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Abstract

This paper addresses the problem of handling spatial

misalignments due to camera-view changes or human-pose

variations in person re-identification. We first introduce a

boosting-based approach to learn a correspondence struc-

ture which indicates the patch-wise matching probabilities

between images from a target camera pair. The learned cor-

respondence structure can not only capture the spatial cor-

respondence pattern between cameras but also handle the

viewpoint or human-pose variation in individual images.

We further introduce a global-based matching process. It

integrates a global matching constraint over the learned

correspondence structure to exclude cross-view misalign-

ments during the image patch matching process, hence

achieving a more reliable matching score between images.

Experimental results on various datasets demonstrate the

effectiveness of our approach.

1. Introduction

Person re-identification (Re-ID) is of increasing impor-

tance in visual surveillance. The goal of person Re-ID is to

identify a specific person indicated by a probe image from

a set of gallery images captured from cross-view cameras

(i.e., cameras that are non-overlapping and different from

the probe image’s camera). It remains challenging due to

the large appearance changes in different camera views and

the interferences from background or object occlusion.

One major challenge for person Re-ID is the uncon-

trolled spatial misalignment between images due to camera-

view changes or human-pose variations. For example,

in Fig. 1a, the green patch located in the lower part in

camera A’s image corresponds to patches from the upper

part in camera B’s image. However, most existing works

[31, 12, 13, 8, 9, 10, 24, 21, 34, 3] focus on handling the

overall appearance variations between images, while the

(a) (b) (c)

Figure 1. (a) and (b): Two examples of using a correspondence

structure to handle spatial misalignments between images from a

camera pair. Images are obtained from the same camera pair: A

and B. The colored squares represent sample patches in each im-

age while the lines between images indicate the matching prob-

ability between patches (line width is proportional to the proba-

bility values). (c): The correspondence structure matrix including

all patch matching probabilities between A and B (the matrix is

down-sampled for a clearer illustration). (Best viewed in color)

spatial misalignment among images’ local patches is not ad-

dressed. Although some patch-based methods [19, 16, 33]

address the spatial misalignment problem by decomposing

images into patches and performing an online patch-level

matching, their performances are often restrained by the on-

line matching process which is easily affected by the mis-

matched patches due to similar appearance or occlusion.

In this paper, we argue that due to the stable setting of

most cameras (e.g., fixed camera angle or location), each

camera has a stable constraint on the spatial configuration of

its captured images. For example, images in Fig. 1a and 1b

are obtained from the same camera pair: A and B. Due to

the constraint from camera angle difference, body parts in

camera A’s images are located at lower places than those in

camera B, implying a lower-to-upper correspondence pat-

tern between them. Meanwhile, constraints from camera

locations can also be observed. Camera A (which monitors

an exit region) includes more side-view images, while cam-

era B (monitoring a road) shows more front or back-view

images. This further results in a high probability of side-to-
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front/back correspondence pattern.

Based on this intuition, we propose to learn a corre-

spondence structure (i.e., a matrix including all patch-wise

matching probabilities between a camera pair, as Fig. 1c) to

encode the spatial correspondence pattern constrained by a

camera pair, and utilize it to guide the patch matching and

matching score calculation processes between images. With

this correspondence structure, spatial misalignments can be

suitably handled and patch matching results are less inter-

fered by the confusion from appearance or occlusion. In or-

der for the correspondence structure to model human-pose

variations or local viewpoint changes inside a camera view,

the correspondence structure for each patch is described by

a one-to-many graph whose weights indicate the matching

probabilities between patches, as in Fig. 1. Besides, a global

constraint is also integrated during the patch matching pro-

cess, so as to achieve a more reliable matching score be-

tween images. Note that our approach is not limited to per-

son re-identification with fixed camera settings. Instead, it

can also be applied to capture the camera-and-person con-

figuration and cross-view correspondence for unfixed cam-

eras, as demonstrated in the experimental results.

In summary, our contributions to person Re-ID are three

folds. First, we introduce a correspondence structure to en-

code cross-view correspondence pattern between cameras,

and develop a global-based matching process by combin-

ing a global constraint with the correspondence structure

to exclude spatial misalignments between images. These

two components in fact establish a novel framework for

addressing the person Re-ID problem. Second, under this

framework, we propose a boosting-based approach to learn

a suitable correspondence structure between a camera pair.

The learned correspondence structure can not only capture

the spatial correspondence pattern between cameras but also

handle the viewpoint or human-pose variation in individual

images. Third, this paper releases a new and challenging

benchmark ROAD DATASET for person Re-ID.

The rest of this paper is organized as follows. Sec. 2

reviews related works, and describes the framework of the

proposed approach. Sections 3 to 4 describe the details of

our proposed global-based matching process and boosting-

based learning approach, respectively. Sec. 5 shows the ex-

perimental results and Sec. 6 concludes the paper.

