
Oriented Light-Field Windows for Scene Flow

Pratul P. Srinivasan1, Michael W. Tao1, Ren Ng1, Ravi Ramamoorthi2

{pratul,mtao,ren}@eecs.berkeley.edu, ravir@cs.ucsd.edu

1University of California, Berkeley, 2University of California, San Diego

Abstract

2D spatial image windows are used for comparing pixel

values in computer vision applications such as correspon-

dence for optical flow and 3D reconstruction, bilateral fil-

tering, and image segmentation. However, pixel window

comparisons can suffer from varying defocus blur and per-

spective at different depths, and can also lead to a loss

of precision. In this paper, we leverage the recent use of

light-field cameras to propose alternative oriented light-

field windows that enable more robust and accurate pixel

comparisons. For Lambertian surfaces focused to the cor-

rect depth, the 2D distribution of angular rays from a pixel

remains consistent. We build on this idea to develop an

oriented 4D light-field window that accounts for shearing

(depth), translation (matching), and windowing. Our main

application is to scene flow, a generalization of optical flow

to the 3D vector field describing the motion of each point

in the scene. We show significant benefits of oriented light-

field windows over standard 2D spatial windows. We also

demonstrate additional applications of oriented light-field

windows for bilateral filtering and image segmentation.

1. Introduction

Pixel value comparisons are used for a variety of

computer vision applications, including finding correspon-

dences between images for 3D reconstruction, enforcing

brightness consistency for calculating optical and scene

flow, calculating weights for adaptive filters such as bilateral

filters, and determining pixel similarity for image segmen-

tation. With conventional images, we can compare pixels

by comparing their RGB (or other color space) values. For

more robust comparisons, we can also compare 2D pixel

windows instead of individual pixels, but this involves a

loss of precision. Furthermore, both pixel value compar-

isons and window comparisons are prone to errors due to

the depth of objects in the scene; the windows correspond-

ing to the same scene points at two different depths will

appear different due to focal blur and perspective.

We propose a method to represent scene points, that uses

the information from 4D light-field images [2, 13], to enable

more accurate and robust pixel comparisons (Sec. 3). Each

spatial pixel has a 2D distribution of incident angular rays.

If focused to the correct effective depth in the scene, all an-

gular rays are consistent for Lambertian surfaces, since all

rays converge to the same scene point. When not focused

to the correct depth in the scene, the angular rays of a spa-

tial location on the sensor incorporate information from the

spatial neighborhood of the scene point. We leverage these

insights to develop oriented 4D light-field windows, that ac-

count for shearing in the light field ray space due to focusing

at different depths, translation for pixel matching, and win-

dowing. This is a general representation that in the limit

approaches a single spatial pixel with a 2D angular extent,

effectively replacing the 2D spatial window, and alleviating

issues with loss of precision and defocus blur.

A natural application is the computation of scene flow,

since it involves the estimation of corresponding spatial

points (Sec. 4). Scene flow [26] is the 3D vector field de-

scribing the motion of each scene point over time. It extends

the conventional notion of optical flow by also providing

the change in depth. Scene flow has many applications in

vision, including establishing correspondence, computing

camera and object motions, and estimating shape. We pro-

pose an algorithm to compute dense non-rigid scene flow

from a pair of light-field images, acquired using a con-

sumer light-field camera (Lytro Illum). We demonstrate that

oriented light-field windows provide better matching than

conventional spatial windows, and derive a 4D light-field

matching formula and energy minimization, analogous to

traditional 2D brightness consistency.

We further demonstrate oriented light-field windows by

using them for filtering images with a bilateral filter and

segmenting images (Sec. 5). We show that the results are

significantly better than when using traditional 2D images.

