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Abstract

Human actions in video sequences are three-

dimensional (3D) spatio-temporal signals characterizing

both the visual appearance and motion dynamics of the

involved humans and objects. Inspired by the success of

convolutional neural networks (CNN) for image classifica-

tion, recent attempts have been made to learn 3D CNNs for

recognizing human actions in videos. However, partly due

to the high complexity of training 3D convolution kernels

and the need for large quantities of training videos, only

limited success has been reported. This has triggered us to

investigate in this paper a new deep architecture which can

handle 3D signals more effectively. Specifically, we propose

factorized spatio-temporal convolutional networks (FSTCN)

that factorize the original 3D convolution kernel learning

as a sequential process of learning 2D spatial kernels

in the lower layers (called spatial convolutional layers),

followed by learning 1D temporal kernels in the upper

layers (called temporal convolutional layers). We introduce

a novel transformation and permutation operator to make

factorization in FSTCN possible. Moreover, to address

the issue of sequence alignment, we propose an effective

training and inference strategy based on sampling multiple

video clips from a given action video sequence. We have

tested FSTCN on two commonly used benchmark datasets

(UCF-101 and HMDB-51). Without using auxiliary train-

ing videos to boost the performance, FSTCN outperforms

existing CNN based methods and achieves comparable

performance with a recent method that benefits from using

auxiliary training videos.

1. Introduction

Human actions can be categorized by the visual appear-

ance and motion dynamics of the involved humans and ob-

jects. The design of many popular human action recognition

datasets [26, 14, 25] is based on this intrinsic property. To

recognize human actions in video sequences, computer vi-

sion researchers have been developing better visual features

to characterize the spatial appearance [32, 20] and temporal

motion [16, 24, 35]. Since video sequences can naturally be

viewed as three-dimensional (3D) spatio-temporal signals,

many existing methods seek to develop different spatio-

temporal features for representing spatially and temporally

coupled action patterns [12, 31, 8, 5]. Thus far, although

these methods are robust against some real-world human ac-

tion conditions, when applied to more realistic, complex hu-

man actions, their performance often degrades significantly

due to the large intra-category variations within action cat-

egories and inter-category ambiguities between action cate-

gories. A number of factors can cause large intra-category

variations. Some major ones include large variations in vi-

sual appearance and motion dynamics of the constituent hu-

mans and objects, arbitrary illumination and imaging condi-

tions, self-occlusion, and cluttered background. To address

these challenges, some methods [15, 30] extract trajectories

of interest points from video sequences to characterize the

salient spatial regions and their motion dynamics. However,

in general, the challenge of recognizing complex human ac-

tions has not been well addressed.

Most of the above methods use handcrafted features and

relatively simple classifiers. More recently, the end-to-end

approach of learning features directly from raw observa-

tions using deep architectures shows great promise in many

computer vision tasks, including object detection [4], se-

mantic segmentation [2] and so forth. Using massive train-

ing datasets, these deep architectures are able to learn a hi-

erarchy of semantically related convolution filters (or ker-

nels), giving highly discriminative models and hence bet-

ter classification accuracy [34]. In fact, even directly ap-

plying these image-based models to individual frames of
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the videos has shown promising action recognition perfor-

mance [11, 10], because the learned features can better char-

acterize the visual appearance in the spatial domain.