2. Related Works and Overview

Many person re-identification methods have been pro-

posed. Most of them focus on developing suitable fea-

ture representations about humans’ appearance [31, 12, 13,

8, 15], or finding proper metrics to measure the cross-

view appearance similarity between images [9, 10, 24, 21].

Since these works do not effectively model the spatial mis-

alignment among local patches inside images, their perfor-

mances are often limited due to the interferences from view-

Figure 2. Framework of the proposed approach.

point changes and human-pose variations.

In order to address the spatial misalignment problem,

some patch-based methods are proposed [25, 19, 4, 16, 33,

32, 6, 22] which decompose images into patches and per-

form an online patch-level matching to exclude patch-wise

misalignments. In [25, 4], a human body in an image is first

parsed into semantic parts (e.g., head and torso). And then,

similarity matching is performed between the correspond-

ing semantic parts. Since these methods are highly depen-

dent on the accuracy of body parser, they have limitations

in scenarios where the body parser does not work reliably.

In [19], Oreifej et al. divide images into patches accord-

ing to appearance consistencies and utilize the Earth Movers

Distance (EMD) to measure the overall similarity among

the extracted patches. However, since the spatial correlation

among patches are ignored during similarity calculation, the

method is easily affected by the mismatched patches with

similar appearance. Although Ma et al. [16] introduce a

body prior constraint to avoid mismatching between distant

patches, the problem is still not well addressed, especially

for the mismatching between closely located patches.

To reduce the effect of patch-wise mismatching, some

saliency-based approaches [33, 32] are recently proposed,

which estimate the saliency distribution relationship be-

tween images and utilize it to control the patch-wise match-

ing process. Although these methods consider the corre-

spondence constraint between patches, our approach dif-

fers from them in: (1) our approach focuses on constructing

a correspondence structure where patch-wise matching pa-

rameters are jointly decided by both matched patches. Com-

paratively, the matching weights in the saliency-based ap-

proach [32] is only controlled by patches in the probe-image

(probe patch). (2) Our approach models patch-wise cor-

respondence by a one-to-many graph such that each probe

patch will trigger multiple matches during the patch match-

ing process. In contrast, the saliency-based approaches only

select one best-matched patch for each probe patch. (3)

Our approach introduces a global constraint to control the

patch-wise matching result while the patch matching result

in saliency-based approaches is locally decided by choosing

the best-matched one within a neighborhood set.

Overview of our approach The framework of our ap-
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proach is shown in Fig. 2. During the training process,

which is detailed in Section 4, we present a boosting-based

process to learn the correspondence structure between the

target camera pair. During the prediction stage, which is de-

tailed in Section 3 given a probe image and a set of gallery

images, we use the correspondence structure to evaluate

the patch correlations between the probe image and each

gallery image, and find the optimal one-to-one mapping be-

tween patches, and accordingly the matching score. The

Re-ID result is achieved by ranking gallery images accord-

ing to their matching scores.

3. Person Re-ID via Correspondence Structure

This section introduces the concept of correspondence

structure, show the scheme of computing the patch correla-

tion using the correspondence structure, and finally present

the patch-wise mapping method to compute the matching

score between the probe image and the gallery image.

3.1. Correspondence structure

The correspondence structure, ΘA,B , encodes the spa-

tial correspondence distribution between a pair of cam-

eras, A and B. In our problem, we adopt a discrete dis-

tribution, which is a set of patch-wise matching probabil-

ities, ΘA,B = {P (xAi , B)}NA

i=1, where NA is the num-

ber of patches of an image in camera A. P (xAi , B) =
{P (xAi , x

B
1 ), P (x

A
i , x

B
2 ), . . . , P (x

A
i , x

B
NB

)} describes the

correspondence distribution in an image from camera B

for the ith patch xAi of an image captured from camera A,

where NB is the number of patches of an image in B. An

illustration of the correspondence distribution is shown on

the top-right of Fig. 1c.

The definition of the matching probabilities in the corre-

spondence structure only depends on a camera pair and are

independent to the specific images. In the correspondence

structure, it is possible that one patch in camera A is highly

correlated to multiple patches in camera B, so as to handle

human-pose variations and local viewpoint changes.

3.2. Patch correlation

Given a probe image U in camera A and a gallery image

V in camera B, the patch-wise correlation between U and

V , C(xUi , x
V
j ), is computed from both the correspondence

structure between two cameras and the visual features:

C(xUi , x
V
j ) = λTc

(P (xUi , x
V
j )) · log Φ(fxU

i
, fxV

j
;xUi , x

V
j ).