2. Previous Work

2.1. Light­Fields in Computer Vision

The 4D light-field is the total spatio-angular distribution

of light rays passing through free space, and light-field cam-

3496

Figure 1. This setup shows two scenes in a 2D flatland, with side

views of (a) and (d) and camera views of (b) and (e). In the first

scene, the point is at the focal plane, and in the second scene, it is

in front of the focal plane. The conventional camera images in (b)

and (e) are different due to perspective and focal blur. We can see

in the 2D EPIs (c) and (f) that the change in depth corresponds

to a shear in ray-space. To compare these spatial points, we must

shear the light-fields to account for the depth.

eras capture the region of the light-field that exists inside

the camera body. Light-field data has enabled many ap-

plications such as post-capture image refocusing [13], lens

glare artifact reduction [17], and stereo reconstruction from

a single capture [2]. Light-field images can be used for pas-

sive general depth estimation [21, 23, 25, 28] by taking ad-

vantage of the multiple cues, such as defocus and corre-

spondence, that can be obtained from a single shot. In this

work, we make use of previous work that uses light-fields

for depth estimation and image refocusing, and we intro-

duce a light-field representation for scene points that can be

used to significantly improve results in scene flow, bilateral

filtering, and image segmentation.

2.2. Scene Flow

Scene flow was introduced by Vedula et al. [26], who

computed it by first estimating optical flow, the projection

of scene flow onto the image plane, in each camera and

then using triangulation to calculate a 3D motion field fit-

ted to the estimated optical flows. Later works compute

scene flow from stereo [6, 8, 11, 27, 29] or multi-view [5]

images at consecutive times, which involves estimating dis-

parity and the change in disparity over time in addition

to the optical flow. These works typically use variational

approaches to estimate the 3D geometry and flow, either

jointly [5, 6, 11, 27] or in a decoupled [29] manner. They

employ various methods of regularization and assumptions

about the piecewise rigidity of the scene and the flow field.

The method of [8] uses local estimation to efficiently com-

pute the 3D geometry and flow. Additionally, other recent

methods [9, 10, 12, 16] take advantage of the availability of

accurate dense depth information from RGBD cameras to

compute scene flow from pairs of RGBD images, typically

using the 2D parametrization from RGBD sensors, or, as

in [9], a 3D point cloud representation of the scene.

Figure 2. Oriented light-field windows (black ellipse represents

Gaussian weighted window) in a 2D flatland visualization of the

4D EPI, where a scene point (blue) has moved in position and

depth between two time steps. We want to match these two win-

dows to detect the same scene point.

2.3. Bilateral Filtering and Image Segmentation

The bilateral filter [24] has been used widely for many

applications such as image denoising, texture removal, and

image manipulation [14, 15] to smooth images while re-

specting edges. The majority of bilateral filtering tech-

niques use the RGB or CIE-Lab color space, and this has

been known to lead to bleeding artifacts at edges in certain

scenarios. Figure 7 shows that by using oriented light-field

windows, desired details and edges are preserved and we

improve the robustness of bilateral filters.

Image segmentation [7, 19] is a well-studied problem in

computer vision, with the goal of segmenting images into

semantically meaningful regions [3], or oversegmenting im-

ages into superpixels [1, 18]. Figure 8 shows that we are

able to improve the results of the popular SLIC superpixel

segmentation algorithm [1] in cases where using traditional

pixel values fails. By using oriented light-field windows in-

stead of CIE-Lab color space pixel values, we can better

detect texture edges with similar pixel intensity values.

3. Oriented Light-Field Windows

The angular rays of the light-field corresponding to the

same point in the scene should be consistent for a Lamber-

tian surface. However, to locate these rays in the light-field,

we must account for the shearing effect due to the difference

between the depth of the scene point and the light-field fo-

cal plane [13]. This is shown in Fig. 1, using a 2D flatland

epipolar image (EPI).

We represent each point in the scene as an oriented win-

dow in the light-field ray space, as visualized in Fig. 2. The

orientation of the window is defined by the shear of the

point’s effective depth, and the size of the window is de-

fined by spatial and angular Gaussian weights.