However, human actions in video sequences are 3D

spatio-temporal signals. It is not surprising to expect that

exploiting the temporal domain as well could further ad-

vance the state of the art. Some recent attempts have been

made along this direction [7, 11, 10]. The 3D CNN model

[7] learns convolution kernels in both space and time based

on a straightforward extension of the established 2D CNN

deep architectures [17, 13] to the 3D spatio-temporal do-

main. The methods in [11] aim at learning long-range mo-

tion features by learning a hierarchy consisting of multiple

layers of 3D spatio-temporal convolution kernels by early

fusion, late fusion, or slow fusion. The two-stream CNN

architecture [10] learns motion patterns using an additional

CNN which takes as input the optical flow computed from

successive frames of video sequences. By using the opti-

cal flow to capture motion features, the two-stream CNN is

less effective for characterizing long-range or “slow” mo-

tion patterns which may be more relevant to the semantic

categorization of human actions [35, 27]. Possibly due to

the increased complexity and difficulty of training 3D ker-

nels without sufficient training video data (as compared to

massive image datasets [3]), 3D CNN [7] does not perform

well even on the less challenging KTH dataset [25]. For the

UCF-101 benchmark dataset [26], we note that the results

reported in [11] are inferior to those obtained by two-stream

CNN [10]. Indeed, spatio-temporal action patterns coupling

the visual appearance and motion dynamics generally need

an order of magnitude more training data than the 2D spatial

counterparts. Moreover, existing methods often overlook

the issue of sequence alignment in which actions of differ-

ent speeds and accelerations have to be handled properly for

human action recognition.

The above analysis motivates us to consider alternative

deep architectures which can handle 3D spatio-temporal

signals more effectively. To this end, we propose a new

deep architecture called factorized spatio-temporal convo-

lutional networks (FSTCN). A schematic diagram of FSTCN

is shown in Figure 1. While details of FSTCN will be pre-

sented in the next section, we summarize the key character-

istics and main contributions of FSTCN as follows.

• FSTCN factorizes the original 3D spatio-temporal con-

volution kernel learning as a sequential process of

learning 2D spatial kernels in the lower network layers,

called spatial convolutional layers (SCL), followed by

learning 1D temporal kernels in the upper network lay-

ers, called temporal convolutional layers (TCL). This

factorized scheme greatly reduces the number of net-

work parameters to be learned, thus mitigating the

compound difficulty of high kernel complexity and in-

sufficient training video data.

• We introduce a novel transformation and permutation

(T-P) operator to form an intermediate layer of FSTCN,

as illustrated by the yellow box in Figure 1. The T-P

operator facilitates learning of the temporal convolu-

tion kernels in the subsequent TCL.

• To address the issue of sequence alignment, we pro-

pose a training and inference strategy based on sam-

pling multiple video clips from a given action video

sequence. Each video clip is produced by temporally

sampling with a stride and spatially cropping from the

same location of the given action video sequence. Us-

ing sampled video clips as inputs to FSTCN improves

the robustness of FSTCN against variations caused by

sequence misalignment. This is similar in spirit to the

data augmentation scheme commonly used for image

classification [13].

• In addition, we propose a novel score fusion scheme

based on the sparsity concentration index (SCI). It puts

more weights on the score vectors of class probability

(output of FSTCN) that have higher degrees of sparsity.

Experiments show that this score fusion scheme con-

sistently improves over existing ones.

In summary, FSTCN is a cascaded deep architecture

stacking multiple lower SCLs, a T-P operator, and an up-

per TCL. An additional SCL is also used in parallel with

the TCL, aiming at learning a more abstract feature repre-

sentation of spatial appearance. With the fully-connected

(FC) and classifier layers on top, the whole FSTCN can be

trained globally using back-propagation [18]. Extensive ex-

periments on benchmark human action recognition datasets

[26, 14, 25] show the efficacy of FSTCN.

2. The proposed deep architecture

Human actions in video sequences are 3D signals com-

prising visual appearance that dynamically evolves over

time. To differentiate between different action categories,

discriminative spatio-temporal 3D filters are learned to

characterize different action patterns. To extend the conven-

tional CNN [17] to the spatio-temporal domain, it is nec-

essary to learn a hierarchy of 3D convolution kernels and

convolve the learned kernels with the input video data. Con-

cretely, convolving a video cube V ∈ R
mx×my×mt with a

3D kernel K ∈ R
nx×ny×nt can be written as

F st = V ∗K, (1)

where ∗ denotes 3D convolution and F st is the resulting

spatio-temporal features. Ideally a learned kernel K en-

codes some primitive spatio-temporal action patterns such

that the entire set of action patterns can be reconstructed

from sufficiently many such kernels. However, as discussed
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Figure 1. Schematic diagram of FSTCN for action recognition. ‘Conv’ is the short form for ‘convolutional’ and ‘FC’ for ‘fully connected’.