(1)

Here xUi and xVj are ith and jth patch in images U and

V ; fxU
i

and fxV
j

are the feature vectors for xUi and xVj .

P (xUi , x
V
j ) is the correspondence structure between U and

V . Since all probe/gallery image pairs from camera A and

B share the same correspondence structure, P (xUi , x
V
j ) can

also be denoted by P (xAi , x
B
j ). λTc

(P (xUi , x
V
j )) = 1, if

P (xUi , x
V
j ) > Tc, and 0 otherwise, and Tc = 0.05 is

a threshold. Φ(fxU
i
, fxV

j
;xUi , x

V
j ) is the correspondence-

structure-controlled similarity between xUi and xVj ,

Φ(fxU
i
, fxV

j
;xUi , x

V
j ) = Φz(fxU

i
, fxV

j
)P (xUi , x

V
j ), (2)

where Φz(fxU
i
, fxV

j
) is the similarity between xUi and xVj .

The correspondence structure P (xUi , x
V
j ) in Equa-

tions 1 and 2, is used to adjust the appearance simi-

larity Φz(fxU
i
, fxV

j
) such that a more reliable patch-wise

correlation strength can be achieved. The threshold-

ing term λTc
(P (xUi , x

V
j )) is introduced to exclude the

patch-wise correlation with a low correspondence probabil-

ity, which effectively reduces the interferences from mis-

matched patches with similar appearance.

The patch-wise appearance similarity Φz(fxU
i
, fxV

j
) in

Eq. 2 can be achieved by many off-the-shelf meth-

ods [33, 32, 2]. In this paper, we extract Dense SIFT

and Dense Color Histogram [33] from each patch and

utilize the KISSME distance metric [10] to compute

Φz(Φz(fxU
i
, fxV

j
)) (note that we train different KISSME

metrics for patch-pairs at different locations). Both the fea-

ture extraction and distance metric learning parts can be re-

placed by other state-of-the-art methods for further improv-

ing performance.

3.3. Patch­wise mapping

With C(xUi , x
V
j ), the alignment-enhanced correlation

strength, we can find a best-matched patch in image V

for each patch in U and herein calculate the final image

matching score. To compute C(xUi , x
V
j ) of testing image

pair, we only consider the potential matching patches within

a searching range around the chosen probe patch1, which

is 32 in this paper. However, locally finding the largest

C(xUi , x
V
j ) may still create mismatches among patch pairs

with high matching probabilities. For example, Fig. 3a

shows an image pair U and V containing different people.

When locally searching for the largest C(xUi , x
V
j ), the yel-

low patch in U will be mismatched to the bold-green patch

in V since they have both large appearance similarity and

high matching probability. This mismatch unsuitably in-

creases the matching score between U and V .

To address this problem, we introduce a global one-to-

one mapping constraint and solve the resulting linear as-

signment task [11] to find the best matching:

Ω
∗
U,V = argmax

ΩU,V

∑

{xU
i ,xV

j }∈ΩU,V

C(xUi , x
V
j ) (3)

s.t. xUi 6= xUs , x
V
j 6= xVt ∀ {xUi , x

V
j }, {x

U
s , x

V
t } ∈ ΩU,V

1The measurement unit for the searching range used in this paper is

d(·) as defined in Eq.6.
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(a) (b)

Figure 3. Patch matching result (a) by locally finding the largest

correlation strength C(xUi , x
V
j ) for each patch and (b) by using

a global constraint. The red dashed lines indicate the final patch

matching results and the colored solid lines are the matching prob-

abilities in the correspondence structure. (Best viewed in color)

where Ω
∗
U,V is the set of the best patch matching result be-

tween images U and V . {xUi , x
V
j } and {xUs , x

V
t } are two

matched patch pairs in Ω. According to Eq. 3, we want to

find the best patch matching result Ω∗
U,V that maximizes the

total image matching score

ψU,V =
∑

{xU
i ,xV

j }∈ΩU,V

C(xUi , x
V
j ), (4)

given that each patch in U can only be matched to one patch

in V and vice versa.

Eq. 3 can be solved by the Hungarian method [11].

Fig. 3b shows an example of the patch matching result by

Eq. 3. From Fig. 3b, it is clear that by the inclusion of a

global constraint, local mismatches can be effectively re-

duced and a more reliable image matching score can be

achieved. Based on the above process, we can calculate the

image matching scores ψ between a probe image and all

gallery images in a cross-view camera, and rank the gallery

images accordingly to achieve the final Re-ID result [16].