Mathematical Definition
As shown in Fig. 3, the oriented light-field window cor-

responding to a scene point can be computed by a shear
operator, a translation operator and a windowing operator,
as follows. The shear operator for depth α, as described

3497

Figure 3. In this scene, a scene point moves in position and depth. In the 2D flatland visualizations of the 4D EPI (a) and (b), this

corresponds to a shear and a shift in position. In the 1D flatland visualizations of the 2D conventional image (i) and (j), this corresponds

to a focal blur and a shift in position. To match these two scene points using 4D oriented light-field windows, we shear as in (c) and (d),

translate as in (e) and (f), compute the 4D window defined by spatial and angular Gaussian weights as in (g) and (h), and then integrate

the difference between the two oriented light-field windows. In contrast, to match these two scene points using 2D image windows, we

translate as in (k) and (l), compute the 2D window defined by spatial Gaussian weights as in (m) and (n), and integrate the difference

between the two spatial windows.

in relation to the camera parametrization planes and scene
depths in [13], is:

Sα[L] ≡ Lα(x, y, u, v)

= L

(

x+ u(1−
1

α
), y + v(1−

1

α
), u, v

)

(1)

The (spatial) translation operator is defined as usual as:

T∆x,∆y[L] ≡ L∆x,∆y(x, y, u, v) = L(x+∆x, y +∆y, u, v)
(2)

The windowing operator is defined as:

W [L] = L(x, y, u, v)N (x, y;σ2

xy)N (u, v;σ2

uv), (3)

where N (s, t;σ2) represents a 2D Gaussian distribution on

the st plane, centered at the origin, with variance σ2 in each

dimension, i.e.

N (s, t;σ2) =
1

2πσ2
exp

(

−
1

2σ2
(s2 + t2)

)

Using these operators, the full oriented light-field win-

dow operator for a scene point at position (x0, y0, α) is:

Pα,x0,y0
(x, y, u, v) ≡ (W ◦ Tx0,y0

◦ Sα) [L], (4)

where Pα,x0,y0
(x, y, u, v) can be written explicitly as:

Pα,x0,y0
(x, y, u, v) = N (x, y;σ2

xy)N (u, v;σ2
uv)×

L (x+ x0 + u(1− 1/α), y + y0 + v(1− 1/α), u, v) .

(5)

Matching

A suitable application of oriented light-field windows

is to match pixels between two images, as discussed in

the next section on scene flow. In this case, we compare

two oriented light-field windows, for example Pα0,x0,y0

and Pα1,x1,y1
, computing the sum of squared differences

or equivalent metric over the entire 4D window. The pro-

cess of matching oriented light-field windows versus stan-

dard spatial windows is visualized in Fig. 3.

Limiting Cases

The above expression defines the general oriented 4D

light-field window. By taking appropriate limits, we can

reduce it to 2D spatial or 2D (oriented) angular windows.

First, consider σuv → 0, so that we restrict ourselves to

(u, v) = (0, 0). This reduces to a conventional 2D spatial

window in the central pinhole view,

P spatial
x0,y0

(x, y) = L (x+ x0, y + y0, 0, 0)N (x, y;σ2
xy).

(6)

If we take the limit of σuv → ∞ and σxy → 0, we

weight all angular directions equally, and the oriented light-

field window approaches an in-focus raw light-field image

of the point. This is the 2D set of angular directions for a

given spatial pixel,

P angular
α,x0,y0

(u, v) =

L

(

x0 + u(1−
1

α
), y0 + v(1−

1

α
), u, v

)

.
(7)

In practice, we often use these parameters, which ensures

the maximum precision (no spatial extent for windows) and

is also efficient (only 2D light-field windows are matched).

However, we emphasize that our formulation allows for

matching of general 4D oriented light-field windows.

3498

4. Scene Flow
We now develop our algorithm for light-field scene flow.

We describe a simple extension to the standard 2D bright-

ness consistency notion, formulate the light-field scene flow

calculation as an energy minimization, and develop the op-

timization and regularization to compute the scene flow.

