly optimize I and G

are finally described.

4.1. Structure Similarity

Patch similarity between I and G regarding central pixel

p cannot be simply measured by summed gradient differ-

ence in the two patches. This problem has been studied for

years in many fields. One common and effective measure is

the normalized cross correlation (NCC), expressed as

ρ(Ip, Gp) =
cov(Ip, Gp)

√

σ(Ip)σ(Gp)
, (1)

where cov(Ip, Gp) is the covariance of patch intensity.

σ(Ip) and σ(Gp) denote the variance. When two patches

are with the same edges, even under different magnitudes,

|ρ(Ip, Gp)| = 1. Otherwise, |ρ(Ip, Gp)| < 1. |ρ(Ip, Gp)| is
large when the patch structures are similar.

Albeit with ideal properties in measurement, NCC is

hard to use directly due to its nonlinearity in our process

for structure optimization. To make the problem trackable,

we provide the following derivation to establish the rela-

tionship between NCC and simple least-square regression.

First, the well known least square regression function

f(I,G, a1p, a
0
p) of local patches N(p) is expressed as

f(I,G, a1p, a
0
p) =

∑

q∈N(p)

(a1pIq + a0p −Gq)
2, (2)

where a1p and a0p are the regression coefficients. This func-

tion linearly represent one patch in G by that in I . Then we

define e(Ip, Gp)
2 as the minimum error with the optimal a1p

and a0p. It is expressed as

e(Ip, Gp)
2 = min

a1
p,a

0
p

1

|N |
f(I,G, a1p, a

0
p). (3)

We prove in the following that e(Ip, Gp) is tightly related

to the NCC measure on the same input patches.

Claim 1. The relation between the mean square error

e(Ip, Gp) and NCC measure ρ(Ip, Gp) is

e(Ip, Gp) = σ(Gp)(1− ρ(Ip, Gp)
2), (4)

where σ(Gp) is the variance of patch centered at p in G.

Proof. In Eq. (3), e(Ip, Gp) reaches the minimum when

a1p =
cov(Ip,Gp)

σ(Ip)
and a0p = Gp − a1pIp, where Ip and Gp

are the mean intensities of patches centered at p on I and G

respectively. By simply substituting a1p and a0p into Eq. (3)

and arranging it according to Eq. (1), we obtain Eq. (4).

The claim explains when |ρ(Ip, Gp)| = 1, which in-

dicates the two patches only contain mutual structure,

e(Ip, Gp) reaches 0. Following the same procedure, we

construct

e(Gp, Ip)
2 = min

b1p,b
0
p

1

|N |
f(G, I, b1p, b

0
p), (5)

and also conclude e(Gp, Ip) = 0 when |ρ(Ip, Gp)| = 1. In

this case, we take the I as the guidance image and G is the

target, which is unconventional in filter design.

Our Patch Similarity Measure We define our final patch

similarity measure as the sum of the two above functions

defined symmetrically as

S(Ip, Gp) = e(Ip, Gp)
2 + e(Gp, Ip)

2. (6)

According to Eqs. (3) and (4) and considering ρ(Ip, Gp) =
ρ(Gp, Ip), this measure boils down to

S(Ip, Gp) = (σ(Ip)
2 + σ(Gp)

2)(1− ρ(Ip, Gp)
2)2. (7)

We analyze its property in what follows based on the 1D

signal example illustrated in Figure 3.

• Mutual-Structure Patches When |ρ(Ip, Gp)| ap-

proaches 1, S(Ip, Gp) moves towards 0 in Eq. (7) in-

dicating the two patches are with common edges as

shown in Figure 3(a).

• Inconsistent Structure Patches As shown in (b),

when NCC measure |ρ(Ip, Gp)| outputs a small value

for patches containing edges (i.e., at least σ(Ip) or

σ(Gp) is large in Eq. (7)), these edges must be incon-

sistent. In this case, S(Ip, Gp) outputs a large value.

• Smooth Patches When the patches do not contain

significant edges, as shown in (c), σ(Ip) and σ(Gp) are

both small. S(Ip, Gp) therefore outputs a small value.