4. Correspondence Structure Learning

4.1. Objective function

Given a set of probe images {Uα} from camera A and
their corresponding cross-view images {Vβ} from camera
B in the training set, we learn the optimal correspondence
structure Θ

∗
A,B between cameras A and B so that the cor-

rect match image is ranked before the incorrect match im-
ages in terms of the matching scores. The formulation is:

min
ΘA,B

∑

Uα

R(Vα′ ;ψUα,Vα′ (ΘA,B),ΨUα,Vβ 6=α′ (ΘA,B)), (5)

where Vα′ is the correct match gallery image of the probe

image Uα. ψUα,Vα′ (ΘA,B) (as computed from Eq. 4) is the

matching score betweenUα and Vα′ and ΨUα,Vβ 6=α′ (ΘA,B)
is the set of matching scores of all incorrect match images.

R(Vα′ ;ψUα,Vα′ (ΘA,B),ΨUα,Vβ 6=α′ (ΘA,B)) is the rank of

Vα′ among all the gallery images according to the matching

scores. Intuitively, the penalty is the smallest if the rank is 1,

i.e., the matching score of Vα′ is the greatest. The optimiza-

tion is not easy as the matching score (Eq. 4) is complicated.

We present an approximate solution, a boosting-based pro-

cess, to solve this problem.

4.2. Boosting­based learning

The boosting-based approach utilizes a progressive way

to find the best correspondence structure with the help of

binary mapping structures. A binary mapping structure is

similar to the correspondence structure except that it simply

utilizes 0 or 1 instead of matching probabilities to indicate

the connectivity or linkage between patches, cf. Fig. 4a. It

can be viewed as a simplified version of the correspondence

structure which includes rough information about the cross-

view correspondence pattern.

Since binary mapping structures only include simple

connectivity information among patches, their optimal so-

lutions are tractable for individual probe images. There-

fore, by searching for the optimal binary mapping structures

for different probe images and utilizing them to progres-

sively update the correspondence structure, suitable cross-

view correspondence patterns can be achieved.

The entire boosting-based learning process can be de-

scribe by the following steps as well as Algorithm 1.

Finding the optimal binary mapping structure. For

each training probe image Uα, we first create multiple can-

didate binary mapping structures under different searching

ranges (from 26 to 32) by adjacency-constrained search

[33], and then find the optimal binary mapping structure

Mα such that the rank order of Uα’s correct match image

Vα′ is minimized under Mα. Note that we find one optimal

binary mapping structure for each probe image such that the

obtained binary mapping structures can include local cross-

view correspondence clues in different training samples.

Correspondence Structure Initialization. In this pa-

per, patch-wise matching probabilities P (xUi , x
V
j ) in the

correspondence structure are initialized by:

P 0(xUi , x
V
j ) ∝











0, if d(xVi , x
V
j ) ≥ Td

1

d(xVi , x
V
j ) + 1

, otherwise
, (6)

where xVi is xUi ’s co-located patch in camera B, such as

the two blue patches in Fig. 4d. d(xVi , x
V
j ) is the distance

between patches xVi and xVj . It is defined as the number of

strides to move from xVi to xVj in the zig-zag order. Td is

a threshold which is set to be 32 in this paper. According

to Eq. 6, P 0(xUi , x
V
j ) is inversely proportional to the co-

located distance between xVi and xVj and will equal to 0 if

the distance is larger than a threshold.

Binary mapping structure selection. During each it-

eration k in the learning process, we first apply correspon-

dence structure Θ
k−1
A,B = {P k−1(xUi , x

V
j )} from the previ-
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Algorithm 1 Boosting-based Learning Process

Input: A set of training probe images {Uα} from camera A and

their corresponding cross-view images {Vβ} from camera B

Output: ΘA,B = {P (xUi , y
V
j )}, the correspondence structure

between {Uα} and {Vβ}

1: Find an optimal binary mapping structure Mα for each probe

image Uα, as described in the 4-th paragraph in Sec 4.2

2: Set k = 1. Initialize P 0(xUi , y
V
j ) by Eq. 6.

3: Use the current correspondence structure {P k−1(xUi , x
V
j )} to

perform Re-ID on {Uα} and {Vβ}, and select 20 binary map-

ping structures Mα based on the Re-ID result, as described in

the 6-th paragraph in Sec 4.2

4: Compute updated match probability P̂ k(xUi , x
V
j ) by Eq. 7

5: Update the matching probabilities P k(xUi , x
V
j ) by Eq. 12

6: Set k = k + 1 and go back to step 3 if not converged or not

reaching the maximum iteration number

7: Output {P (xUi , y
V
j )}

ous iteration to calculate the rank orders of all correct match

images Vα′ in the training set2 Then, we randomly select 20
Vα′ where half of them are ranked among top 50% (imply-

ing better Re-ID results) and another half are ranked among

the last 50% (implying worse Re-ID results). Finally, we

extract binary mapping structures corresponding to these

selected images and utilize them to update and boost the

correspondence structure.