4.1. Light­Field Brightness Consistency
Scene flow F (x, y) can be described by a 3D vector field,

F (x0, y0) = (∆x,∆y,∆α) (8)

where (x0, y0) are pixel coordinates of a 3D point at an ef-

fective depth (shear) α0 in one frame, α1 in the next frame,

and (∆x,∆y,∆α) are the offsets (scene flow) between the

frames, with α1 = α0 +∆α.

The traditional brightness consistency assumption in op-

tical flow is that the intensity in both images should be equal

for the same point in the scene, and traditionally spatial

pixel windows have been matched. By analogy, we assume

that the oriented light-field windows are equivalent for the

same point in the scene. That is, for all (x, y, u, v)

Pα0,x0,y0
(x, y, u, v, t) =

Pα1,x0+∆x,y0+∆y(x, y, u, v, t+ 1),
(9)

where we add a variable t to account for different frames.

4.2. Scene Flow Formulation
We now proceed to solve for scene flow by minimizing

an energy function E that includes both a data term ED and

a smoothness term ES ,

F (x0, y0) = argmin
∆x,∆y,α0,α1

(

ED(x0, y0,∆x,∆y, α0, α1)

+ES(x0, y0,∆x,∆y, α0, α1)
)

.

(10)

This formulation also solves for the depths of each scene

point in both images, α0 and α1. The smoothness term ES

will be discussed in the next sub-section on regularization.

In this section, we focus on the data term:

ED(x0, y0,∆x,∆y, α0, α1) =
∫

(

Pα0,x0,y0
(x, y, u, v, t)

− Pα1,x0+∆x,y0+∆y(x, y, u, v, t+ 1)
)2

dx dy du dv.

(11)

In practice, the integral will be a discrete summation over

both the spatial and the angular domain. Note that this for-

mulation applies to both light-field images and traditional

images. As σuv → 0, the angular dimension collapses and

the equation reduces to a traditional optical flow formula-

tion with P spatial that just compares 2D pixel windows of

pixels from the two central pinhole images.

For robustness to errors in the initial depth estimation,

we also include integration over a range of shears, centered

at the estimated effective depth of the scene point, when

computing our data term.

4.3. Regularization
We use regularization in our scene flow method to en-

force a piecewise smooth flow field and propagate accurate

flow estimates to areas with low confidence and no local

signal. We use total variation regularization, which penal-

izes the integral of the absolute gradient of the flow field. In

the energy minimization framework, our smoothness regu-

larization term is:

ES(x0, y0,∆x,∆y, α0, α1) =

λCF (x0, y0)O(x, y)(|∇(∆x)|+ |∇(∆y)|)+

γCD(x0, y0)(|∇(∆α)|),

(12)

where CF and CD are confidence measures for the optical

flow and depth estimations, and O is a confidence measure

for the occlusion state of a pixel. We discuss how these

measures are computed in the next sub-section. In our im-

plementation, we use λ = 0.002 and γ = 0.1.

4.4. Scene Flow Estimation
Searching for the scene flow (∆x,∆y,∆α) that mini-

mizes Eq. 11 for every pixel is expensive due to the large

search space. We constrain the search space by decoupling

the depth and optical flow estimations, using the method

from Tao et al. [21] to estimate the depths in both light-field

images as well as calculate a depth estimation confidence

measure CD(x0, y0).
We then compute (∆x,∆y) by locally searching for the

minimum energy within a radius around every pixel, as

in the SimpleFlow algorithm [22], for efficiency due to

our high-dimensional data. We compute the confidence

CF (x0, y0) in (∆x,∆y) as the minimum subtracted from

the mean data energy within the search radius for each pixel.

CF (x0, y0) = mean
(∆x,∆y)∈N

ED(x0, y0,∆x,∆y, α0, α1)−

min
(∆x,∆y)∈N

ED(x0, y0,∆x,∆y, α0, α1)

(13)

where N is the set of (∆x,∆y) within the search radius.