Processing in the dashed boxes is optional. More details are described in the paper.

in Section 1, learning a representative set of 3D spatio-

temporal convolution kernels is practically challenging due

to the compound difficulty of the high complexity of 3D

kernels and insufficient training videos. This is in contrast

with the problem of learning 2D spatial kernels for image

classification [13]. To overcome this challenge, we resort to

approximating the 3D kernels by characterizing the spatio-

temporal action patterns using lower-complexity kernels.

Not only does this approach need less videos for training,

but it can also take advantage of existing massive image

datasets to train the spatial kernels.

Although equivalence does not hold in general, we ex-

ploit the computational advantage by restricting to a family

of 3D kernels K which can be expressed in a factorized

form as

K = Kx,y ⊗ kt, (2)

where ⊗ denotes the Kronecker product, Kx,y ∈ R
nx×ny

is a 2D spatial kernel and kt ∈ R
nt is a 1D temporal kernel.

Given this kernel factorization, 3D convolution in (1) can be

equivalently written as two sequential steps:

F s(:, :, it) = V (:, :, it) ∗Kx,y, it = 1, . . . ,mt,

F st(ix, iy, :) = F s(ix, iy, :) ∗ kt, ix = 1, . . . ,mx,

iy = 1, . . . ,my, (3)

where V (:, :, it) denotes an individual frame of V , F s ∈
R

mx×my×mt is obtained by convolving each frame V (:
, :, it) with the 2D spatial kernel Kx,y (padding the

boundaries of V before convolution), F s(ix, iy, :) de-

notes a vector of F s along the temporal dimension, and

F st ∈ R
mx×my×mt is obtained by convolving each vector

F s(ix, iy, :) with the 1D temporal kernel kt (padding the

boundaries of F s before convolution). Equation (3) sug-

gests that one may separately learn a 2D spatial kernel and

a 1D temporal kernel and apply the learned kernels sequen-

tially to simulate the 3D convolution procedure. In so doing,

the kernel complexity is reduced by an order of magnitude

from nxnynt to nxny+nt, making the learning of effective

kernels for action recognition computationally more feasi-

ble. What is more, such a factorized scheme enables the

learning of 2D spatial kernels to benefit from the existing

massive image datasets [3] with which the performance of

many vision tasks [4, 19, 1] have been boosted significantly.

We note that since the ranks of the 3D kernels constructed

by (2) are generally lower than those of the general 3D ker-

nels, it appears that we sacrifice the representation power by

using the factorized scheme. However, spatio-temporal ac-

tion patterns in general have a low-rank nature, since feature

representations of static appearance of human actions are

largely correlated across nearby video frames. In case that
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they are not of low-rank, the sacrificed representation power

may be compensated by learning redundant 2D and 1D ker-

nels and constructing candidate 3D kernels from them.

2.1. The details of the architecture

The above analysis motivates us to design a novel deep

architecture which factorizes multiple layers of the origi-

nal 3D spatio-temporal convolutions as a sequential process

involving 2D spatial convolutions followed by 1D tempo-

ral convolutions. More specifically, our proposed FSTCN

consists of several spatial convolutional layers (SCL). The

basic components of an SCL are 2D spatial convolution ker-

nels 1, nonlinearity (ReLU), local response normalization

and max-pooling, as illustrated in the black box of Fig-

ure 1. Each convolutional layer must include convolution

and ReLU but normalization and max-pooling are optional.

By processing individual frames of the video clips with the

learned 2D spatial kernels, the SCLs are able to extract com-

pact and discriminative features for the visual appearance.