Note that we select binary mapping structures for both

high- and low-ranked images in order to include a variety of

local patch-wise correspondence patterns. In this way, the

final obtained correspondence structure can suitably handle

the variations in human-pose or local viewpoints.

Calculating the updated matching probability. With

the introduction of the binary mapping structure Mα, we

can model the updated matching probability in the corre-

spondence structure by:

P̂ k(xUi , x
V
j ) =

∑

Mα∈Γk

P̂ (xUi , x
V
j |Mα) · P (Mα) , (7)

where P̂ k(xUi , x
V
j ) is the updated matching probability be-

tween patches xUi and xVj in the k-th iteration. Γk is the set

of binary mapping structures selected in the k-th iteration.

P (Mα) =
R̃n(Mα)

∑
Mγ∈Γk R̃n(Mγ)

is the prior probability for bi-

nary mapping structure Mα, where R̃n(Mα) is the CMC

score at rank n [23] when using Mα as the correspondence

structure to perform person Re-ID over the training images.

n is set to be 5 in our experiments. Similar to C(xUi , x
V
j ),

when calculating matching probabilities, we only consider

patch pairs whose distances are within a range (cf. Eq. 6),

while probabilities for other patch pairs are simply set as 0.

P̂ (xUi , x
V
j |Mα) is the updated matching probability be-

tween xUi and xVj when including the local correspondence

2For efficiency, the global constraint in Eq. 3 is not applied in training.

pattern information of Mα. It can be calculated by:

P̂ (xUi , x
V
j |Mα) = P̂ (xVj |x

U
i ,Mα) · P̂ (x

U
i |Mα) , (8)

P̂ (xVj |x
U
i ,Mα) is the updated probability to correspond

from xUi to xVj when including Mα, calculated as

P̂ (xVj |x
U
i ,Mα) ∝

{

1, if m{xU
i ,xV

j } ∈ Mα

ÃxV
j |xU

i ,Mα
, otherwise

, (9)

where m{xU
i ,xV

j } is a patch-wise link connecting xUi and

xVj . ÃxV
j |xU

i ,Mα
=

Φz(x
U
i ,xV

j )
∑

xV
t ,m

{xU
i

,xV
t }

∈Mα
Φz(xU

i ,xV
t )

, where

Φz(x
U
i , x

V
j ) is the average appearance similarity [33, 10]

between patches xUi and xVj over all correct match image

pairs in the training set. xVt is a patch that is connected

to xUi in the binary mapping structure Mα. From Eq. 9,

P̂ (xVj |x
U
i ,Mα) will equal to 1 if Mα includes a link be-

tween xUi and xVj . Otherwise, P̂ (xVj |x
U
i ,Mα) will be de-

cided by the relative appearance similarity strength between

patch pair {xUi , x
V
j } and all patch pairs which are connected

to xUi in the binary mapping structure Mα.

Furthermore, P̂ (xUi |Mα) in Eq. 8 is the updated impor-

tance probability of xUi after including Mα. It can be cal-

culated by integrating the importance probability of each

individual link in Mα:

P̂ (xUi |Mα) =
∑

m
{xU

s ,xV
t }

∈Mα

P̂ (xUi |m{xU
s ,xV

t },Mα)

· P̂ (m{xU
s ,xV

t }|Mα) , (10)

wherem{xU
s ,xV

t } is a patch-wise link in Mα, as the red lines

in Fig. 4a. P̂ (m{xU
s ,xV

t }|Mα) is the importance probability

of link m{xU
s ,xV

t } which is defined similar to P (Mα):

P̂ (m{xU
s ,xV

t }|Mα) =
R̃n(m{xU

s ,xV
t })

∑
m

{xU
h

,xV
g }

∈Mα
R̃n(m{xU

h
,xV

g })
,

(11)

where R̃n(m{xU
s ,xV

t }) is the rank-n CMC score [23] when

only using a single link m{xU
s ,xV

t } as the correspondence

structure to perform Re-ID.