This confidence is used in our regularization to increase the

smoothness term coefficient for less confident pixels.

We estimate the likelihood that a pixel is not located at an

occlusion boundary, O(x, y), by measuring the consistency

between the forward and backward optical flows. We use

this in our regularization to increase the smoothness term

coefficient for pixels that are more likely to be occluded.

The optical flow is optimized over a multiscale pyramid

with warping between pyramid levels, resulting in a coarse-

3499

Figure 4. Local matching optical flow results (one pyramid level,

without regularization) calculated for a synthetic sphere trans-

lated to the right. Optical flow results are visualized with the Mid-

dlebury color code, and the confidence values are visualized with

a cold-to-warm color code, where warmer colors signify higher

confidence. Using oriented light-field windows provides more ac-

curate and less noisy optical flow results, with higher confidence.

to-fine strategy that allows the estimation of large displace-

ments. We median filter the intermediate flow results after

each warping, as discussed in [20], to remove outliers.

4.5. Results
To validate oriented light-field windows and their use in

computing scene flow, we evaluated our algorithm against

other state-of-the-art scene flow and optical flow algorithms

on both synthetic and real world scenes containing a variety

of shapes with motions including rotations and changes in

depth. We encourage readers to refer to our supplementary

material for more extensive comparisons and examples.

Synthetic Scenes

Figure 4 shows a comparison of local optical flow search

results (one pyramid level, without regularization) on a

translating synthetic diffuse sphere, using the RGB pixel

values from central pinhole images extracted from the light-

field, the same pixel values in the CIE-Lab color space, and

oriented light-field windows. All RMSE values are normal-

ized by the maximum possible flow error, so the possible

RMSE values range from 0 to 1. Using oriented light-field

windows yields significantly more accurate and less noisy

results with higher confidence, due to the ability of oriented

light-field windows to discriminate between scene points

with similar pixel intensity values.

Figure 5 shows a synthetic experiment for parameter val-

idation and analysis of the tradeoff between using spatial

and angular information in the 4D oriented light-field win-

dow. First, note that if we fix σxy , the RMSE decreases as

the angular variance increases from σuv → 0 (a 2D spatial

window) to essentially considering all directions equally.

This underlines the benefits of 4D light-field windows over

2D pixel windows. Next, consider spatial variance. For a

2D pixel window (σuv → 0), the error is quite sensitive

Table Cow Teddy

Ours 0.171 0.079 0.409

SRSF 0.353 0.248 0.433

MDP-Flow2 0.210 0.102 0.421

Classic+NL 0.199 0.199 0.395

Classic+NL, HR 0.192 0.151 0.416

Table 1. RMSE values for our algorithm evaluated against state-

of-the-art scene flow and optical flow algorithms on three synthet-

ically generated scenes. Example results of all the algorithms on

the table scene and our algorithm on the cow and teddy scenes are

in Fig. 6. The lowest RMSE for each scene is in bold, and our al-

gorithm is either the top performer (cow and table) or very close

in RMSE to the top performer (teddy).

to the spatial window size, trading off noise and precision

as expected. However, for oriented 4D light-field windows

considering all angular directions, the error is relatively in-

sensitive to σxy . In this example, we found a small spatial

window, corresponding to σxy = 5.45, to be optimal. In

practice, we use a spatial variance of zero and the optimal

(largest) angular variance σuv = 4.09 for efficiency, since

the benefit of using a larger spatial window is negligible.