This special case can also be treated as the mutual-

structure patches since they are similarly smooth.
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(a) Mutual Structures (b) Inconsistent Structures (c) Smooth Regions

Figure 3. 1D Example. (a) Mutual structure in two patches. (b)

Inconsistent structure. (c) Smooth regions.

According to the above analysis, optimizing Eq. (7)

to minimize S(Ip, Gp) can almost achieve our goal in the

patch level. We propose image-level optimization to glob-

ally search mutual structure.

Final Image Structure Measure Based on the patch-level

analysis, we propose the essential image structure similarity

term as

ES(I,G, a, b)=
∑

p

(

f(I,G, a1p, a
0
p)+f(G,I, b1p, b

0
p)
)

, (8)

which is the sum of patch-level information. a and b are the

coefficient sets of {a1p, a
0
p} and {b1p, b

0
p} respectively. This

term only contains simple least square regression functions,

which can be efficiently optimized.

4.2. Other Terms in Global Optimization

We note optimizing only the mutual structure function

ES(I,G, a, b) on I and G may not produce expected re-

sults. It is because it can produce the trivial solution where

the resulting corresponding patches or the whole images of

I and G contain no edge at all. This trivial result is natu-

rally the global optimum of ES(I,G, a, b). We introduce

more constraints to avoid the trivial solution and produce

reasonable smoothing effect to remove noise.

The trivial solution can be circumvented by requiring I

and G not to wildly deviated from I0 and G0 respectively.

It thus leads to our image similarity prior function

Ed(I,G) =
∑

p

λ‖Gp −G0,p‖+ β‖Ip − I0,p‖, (9)

where λ and β are two parameters. We apply the l2-norm

distance on intensity due to its fast computation.

Further to introduce reasonable ability to smooth the tar-

get image by removing noise and other visual artifacts, we

reduce patch intensity variance. In Eq. (6), the two patches

in I and G are linearly regressed by each other. Zero vari-

ance is yielded when a1p = 0 and b1p = 0. So the last

smoothing term is written as

Er(a, b) =
∑

p

(ε1a
1
p

2
+ ε2b

1
p

2
), (10)

where ε1 and ε2 control smoothness strength on G and I

respectively. Note that this term is related to the ridge re-

gression applied by guided image filter [11]. But our form

is different on incorporating two-direction regression errors.

It is just one component in our global optimization.

Algorithm 1 Mutual-Structure Estimation

Require: I0, G0, N iter, λ, β, ε1, ε2
Ensure: I , G

1: Initialize I(0) and G(0)

2: for t:= 0 to N iter do

3: Update a(t), b(t) according to Eqs. (12) and (13).

4: Optimize G(t+1) and I(t+1) by Eq. (14).

5: end for

6: I ← I(N
iter), G← G(N iter)

4.3. Final Objective

According to the mutual-structure properties, our final

objective function for jointly estimating I and G is the com-

bination of the above three functions:

E(I,G, a, b)=ES(I,G, a, b)+Ed(I,G)+Er(a, b). (11)

a and b are regression coefficient sets, which also need to

be optimized. The optimization is a process to get filter-

ing output I and mutual-structure G from I0 and G0 after

reasonable smoothing.

We use the efficient alternating optimization based on the

derivatives and Jacobi method [27] to solve it. We detail our

numerical solution below.

5. Numerical Solution

Our alternative updating scheme is sketched in Algo-

rithm 1. The major steps are the following two.

• Given G(t) and I(t), update a(t) and b(t).

• Fix a(t) and b(t), optimize G(t+1) and I(t+1).

t indexes the number of iterations. By decomposing the

problem into two sub-ones, each update only needs to solve

the quadratic problem in a closed form.

Update a(t) & b(t) Given I(t) and G(t), we update a(t)

and b(t) by setting their derivatives to zeros, yielding

a
1
p

(t)
=

cov(I
(t)
p , G

(t)
p )

σ(Itp) + ε1
, a

0
p

(t)
= µ(G(t)

p )− a
1
p

(t)
µ(I(t)p ), (12)

b
1
p

(t)
=

cov(G
(t)
p , I

(t)
p )

σ(Gt
p) + ε2

, b
0
p

(t)
= µ(I(t)p )− b

1
p

(t)
µ(G(t)

p ), (13)

where µ(I
(t)
p ) and µ(G

(t)
p ) are the mean intensity of I(t) and

G(t) in N(p).