P̂ (xUi |m{xU
s ,xV

t },Mα) in Eq. 10 is the impact probabil-

ity from link m{xU
s ,xV

t } to patch xUi , defined as:

P̂ (xUi |m{xU
s ,xV

t },Mα) ∝







0, if d(xUi , x
U
s ) ≥ Td

1

d(xUi , x
U
s ) + 1

, otherwise

where xUs is link m{xU
s ,xV

t }’s end patch in camera A. d(·)
and Td are the same as Eq. 6.
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(a) (b) (c)

(d) (e) (f)

Figure 4. (a): An example of binary mapping structure (the red

lines with weight 1 indicate that the corresponding patches are

connected). (b)-(d): Examples of the correspondence structures

learned by our approach where (b)-(c) and (d) are the correspon-

dence structures for the VIPeR [7] and 3DPeS [1] datasets, respec-

tively. The line widths in (b)-(d) are proportional to the patch-wise

probability values. (e): The complete correspondence structure

matrix of (d) learned by our approach. (f): The correspondence

structure matrix of (d)’s dataset obtained by the simple-average

method. (Patches in (e) and (f) are organized by a zig-zag scan-

ning order. Matrices in (e) and (f) are down-sampled for a clearer

illustration of the correspondence pattern). (Best viewed in color)

Correspondence structure update. With the updated

matching probability P̂ k(xUi , x
V
j ) in Eq. 7, the matching

probabilities in the k-th iteration can be finally updated by:

P
k(xUi , x

V
j ) = (1− ε)P k−1(xUi , x

V
j ) + εP̂

k(xUi , x
V
j ) , (12)

where P k−1(xUi , x
V
j ) is the matching probability in itera-

tion k− 1. ε is the update rate which is set 0.2 in our paper.

From Equations 7–12, our update process integrates

multiple variables (i.e., binary mapping structure, individ-

ual links, patch-link correlation) into a unified probabil-

ity framework. In this way, various information cues such

as appearances, ranking results, and patch-wise correspon-

dence patterns can be effectively included during the model

updating process. Besides, although the exact convergence

of our learning process is difficult to analyze due to the in-

clusion of rank score calculation, our experiments show that

most correspondence structures become stable within 300
iterations, which implies the reliability of our approach.

Fig. 1 and 4 show some examples of the correspondence

structures learned from different cross-view datasets. From

Fig. 1 and 4, we can see that the correspondence structures

learned by our approach can suitably indicate the matching

correspondence between spatial misaligned patches. For

example, in Fig. 1 and 4d-4e, the large lower-to-upper mis-

alignments between cameras are effectively captured. Be-

sides, the matching probability values in the correspon-

dence structure also suitably reflects the correlation strength

between different patch locations, as displayed by the col-

ored points in Fig. 1c and 4e.

Furthermore, comparing Fig. 1a and 1b, we can see that

the human-pose variation is also suitably handled by the

learned correspondence structure. More specifically, al-

though images in Fig 1 have different human poses, patches

of camera A in both figures can correctly find their cor-

responding patches in camera B since the one-to-many

matching probability graphs in the correspondence structure

suitably embed the local correspondence variation between

cameras. Similar observations can also be obtained from

Fig. 4b and 4c. It should be noted that images in the dataset

of Fig. 4b and 4c are taken by unfixed cameras (i.e., cam-

eras with unfixed locations). However, the correspondence

structure learned by our approach can still effectively en-

code the camera-person configuration and capture the cross-

view correspondence pattern accordingly.

5. Experimental Results

We perform experiments on the following four datasets:

VIPeR. The VIPeR dataset [7] is a commonly used

dataset which contains 632 image pairs for 632 pedestri-

ans, as in Fig. 4a-4c and 5d. It is one of the most challeng-

ing datasets which includes large differences in viewpoint,

pose, and illumination between two camera views. Images

from camera A are mainly captured from 0 to 90 degree

while camera B mainly from 90 to 180 degree.

PRID 450S. The PRID 450S dataset [21] consists of

450 person image pairs from two non-overlapping camera

views. It is also challenging due to low image qualities and

viewpoint changes.

3DPeS. The 3DPeS dataset [1] is comprised of 1012 im-

ages from 193 pedestrians captured by eight cameras, where

each person has 2 to 26 images, as in Fig. 4d and 5a. Note

that since there are eight cameras with significantly different

views in the dataset, in our experiments, we group cameras

with similar views together and form three camera groups.

Then, we train a correspondence structure between each

pair of camera groups. Finally, three correspondence struc-

tures are achieved and utilized to perform Re-ID between

different camera groups. For images from the same camera

group, we simply utilize adjacency-constrained search [33]

to find patch-wise mapping and calculate the image match-

ing score accordingly.

Road. The road dataset is our own constructed dataset

which includes 416 image pairs taken by two cameras with

camera A monitoring an exit region and camera B moni-

toring a road region, as in Fig. 1 and 5g.3 This dataset has

large variation of human pose and camera angle. Images in

this dataset are taken from a realistic crowd road scene.

3https://github.com/YangShenSJTUs/ReIDCorresStructure.
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For all of the above datasets, we follow previous meth-

ods [8, 24, 31] and perform experiments under 50%-training

and 50%-testing. All images are scaled to 128 × 48. The

patch size in our approach is 24 × 18. The stride size be-

tween neighboring patches is 6 horizontally and 8 verti-

cally for probe images, and 3 horizontally and 4 vertically

for gallery images. Note that we use smaller stride size in

gallery images in order to obtain more patches. In this way,

we can have more flexibilities during patch-wise matching.