Figure 6 shows our results for synthetic scenes compared

to state-of-the-art scene and optical flow algorithms. We

show example results for all algorithms on the table scene,

and our algorithm on the cow and teddy scenes. Each scene

has one moving Lambertian object with a complex shape,

rendered using a single point light source. We compare op-

tical flow results to the Semi-Rigid Scene Flow (SRSF) al-

gorithm of Quiroga et al. [16], the Classic+NL optical flow

algorithm of Sun et al. [20], and the Motion Detail Preserv-

ing Optical Flow (MDP-Flow2) algorithm of Xu et al. [30],

a top performer on the Middlebury optical flow bench-

mark [4]. We provide both optical flow algorithms and the

SRSF algorithm with the central pinhole view from each

light-field image as input. As an additional comparison, we

provide the Classic+NL method with high-resolution (HR)

pinhole images with the spatial resolution equal to our light-

field sensor resolution. The MDP-Flow2 method ran out of

memory (Intel Core i7 machine with 32 GB RAM) when

given the HR images. The SRSF algorithm is designed for

RGBD data from a sensor such as the Microsoft Kinect, and

requires a dense accurate depth estimation for each input

frame. In order to best satisfy this input requirement given

our light-field images, we provide the input depth estima-

tion calculated from the light-field images that we use in

our algorithm. We do not compare our algorithm to stereo-

scopic scene flow algorithms such as [6, 11, 27, 29], be-

cause they are meant to use pairs of stereo images with wide

baselines, and do not perform well when instead given pairs

of pinhole images extracted from a light-field camera.

Table 1 shows RMSE values for the algorithms on all

three scenes. Since only our algorithm and the SRSF al-

gorithm compute the flow in depth, we only quantitatively

3500

Figure 5. RMSE for a synthetic sphere rotating 1.2◦. In the figure, we show the RMSE as a function of the spatial and angular variances

(a), and the slices of the graph at the optimal spatial (b) and angular variances (c) for our synthetic example. The location of the optimal

parameters is marked as a red asterisk on (a), and the ground truth local optical flow estimation (d) and results using the optimal (e)

and our practical implementation parameters (f) (one pyramid level, without regularization) are shown. The optical flow results look

discretized because integer-valued local optical flow estimation has no subpixel flow estimation. With oriented light-field windows, results

closely resemble the ground truth. From (a), the RMSE decreases as the angular variance increases up to the maximum provided by the

Lytro Illum camera. When σuv → 0, there is clearly an optimal σxy . However, when we use the optimal σuv , the benefit of using a larger

σxy is negligible. In practice, we use σxy = 0 and the optimal (largest) σuv = 4.09 for improved efficiency, and (e) and (f) show that there

is a negligible difference between using the optimal and practical implementation parameters.

Figure 6. We compare the results of our algorithm to the SRSF [16] scene flow algorithm and the MDP-Flow2 [30] and Classic+NL [20]

optical flow algorithms on three synthetic scenes, and the RMSE values can be seen in Table 1. For each example, the optical flow is

visualized with the Middlebury color code, and the flow in depth is visualized with the cold-to-warm color code in the color bars. The three

scenes have different motions: the cow moves up and away from the camera, the table moves to the left and towards the camera, and the

teddy rotates counterclockwise and moves towards the camera. Our scene flow results are more accurate than others’ in most cases.

3501

Figure 7. We compare the results of bilateral filtering an image

using RGB or CIE-Lab to those using oriented light-field win-

dows, which are better for preserving textures such as the towel

and edges such as that between the felt and rubber.

compare the RMSE for the optical flow results of the algo-

rithms. As evident from the RMSE results, our algorithm is

either the most accurate or very close to the most accurate.

Looking at the qualitative results in Fig. 6, we can see that

our algorithm is able to accurately estimate the scene flow

in scenes where objects rotate and move in depth. Addi-

tionally, the Classic+NL HR results show that the decreased

spatial resolution of a light-field camera does not signifi-

cantly impact the flow estimation accuracy.

Real World Scenes

Figure 9 shows results of our scene flow algorithm on

natural images, captured with a Lytro Illum camera with 49

sub-aperture images. We compare our scene flow results

to the SRSF algorithm, and our optical flow results to the

Classic+NL and MDP-Flow2 algorithms. Oriented light-

field windows enable significantly more accurate scene flow

computation. We correctly estimate the scene flow for sig-

nificant depth changes, such as in the scenes with the hands

and the penguin toy, as well for scenes with similarly col-

ored objects, such as the scene with the tennis ball on a

towel. Note that we better capture the motion contours of

the hands, tennis ball, and penguin toy, and avoid the patchy

appearance of the scene flow from other algorithms.