Optimize G(t+1) & I(t+1) With a(t) and b(t), we update

G(t+1) and I(t+1) similarly. It yields the linear system as







G
(t+1)
p = 1

M
(t)
G

(J
(t)
G I

(t+1)
p +K

(t)
G + λG0,p),

I
(t+1)
p = 1

M
(t)
I

(J
(t)
I G

(t+1)
p +K

(t)
I + βI0,p),

(14)
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(a) Input I0 (b) I at Iteration 1 (c) I at Iteration 10 (d) Final I

(e) Reference G0 (f) G at Iteration 1 (g) G at Iteration 10 (h) Final G

Figure 4. Result updated in iterations. Given the noisy natural image in (e) and imperfect depth layer in (a), (b) and (f) show the results of I

and G in the first iteration. (c) and (g) are the results after ten iterations. (d) and (h) are the final results after 20 iterations for convergence.

whereM
(t)
G , J

(t)
G , K

(t)
G , M

(t)
I , J

(t)
I andK

(t)
I are coefficients

computed from a(t) and b(t). Among them, J
(t)
G and J

(t)
I are

the coefficients expressed as

J
(t)
G = µ(b1p

(t)
) + µ(a1

p

(t)
), J

(t)
I = µ(b1p

(t)
) + µ(a1

p

(t)
). (15)

K
(t)
G and K

(t)
I are the constant denoted as

K
(t)
G = µ(a0

p

(t)
)− µ(b1p

(t)
b
0
p

(t)
),

K
(t)
I = µ(b0p

(t)
)− µ(a1

p

(t)
a
0
p

(t)
). (16)

M
(t)
G and M

(t)
I are the normalization terms written as

M
(t)
G =

λ

|N |
+ µ(b1p

(t)
b
1
p

(t)
) + 1,

M
(t)
I =

β

|N |
+ µ(a1

p

(t)
a
1
p

(t)
) + 1. (17)

The update stages only contain the simple mean operation

and multiplication. They can be implemented efficiently us-

ing box filter. We apply the fast box filter based on the inte-

gral image implemented in [11].

Algorithm Analysis We first update a(t) and b(t). Ac-

cording to Eqs. (12) and (13), ε1 and ε2 make a1p and b1p
close to zero for small covariance patches. It introduces the

smoothing effect. Update of G(t+1) and I(t+1) by Eq. (14)

is under the structure similarity constraint. Similar struc-

tures are preserved to minimize the cost.

To demonstrate the iterative updating effects of our al-

gorithm, we show an example in Figure 4 where the input

is a captured depth image with much noise and the refer-

ence image is the corresponding color image. Inconsistent

edges and texture exist. We show the results of our methods

in iterations 1 and 10 where inconsistent edges are removed

gradually. After convergence in 20 iterations, our results are

only with the edges that exist in two images under proper

smoothing to remove noise and inconsistency.

Relation with Other Methods Our method is different

from other existing filters and from naively applying joint

filter in two directions to update the reference and target

images in iterations.

We first compare our solution with iterative joint bilat-

eral filter [16], which iteratively filters the input with the

fixed reference image. Although both methods are strong-

edge preserving, the iterative joint bilateral filter does not

address our aforementioned structure transferring problem

from reference to target. We show an example in Figure 5

where (a) and (b) are the input noisy depth and correspond-

ing color image with inconsistent structure. We show the

result of iterative joint bilateral filter in (c). Note that other

joint filters share similar properties.

We also compare our method with rolling guidance filter

(RGF) [32]. We make RGF a joint form on two images by

merging channels of the two images into one and employing

the high dimensional bilateral filter [10]. As shown in (d),

it still cannot get the complete mutual structure.