To characterize the motion patterns, FSTCN further

stacks a temporal convolutional layer (TCL) on top of the

SCLs. The TCL has the same basic components as those of

the SCLs. In order to learn the motion patterns that evolve

over time, a layer called the T-P operator is inserted be-

tween the SCLs and TCL, as illustrated in the yellow box

of Figure 1. Taking data in the form of 4D arrays (hori-

zontal x, vertical y, temporal t, and feature channel f as

dimensions) as input, this T-P operator first vectorizes in-

dividual matrices of the 4D arrays along the horizontal and

vertical dimensions such that each matrix of size x × y be-

comes a vector of length x × y, and then rearranges the

dimensions of the resulting 3D arrays (the transformation

operation) so that 2D convolution kernels can be learned

and applied along the temporal and feature-channel dimen-

sions (i.e., the 1D temporal convolution in TCL).2 Note that

the transformation operation is optional; our introduction

of it in the T-P operator is conceptually to make temporal

convolution in the subsequent TCL explicit, and practically

to make the implementation of FSTCN compatible with the

popular deep learning libraries [13, 9]. Vectorization and

transformation are followed by a permutation operation, via

a permutation matrix P with a size of f × f
′

, along the

dimension of feature channels. It aims to reorganize the

output of feature channels so that convolution in the sub-

sequent TCL takes a better support of local 2D windows

in the feature-channel and temporal directions. As tunable

1Considering multiple feature channels or maps for each video frame,

the convolution kernels in SCLs are in fact 3D kernels. To conceptually

keep consistent with the 3D physical space, we choose to term the convo-

lution kernels in SCLs as 2D kernels. The same reason applies to terming

the convolution kernels in TCLs as 1D kernels.
2We term the convolution in TCL as 1D temporal convolution to con-

ceptually keep it consistent with the 3D physical space. This convolution is

in fact 2D convolution along the temporal and feature-channel dimensions.

network parameters, P is initialized from Gaussian distribu-

tion and learned, in the same way as other network param-

eters, via back-propagation. Consequently, it reorganizes

the feature channels by generating f
′

new feature maps via

weighted combination of the f input feature maps. Since

TCL takes as input the output of the T-P operator, which

in turn takes as input the intermediate feature maps of all

frames of the input video clip (i.e., output of the SCLs),

a pixel location in the vectorized spatial domain of TCL

corresponds to a larger receptive field of the input video

clip. In other words, TCL’s 1D temporal convolution ker-

nels essentially feature the motion patterns constituted by

the visual appearance of local regions of the input video

clip that evolves over time. When combined with our pro-

posed video clip sampling strategy (to be presented in Sec-

tion 2.2), they capture long-range motion patterns of rela-

tively holistic visual appearance at a cheaper learning cost.

Details of the TCL are presented in the purple box of Figure

1. Two parallel convolutions with different kernel sizes are

applied to the TCL and then concatenated together to rep-

resent the temporal characteristics. Dropout follows each

ReLU, respectively, to reduce overfitting. Two advantages

can be observed. First, as stated before, actions can be per-

formed at different speeds or with varying accelerations,

that is, the “slow” ones (long time duration) can be cap-

tured using the large kernel while the “fast” ones (short time

duration) using the small kernel. What is more, the paral-

lel convolutional layers can provide more motion properties

which will definitely benefit the action recognition task.

In FSTCN, an additional SCL is also used in paral-

lel with TCL, aiming at learning a more abstract feature

representation of visual appearance. Similar to a convo-

lutional layer in conventional CNNs, this SCL improves

the spatial invariance of action categories by extracting

salient/discriminative appearance features via the learned

spatial filters and the subsequent nonlinearity and pooling

operations. Two fully-connected layers are stacked on top

of the parallel TCL and SCL, which are then concatenated

as the spatio-temporal features. Finally, a FC layer and a

softmax classification layer are further cascaded for super-

vised training by standard back-propagation. The whole ar-

chitecture of FSTCN with specific layer components is pre-

sented in Figure 1.

2.2. Data augmentation by sampling video clips

Human actions are visual signals contained in video se-

quences. Some of them are also periodic with multiple ac-

tion cycles repeating over time. It is usually a pre-requisite

step to detect and align action instances from the contain-

ing video sequences, in order to compare action instances

performed in different speeds or with varying accelerations.