5. Other Applications
5.1. Bilateral Filtering

Bilateral filter weights are determined by both the spatial

closeness and the photometric closeness. Instead of photo-

metric closeness, which is typically measured as Euclidean

distance in the RGB or CIE-Lab color space, we use the Eu-

clidean distance between oriented light-field windows at a

range of shears. Figure 7 shows that while all methods are

able to denoise the image, using oriented light-field win-

dows preserves textures and edges that are similar in pixel

value due to similar colors, low illumination, and noise.

5.2. Image Segmentation
Superpixel image segmentation is used as a building

block in algorithms such as semantic segmentation and mo-

tion estimation. We adapt the SLIC superpixel segmenta-

tion algorithm [1] to use oriented light-field windows at a

Figure 8. We compare the results of the SLIC superpixel segmen-

tation algorithm [1] using the default CIE-Lab pixel values and

oriented light-field windows. We adjust the color for the figure in-

sets to highlight the napkin edge for better visualization. Oriented

light-field windows are better for detecting the edge between the

paper napkin and the background wall.

range of shears instead of CIE-Lab pixel values. Figure 8

shows that using oriented light-field windows enables bet-

ter superpixel segmentation at edges that are similar in pixel

value due to similar colors, low illumination, and noise.

6. Conclusion and Future Work

We proposed oriented light-field windows, a novel ac-

curate and robust method of pixel comparison using light-

field images. Oriented 4D light-field windows represent

scene points by accounting for shearing (depth), transla-

tion (matching), and windowing. We apply oriented light-

field windows to compute scene flow, and show signifi-

cant benefits over standard 2D spatial windows by analyz-

ing the tradeoff between the spatial and angular variance

of the windows. We further demonstrate the benefits of

using oriented light-field windows by evaluating our algo-

rithm against state-of-the-art methods in scene and optical

flow. Finally, we demonstrate applications in bilateral fil-

tering and image segmentation, where we show that we are

able to better detect and preserve edges.

Oriented light-field windows are a general way to de-

scribe scene points, and can be used to formulate many

other problems, such as finding correspondences for recon-

struction and edit propagation in video, for light-fields. This

work builds the foundation for the use of light-field images

for many computer vision and graphics applications.

Acknowledgments

This work was supported in part by ONR grant N00014-15-

1-2013, funding from Nokia and Intel, and support by Sony

to the UC San Diego Center for Visual Computing. Some

of this work was done while Ren Ng was at Lytro, Inc.

3502

Figure 9. We compare our scene flow results against the SRSF [16] RGBD scene flow algorithm, and the MDP-Flow2 [30] and Clas-

sic+NL [20] optical flow algorithms. For each example, the first row contains the optical flow (∆x,∆y) visualized with the Middlebury

color code, and the second row contains the flow in depth ∆α visualized with the cold-to-warm color code in the color bars, where the

green color corresponds to zero depth motion, cooler colors correspond to depth motion toward the camera, and warmer colors corre-

spond to depth motion away from the camera. In the top two rows, we have an example where two hands move in depth. We can see

that our algorithm is able to accurately estimate the scene flow, even at occlusion boundaries, with accurate contours around the hand

borders. In the second and third rows, we have an example where a tennis ball is on a towel, and they both shift slightly without significant

depth motion. We can see that our algorithm is able to accurately estimate the scene flow, adheres to the border of the ball, and correctly

calculates no significant changes in depth. In the bottom row, we have an example of a toy penguin that moves towards the camera. We

can see that our algorithm correctly estimates the scene flow and adheres to the object borders.