5.1. Results for patch matching

We compare the patch matching results of three meth-

ods: (1) The adjacency-constrained search method [33, 32]

which finds a best matched patch for each patch in a probe

image (probe patch) by searching a fixed neighborhood re-

gion around the probe patch’s co-located patch in a gallery

image (Adjacency-constrained). (2) The simple-average

method which simply averages the binary mapping struc-

tures for different probe images (as in Fig. 4a) to be the

correspondence structure and combines it with a global

constraint to find the best one-to-one patch matching re-

sult (Simple-average). (3) Our approach which employs a

boosting-based process to learn the correspondence struc-

ture and combines it with a global constraint to find the best

one-to-one patch matching result.

Fig. 5 shows the patch mapping results of different meth-

ods, where solid lines represent matching probabilities in

a correspondence structure and red-dashed lines represent

patch matching results. Besides, Fig. 4e and 4f show one

example of the correspondence structure matrix obtained by

our approach and the simple-average method, respectively.

From Fig. 5 and 4e-4f, we can observe:

(1) Since the adjacency-constrained method searches a

fixed neighborhood region without considering the corre-

spondence pattern between cameras, it may easily be in-

terfered by wrong patches with similar appearances in the

neighborhood (cf. Fig. 5d, 5g). Comparatively, with the in-

dicative matching probability information in the correspon-

dence structure, the interference from mismatched patches

can be effectively reduced (cf. Fig. 5f, 5i).

(2) When there are large misalignments between cam-

eras, the adjacency-constrained method may fail to find

proper patches as the correct patches may be located outside

the neighborhood region, as in Fig. 5a. Comparatively, the

large misalignment pattern between cameras can be prop-

erly captured by our correspondence structure, resulting in

a more accurate patch matching result (cf. Fig. 5c).

(3) Comparing Fig 4e, 4f with the last two columns

in Fig. 5, it is obvious that the correspondence structures

by our approach is better than the simple average method.

Specifically, the correspondence structures by the simple

average method include many unsuitable matching proba-

bilities which may easily result in wrong patch matches. In

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Comparison of different patch mapping methods. Left

column: the adjacency-constrained method; Middle column: the

simple-average method; Last column: our approach. The solid

lines represent matching probabilities in a correspondence struc-

ture and the red-dashed lines represent patch matching results.

Note that the image pair in (a)-(c) includes the same person (i.e.,

correct match) while the image pairs in (d)-(i) include different

people (i.e., wrong match). (Best viewed in color)

contrast, the correspondence structures by our approach are

more coherent with the actual spatial correspondence pat-

tern between cameras. This implies that reliable correspon-

dence structure cannot be easily achieved without suitably

integrating the information cues between cameras.

5.2. Results for person re­identification

We evaluate person re-identification results by the stan-

dard Cumulated Matching Characteristic (CMC) curve [23]

which measures the correct match rates within different Re-

ID rank ranges. The evaluation protocols are the same

as [8]. That is, for each dataset, we perform 10 randomly-

partitioned 50%-training and 50%-testing experiments and

average the results.

We compare results of four methods: (1) Not apply-

ing correspondence structure and directly using the appear-

ance similarity between co-located patches for person Re-

ID (No-structure); (2) Simply averaging the binary map-

ping structures for different probe images as the correspon-

dence structure and utilizing it for Re-ID (Simple-average);

(3) Using the correspondence structure learned by our ap-

proach, but do not include global constraint when perform-

ing Re-ID (No-global); (4) Our approach (Proposed).

We also compare our results with state-of-the-art meth-

ods on different datasets: kLFDA [24], eSDC-ocsvm [33],

KISSME [21], Salience [32], svmml [14], RankBoost [12]

and LF [20] on the VIPeR dataset; KISSME [21], EIML [9],

SCNCD [31], SCNCDFinal [31] on the PRID 450S dataset;

kLFDA [24], rPCCA [24], PCCA [17] on the 3DPeS
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Figure 6. CMC curves for different methods. Dataset from left to right: VIPeR, PRID 450S, 3DPeS.