This issue of action sequence detection/alignment is tradi-

tionally addressed by sliding windows across the tempo-
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ral direction, dynamic time warping [21], or detecting tra-

jectories of interest points from video sequences [15, 30].

However, it is generally overlooked in the more recent deep

learning based action recognition methods [7, 11, 10].

Instead of deliberately detecting and aligning action in-

stances from video sequences, we propose in this paper a

training and inference strategy based on sampling multi-

ple video clips from a given video sequence. Note that our

proposed scheme is different from the bag of video words

[22], which extracts spatio-temporal features from the video

cuboid. Each video clip in our scheme is produced by tem-

porally sampling with a stride and spatially cropping from

the same location of the given video sequence, as illustrated

in Figure 2. Such sampled video clips are not guaranteed to

be aligned with action cycles. However, the motion pattern

is well kept in the sampled video clips if enough time dura-

tion is given. We use them to train FSTCN in a supervised

manner, and expect representations robust to the misalign-

ment can be learned at the upper network layers. Besides,

even some misalignment exists, since our TCL learns the

kernel along the feature and temporal dimensions, the dis-

criminative motion patterns can still be preserved in series.

More specifically, given a video sequence V ∈
R

mx×my×mt , a video clip V clip ∈ R
lx×ly×lt (lx <

mx, ly < my , and lt < mt) is randomly sampled from

V by spatially specifying a patch of size lx × ly and tem-

porally specifying a starting frame, and regularly cropping

lt frames of V with a temporal stride of st. Such a sam-

pled V clip approximates human actions contained in a 3D

cube of size lx × ly × (lt − 1)st. However, it only con-

veys long-range motion dynamics when the temporal stride

st is relatively large. To add in the information of short-

range motion dynamics, for each frame V (:, :, it) of V with

it ∈ {1, . . . ,mt}, we also compute

V diff (:, :, it) = |V (:, :, it)− V (:, :, it + dt)| , (4)

where V diff denotes the resulting sequence and dt is the

distance of the two frames to compute the difference. We

sample from V diff a video clip V
diff
clip ∈ R

lx×ly×lt , in

the same way as sampling V clip from V and with a same

sampling index set of {it ∈ {1, . . . ,mt}}. Note that V
diff
clip

conveys both short-range and long-range motion informa-

tion 3. An illustration of our video clip sampling scheme is

presented in Figure 2.

We sample multiple pairs of video clips {V clip,V
diff
clip },

and use the sampled video clip pairs as inputs of FSTCN.

Our sampling strategy is spiritually similar to data augmen-

tation commonly used in image classification [13], where

results have demonstrated that such a strategy is able to re-

3Individual frames of V
diff
clip

∈ R
lx×ly×lt convey short-range mo-

tion information, while V
diff
clip

as a whole conveys long-range motion by

covering an extended duration (size (lt − 1)st) of video sequence.

c c c c c c c c … … VIDEO SEQUENCE 

VIDEO CLIPs … 

Figure 2. Illustration of our proposed video clip sampling scheme.

Each video clip is produced by temporally sampling with a stride

and spatially cropping from the same location of the given video

sequence. Numbers of pairs of video clips {V clip,V
diff

clip } consist

our FSTCN input.

duce overfitting of network parameters by largely increas-

ing training samples, and also to improve robustness of the

learned networks against misalignment of object instances

in images. Our proposed video clip sampling strategy ex-

tends data augmentation to the temporal domain, aiming to

address the issue of sequence alignment in the problem of

video based human action recognition.

Considering that V
diff
clip contains short-range and long-

range motion information, and V clip (mostly) contains in-

formation of visual appearance, our use of the sampled

video clip pairs in FSTCN is as follows. We first feed in-

dividual frames of each pair of V clip and V
diff
clip into the

lower SCLs. After mid-level spatial feature representa-

tions of these individual frames are extracted, we separate

these mid-level features by feeding those from all frames

of V
diff
clip into TCL (after T-P operator), and feeding a ran-

domly sampled frame of V clip into the intermediate SCL

that is parallel to the TCL. When testing, the selected mid-

dle one of V clip is fed into SCL. This separation of sig-

nal pipelines is consistent with our architecture design of

FSTCN.