Another iterative filter to compare is alternatively chang-
ing the role of reference and target images and iteratively
applying guided image filter. The stages are denoted as

I
(t+1) = GF (I(t), G(t)), G

(t+1) = GF (G(t)
, I

(t+1)), (18)

where GF (I(t), G(t)) is the guided image filter with input

I(t) and guidance image G(t). We set the initialization I(0)

and G(0) as I0 and G0 respectively. The result is shown in

Figure 5(e), which similarly suffers from structure transfer.
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(a) Input Noisy Depth (b) Color Reference

(c) Iterative Joint Filter (d) Rolling Guidance Filter

(e) Method of Eq. (18) (f) Ours

Figure 5. Comparison with other iterative joint filters. (a) and (b)

show the input and reference images respectively. (c)-(d) are the

results of iterative joint bilateral filter and rolling guidance filter.

(e) is obtained by alternatively applying guided filter as Eq. (18).

These three results all have unwanted structure transferred from

the color image to depth. (f) is our result.

Our result shown in (f) does not have this problem be-

cause we take both the removal of inconsistent structure and

preserving mutual edges into account.

6. Experiments and Applications

Our method takes aligned target and reference images as

the input. We employ the dense multi-modal and spectral

matching method [21] to align them if there are a level of

non-rigid displacement between images.

We extensively evaluate mutual-structure for joint filter-

ing. Our algorithm is easy to implement and the code is

publicly available online. The method has parameters λ, β,

ε1, and ε2. We set λ and β in range 30−300, which control

the deviation to G0 and I0 respectively. ε1 and ε2 control

the smoothness of G and I respectively. We set them around

1E − 5.

In Algorithm 1, we tested different initialization meth-

ods for I(0) and G(0) and found that setting I(0) and G(0) as

the smoothed version of I0 and G0 can achieve fast conver-

gence. Our initial smoothness is by rolling guidance filter

for its ability to remove strong noise pattern and textures.

Our method takes about 20 iterations to get the final results.

All our experiments are performed on a PC with an Intel

Core i7 3.4GHz CPU (one thread used) and 8GB memory.

For an image with size 800 × 600, the running time is 5

seconds with 20 iterations in MATLAB.

6.1. Applications

Our mutual-structure for joint filtering benefits sev-

eral important applications due to the inconsistent struc-

ture handling and the high performance. We apply it to

RGB/Depth image restoration, stereo matching, RGB/NIR

image restoration, joint structure extraction and segmenta-

tion, and image matching outlier detection. Our method

is generally comparable to or outperforms other filtering

schemes due to its unique mutual-structure property.

RGB/depth Restoration Our mutual-structure is suitable

for RGB/depth image restoration. While RGB/depth im-

ages are captured by depth cameras (e.g. Microsoft Kinect),

they always contain inconsistent structures and respective

artifacts. Specifically, the RGB image is often with rich de-

tails while the depth image is noisy and with holes. Figure

6 shows the comparison of using joint bilateral filter [2],

guided image filter [11], weighted median filter [32], the

method of [13] and our mutual-structure for joint filtering

on these kinds of data. (d-f) are produced by joint bilat-

eral filter, guided image filter, and weighted median filter

without mutual-structure computation. The result of [13] in

(g) is a bit blurry because of the patch-based scheme. Our

method achieves decent results without transferring erro-

neous structures from the reference as shown in (h). PSNR

is calculated for each method.

Moreover, we evaluate our mutual-structure method for

RGB/depth restoration on the dataset of [13]. Our method

achieves 0.2% higher PSNRs compared with the state-of-

the-art solution on average as reported in Figure 7. More-

over, the running time is 50+ times faster because we only

need a few quick iterations.

Stereo Matching Considering structure inconsistency be-

tween the cost volume and color image, our mutual struc-

ture for joint filtering is applicable to stereo matching. We

conduct experiments based on the local stereo matching

framework provided by Hosni et al. [12]. The framework

mainly includes cost volume computation, cost aggregation,

disparity computation (winner-take-all) and post process-

ing. Joint image filtering is employed for cost aggregation.