Table 1. CMC results on the VIPeR dataset
Rank 1 5 10 20 30 50
kLFDA[24] 32.3 65.8 79.7 90.9 - -
KISSME[21] 27 - 70 83 - 95
Salience[32] 30.2 52.3 - - - -
svmml[14] 30.1 63.2 77.4 88.1 - -
RankBoost[12] 23.9 45.6 56.2 68.7 - -
eSDC-ocsvm[33] 26.7 50.7 62.4 76.4 - -
LF[20] 24.2 - 67.1 - - 94.1
No-structure 27.5 57.0 73.7 83.9 87.7 94.3
Simple-average 28.5 57.9 74.1 84.2 88.3 94.6
No-global 30.8 62.7 77.5 88.9 91.7 95.6
Proposed 34.8 68.7 82.3 91.8 94.9 96.2

dataset; and eSDC-knn [33] on the Road dataset.

Tables 1–4 and Fig. 6 show the CMC results of different

methods. From the CMC results, we can see that: (1) Our

approach has better Re-ID performances than the state-of-

the-art methods. This demonstrates the effectiveness of our

approach. (2) Our approach has obviously improved results

than the no-structure method. This indicates that proper

correspondence structures can effectively improve Re-ID

performances by reducing patch-wise misalignments. (3)

The simple-average method has similar performance to the

no-structure method. This implies that unsuitably selected

correspondence structures cannot improve Re-ID perfor-

mance. (4) The no-global method also has good Re-ID per-

formance. This further demonstrates the effectiveness of the

correspondence structure learned by our approach. Mean-

while, our approach also has superior performance than the

no-global method. This demonstrates the usefulness of in-

troducing global constraint in the patch matching process.

We also evaluate the running time of training & test-

ing excluding dense feature extraction in Table 5. Testing

process with (testing(Proposed)) and without (testing(No-

structure)) Hungarian method are both evaluated. We can

notice that the running time of both training and testing

are acceptable. Table 5 also reveals that Hungarian method

takes the major time cost of testing. This implies that our

testing process can be further optimized by replacing Hun-

garian method with other more efficient algorithms [18].

6. Conclusion

In this paper, we propose a novel framework for ad-

dressing the problem of cross-view spatial misalignments

in person Re-ID. Our framework consists of two key ingre-

dients: 1) introducing the idea of correspondence structure

Table 2. CMC results on the PRID 450S dataset
Rank 1 5 10 20 30 50
KISSME[21] 33 - 71 79 - 90
EIML[9] 35 - 68 77 - 90
SCNCD[31] 41.5 66.6 75.9 84.4 88.4 92.4
SCNCDFinal[31] 41.6 68.9 79.4 87.8 91.8 95.4
No-structure 39.6 64.9 76.0 85.3 89.3 93.3
Simple-average 38.2 63.6 75.1 84.9 88.9 92.4
No-global 42.7 69.3 78.2 87.4 91.1 95.1
Proposed 44.4 71.6 82.2 89.8 93.3 96.0

Table 3. CMC results on the 3DPeS dataset
Rank 1 5 10 15 20 30
kLFDA[24] 54.0 77.7 85.9 - 92.4 -
rPCCA[24] 47.3 75.0 84.5 - 91.9 -
PCCA[17] 41.6 70.5 81.3 - 90.4 -
No-structure 51.6 75.8 84.2 88.4 90.5 92.6
Simple-average 50.5 74.7 83.2 87.4 89.5 92.6
No-global 54.7 77.9 87.4 90.5 91.6 93.7
Proposed 57.9 81.1 89.5 92.6 93.7 94.7

Table 4. CMC results on the Road dataset
Rank 1 5 10 15 20 30
eSDC-knn[33] 52.4 74.5 83.7 88.0 89.9 91.8
No-structure 50.5 80.3 87.0 91.3 94.2 95.7
Simple-average 49.0 81.7 90.4 92.8 95.7 96.2
No-global 58.2 85.6 94.2 97.1 98.1 98.6
Proposed 61.5 91.8 95.2 98.1 98.6 99.0

Table 5. Running time on four datasets (Evaluated on a PC with 4-

core CPU and 2G RAM; h, s, m refer to hour, second, and minute)
Datasets VIPeR PRID 450S 3DPeS Road
Training 2.06 h 1.22 h 0.89 h 1.07 h
Testing (No-global) 57.97 s 34.64 s 24.87 s 29.45 s
Testing (Proposed) 6.64 m 3.49 m 2.61 m 3.03 m

and learning this structure via a novel boosting method to

adapt to arbitrary camera configurations; 2) a constrained

global matching step to control the patch-wise misalign-

ments between images due to local appearance ambiguity.

Extensive experimental results on benchmark show that our

approach achieves the state-of-the-art performance.

Under the framework, our future work is devoted to ex-

plore new variants of two components: 1) designing other

correspondence structure learning methods that allow for

multiple structure candidates to enhance its flexibility; 2)

devising and incorporating edge-to-edge similarity metrics

to solve the constrained global matching problem as graph

matching [5, 30, 26, 28, 29, 27], which has been proven

more effective in many computer vision applications.
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