2.3. Learning and inference

FSTCN has factorized SCLs and TCLs. To learn spa-

tial and temporal convolution kernels effectively, we follow

the ideas from [28] and introduce auxiliary classifier layers

connected to the lower SCLs, as illustrated in the dashed

red box of Figure 1. In practice, we first use ImageNet [3]

to pre-train this auxiliary network, and use randomly sam-

pled training video frames to fine-tune it, in order to get

better 2D spatial convolution kernels in the lower SCLs. We

follow the advice in [11] by only fine-tuning the last three

layers of the auxiliary network as well. Finally the whole

FSTCN network is globally trained via back-propagation,

using sampled pairs of video clips as inputs. Note that in

our training of TCL in FSTCN, we do not use video data ad-

ditional to the currently working action dataset; in contrast,

additional training videos from a second action dataset are

used for training in two-stream CNNs [10].

In the inference stage, given a test action sequence, we

first sample pairs of video clips as explained in Section 2.2.

We then pass each of the sampled video clip pairs through
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the FSTCN pipeline, resulting in a score output of class

probability. These scores are fused to get the final recog-

nition result, for which we propose a novel score fusion

scheme that will be introduced shortly.

2.4. SCI based score fusion

Assume there are N categories of human actions in

an action recognition dataset, and we sample M pairs

{V clip,V
diff
clip } of video clips from each video sequence

of the dataset. Each pair of video clips is regularly cropped

(one sampling strategy is presented in Figure 3), generat-

ing C crops similarly as [13] on ImageNet. For a test video

sequence, denote the score output of class probability for

the kth cropped video of the ith sampled video clip pair as

pk,i ∈ R
N , with k ∈ {1, . . . , C} and i ∈ {1, . . . ,M}. The

final score p̂ of class probability can be obtained by simple

averaging, i.e., p̂ = 1

CM

∑M

i=1

∑C

k=1
pk,i. This scheme

presumes that contributions from each of {pk,i}
C
k=1

M
i=1

are

of equal importance, which is however, not usually true. In-

deed, if one has knowledge about which score outputs of

{pi}
C
k=1

M
i=1

are more reliable, a weighted averaging scheme

can be developed to get a better final score p̂.

To estimate the degree of reliability for any score p ∈
R

N of class probability, we come up with a very intuitive

idea: when p is reliable, it is usually sparse with low en-

tropy of the distribution, i.e., only a few entries of the vector

p have large values (meaning the probabilities that the test

video sequence is of the corresponding action categories are

high), while values of other entries in p are small or ap-

proaching zeros; conversely, when p is not reliable, its entry

values (class probabilities) tend to spread evenly over all the

action categories. This presumption suggests that we may

use the sparsity degrees of each of {pk,i}
C
k=1

M
i=1

to derive a

weighted score fusion scheme. To this end, we introduce the

notion of Sparsity Concentration Index (SCI) [33] to mea-

sure the degree of sparsity for any p, which computes,

SCI(p) =
N ·maxj=1,...,N pj/

∑N

j=1
pj − 1

N − 1
, (5)

where pj denotes the jth entry of p, and SCI(p) ∈ [0, 1].
Given C cropped videos of the ith sampled video clip pair

and their score outputs {pk,i}
C
k=1

, our proposed SCI based

score fusion scheme computes the final score of class prob-

ability as

pi =

∑C

k=1
SCI(pk,i)pk,i

∑C

k=1
SCI(pk,i)

. (6)

The M pairs of video clips are fused by

p̂ = maxrow([p̃1
, . . . , p̃M ]), (7)

The test video sequence is finally recognized as the action

category that has the corresponding largest entry value of

c c c c c c c c … … 

Sparse Concentration Index (SCI) 