We compare our mutual-structure for joint filtering with

other commonly employed filters, such as bilateral filter [2,

29], guided image filter [11, 12], and tree filtering [29] in

the cost aggregation step. According to the results shown in

Figure 8, our method outperforms other aggregation joint

filters.
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PSNR=34.02

(a) Reference (b) Input (c) Ground Truth (d) Joint Bilateral Filter

PSNR=34.68 PSNR=35.12 PSNR=36.15 PSNR=37.19

(e) Guided Image Filter (f) Weighted Median Filter (g) Result of [13] (h) Ours

Figure 6. Noisy RGB/Depth image restoration by different methods. (a) and (b) show the input and reference image respectively. (c) is the

ground truth depth. (d-h) are the results of different methods. Among them, (g) is released by the authors [13]. PSNRs are reported for all

results.
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Figure 7. Comparison of different methods for RGB/Depth restoration on the dataset of [13]. We report the PSNRs of the first 20 noisy

depth/RGB pairs of the Middlebury dataset using different methods.

Joint Structure Extraction and Segmentation The

mutual-structure in our algorithm is actually a solution

when the goal is to extract common structures in two im-

ages that are from two distinct domains. We conduct ex-

periments on multi-spectral image pairs, which are often

with structure inconsistency because of shadow, highlight

and moving objects. Two examples are shown in Figure 9.

Our mutual-structure also benefits joint segmentation for

very complex scenes as shown in Figure 10 where (a) and

(b) are the night and day images respectively. (c) is the

MCG [1] segmentation result directly on the night image.

It does not highlight main components because of the com-

plex content. (d) is the MCG result applied on our mutual-

structure, which segments the common objects out in both

the day and night images.

Matching Outlier Detection One very challenging prob-

lem in image matching is on how to detect matching out-

liers. We handle this problem by finding common struc-

tures, so that the residual between the warped image and

the mutual structure forms a good-quality matching-outlier-

map. We show an example in Figure 11 to illustrate the

effectiveness to find mismatches.

Other Applications Our joint filtering method can also deal

with structure transferring in RGB/NIR image restoration.

Compared with state-of-the-art method [27], our mutual-

structure for joint filtering produces comparable results.

The running time is 20 times shorter because of the very

efficient iteration steps. More applications, such as joint

shadow detection and image enhancement, are provided in

our project website.

7. Conclusion and Future Work

We have presented a new scheme for jointly process-

ing images while addressing the common structure incon-

sistency problem when applying two-image smoothing. It

provides new insight on how to avoid transferring unwanted

3412



(a) Bilateral Filter (Error 1.81) (b) Guided Filter (Error 2.50)

(c) Tree Filter (Error 1.58) (d) Ours (Error 1.42)

Figure 8. Comparison on stereo matching. (a-c) show the results

of bilateral filter, guided filter and tree filter. (d) is our result. Pixel

errors larger than 1 pixel are reported.

(a) (b) (c) (d)

Figure 9. Joint structure extraction. (a) and (b) are two inputs. (c)

is the estimated mutual-structure. (d) shows the common structure

of (a) and (b) extracted from the mutual structure (c).

structure from the reference to target images. We have dis-

cussed that this type of structure discrepancy commonly

arises in almost all image pairs for finding useful informa-

tion. Our solution stems from maximizing mutual-structure

similarity. It leads to an algorithm-level scheme to optimize

the mutual-structure. Our future work will be to extend this

framework to more tasks in other disciplines where the ref-

erence data can be obtained from different sources.
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(a) Night Image (b) Day Image

(c) MCG on Night Image (d) MCG on Ours

Figure 10. Example of joint segmentation. (a) and (b) are the night

and day images respectively. (c) is the result by MCG [1] on (a).

(d) is MCG result on our estimated mutual-structure.

(a) Ref. Image (b) Target Image (c) Matched Image

(d) Naive Outlier (e) Mutual Structure (f) Our Outlier

Figure 11. Image matching outlier detection. (a) and (b) are the

reference and target images respectively. (c) is the matching re-

sult of [25]. (d) is the outlier by naively comparing (a) and (c).

(f) shows our detected matching outlier by comparison of (c) and

mutual-structure shown in (e).

(a) Noisy RGB (b) Clean NIR

(c) Result of [27] (d) Ours

Figure 12. Example of RGB/NIR image restoration. (a) and (b)

are the noisy RGB and clean NIR image respectively. (c) is the

result of [27] and (d) is our result.
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