3503

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. SLIC superpixels compared to state-of-the-art

superpixel methods. PAMI, 2012. 2, 7

[2] E. Adelson and J. Wang. Single lens stereo with a plenoptic

camera. PAMI, 1992. 1, 2

[3] P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and

J. Malik. Semantic segmentation using regions and parts. In

CVPR, 2012. 2

[4] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and

R. Szeliski. A database and evaluation methodology for op-

tical flow. IJCV, 2011. 5

[5] T. Basha, Y. Moses, and N. Kiryati. Multi-view scene flow

estimation: a view centered variational approach. IJCV,

2012. 2

[6] J. Cech, J. Sanchez-Riera, and R. Horaud. Scene flow esti-

mation by growing correspondence seeds. In CVPR, 2011.

2, 5

[7] P. Felzenswalb and D. Huttenlocher. Efficient graph-based

image segmentation. IJCV, 2004. 2

[8] M. Gong. Real-time joint disparity and disparity flow esti-

mation on programmable graphics hardware. CVIU, 2008.

2

[9] S. Hadfield and R. Bowden. Scene particles: unregularized

particle based scene flow estimation. PAMI, 2014. 2

[10] E. Herbst, X. Ren, and D. Fox. RGB-D flow: dense 3-D

motion estimation using color and depth. In ICRA, 2013. 2

[11] F. Huguet and F. Devernay. A variational method for scene

flow estimation from stereo sequences. In ICCV, 2007. 2, 5

[12] A. Letouzey, B. Petit, and E. Boyer. Surface flow from depth

and color images. In BMVC, 2011. 2

[13] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and

P. Hanrahan. Light field photographhy with a hand-held

plenoptic camera. CSTR 2005-02, 2005. 1, 2, 3

[14] S. Paris, S. Hasinoff, and J. Kautz. Local laplacian fil-

ters: edge-aware image processing with a laplacian pyramid.

ACM Transactions on Graphics, 2011. 2

[15] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand. Bilateral

filtering: theory and applications. In Foundations and Trends

in Computer Graphics and Vision, 2008. 2

[16] J. Quiroga, T. Brox, F. Devernay, and J. Crowley. Dense

semi-rigid scene flow estimation from RGBD images. In

ECCV, 2014. 2, 5, 6, 8

[17] R. Raskar, A. Agrawal, C. Wilson, and A. Veeraraghavan.

Glare aware photography: 4D ray sampling for reducing

glare effects of camera lenses. In ACM SIGGRAPH, 2008. 2

[18] X. Ren and J. Malik. Learning a classification model for

segmentation. In ICCV, 2003. 2

[19] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. PAMI, 1997. 2

[20] D. Sun, S. Roth, and M. Black. Secrets of optical flow esti-

mation and their principles. In CVPR, 2010. 5, 6, 8

[21] M. Tao, S. Hadap, J. Malik, and R. Ramamoorthi. Depth

from combining defocus and correspondence using light-

field cameras. In ICCV, 2013. 2, 4

[22] M. Tao, B. J., P. Kohli, and S. Paris. SimpleFlow: a non-

iterative, sub linear optical flow algorithm. In Eurographics,

2012. 4

[23] M. Tao, T.-C. Wang, J. Malik, and R. Ramamoorthi. Depth

estimation for glossy surfaces with light-field cameras. In

ECCV LF4CV, 2014. 2

[24] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In ICCV, 1998. 2

[25] I. Tosic and K. Berkner. Light field scale-depth space trans-

form for dense depth estimation. In CVPR Workshop on

Computational Cameras and Displays, 2014. 2

[26] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade.

Three-dimensional scene flow. In ICCV, 1999. 1, 2

[27] C. Vogel, K. Schindler, and S. Roth. Piecewise rigid scene

flow. In ICCV, 2013. 2, 5

[28] S. Wanner and B. Goldluecke. Globally consistent depth la-

beling of 4D light fields. In CVPR, 2012. 2

[29] A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, and

D. Cremers. Stereoscopic scene flow computation for 3D

motion understanding. IJCV, 2010. 2, 5

[30] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving

optical flow estimation. PAMI, 2012. 5, 6, 8

3504