0 

0.2 

0.4 

0.6 

0.8 

Human Actions 

Score Fusion 

… 

sit   

… 

1SCI iSCI

… 

1max ( )row i Mp∈ 

… … 

Figure 3. The SCI based score fusion scheme. In the stage of infer-

ence, given a test action sequence, we first sample pairs of video

clips of the video sequence. Each pair of video clip is cropped

from top left, top middle, top right, middle left, middle, middle

right, bottom left, bottom middle, bottom right, forming 9 parts

and flipped to generate 18 samples which will pass through the

FSTCN pipeline, resulting in 18 scores output of class probabil-

ity fused using SCI. All the output scores from the sampled pairs

are then maximized to generate the final score of class probabil-

ity p ∈ R
N . The action category corresponds to the largest entry

value of p.

p̂, i.e., argmaxj=1,...,N p̂j with p̂j as the jth entry of p̂.

Our score fusion scheme also provides the compensation of

the misalignment problem since maximized values of video

clips are taken.

We illustrate in Figure 3 the idea of our proposed SCI

based score fusion scheme. Experiments in Section 3 show

that it consistently improves over the commonly used av-

eraging scheme. We expect our proposed scheme is also

useful in other deep learning based classification methods.

2.5. Implementation details

The details of the first four SCLs which extract the

compact and discriminative feature representations of vi-

sual appearance are: Conv(96, 7, 2) − ReLU − Norm −
Pooling(3, 2) − Conv(256, 5, 2) − ReLU − Norm −
Pooling(3, 2)−Conv(512, 3, 1)−Conv(512, 3, 1), where

Conv(cf , ck, cs) denotes the a convolutional layer with cf
feature maps and the kernel size is ck × ck, applied to

the input with the stride cs in width and height direction.

Norm and Pooling(pk, ps) are the local response normal-

ization layer and pooling layer in which pk is the spatial

window and ps is the pooling stride, respectively. Sim-

ilar as [13] rectified activation functions (ReLU) are ap-

plied to all the hidden weights layers; max-pooling is per-

formed over 3 × 3 spatial windows with stride 2; local re-

sponse normalization across channels uses the same settings

as [13], that is: k = 2, n = 5, α = 5 × 10−4, β = 0.75.

The SCL which connects to the TCL contains convolu-

tion (Conv(128, 3, 1)) and pooling (Pooling(3, 3)). The
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permutation matrix P has the size of 128 × 128, that is,

f = f
′

= 128. The TCL has two parallel convolutional

layers (Conv(32, 3, 1) and Conv(32, 5, 1)), each of which

has a dropout layer with a dropout probability of 0.5. Note

that the TCL will not be followed by pooling layer since

pooling will ruin the temporal cues. Two fully-connected

(FC) layers with 4096 and 2048 hidden nodes respectively

are stacked on top of the TCL and SCL. The feature out-

puts from the fully connection layer of SCL and TCL are

then concatenated and passed through another FC layer with

2048 hidden nodes. For training, we use a batch size of 32,

momentum of 0.9, and weight decay of 0.0005. Instead of

using the popular input size of 224 × 224, we use the size

of 204 × 204 to save memory. Note that the settings of the

spatial convolutional path are the same as in [10] except that

the input size becomes smaller. At each training iteration,

the frames in each pair of video clips are randomly cropped

at the same location and flipped simultaneously.

3. Experiments

Experiments are conducted on two benchmark action

recognition datasets, namely, UCF-101 [26] and HMDB-51

[14], which are the largest and most challenging annotated

action recognition datasets.

UCF-101 [26] is composed of realistic web videos,

which are typically captured with camera motions and un-

der various illuminations, and contain partial occlusion. It

has 101 categories of human actions, ranging from daily life

to unusual sports (such as “Yo Yo”). UCF-101 has more

than 13K videos with an average length of 180 frames per

video. It has 3 split settings to separate the dataset into train-

ing and testing videos. We report the mean classification

accuracy over these three splits.

HMDB-51 [14] has a total of 6766 videos organized

as 51 distinct action categories, which are collected from

a wide range of sources. This dataset is more challenging

than others because it has more complex backgrounds and

context environments. What is more, there are many simi-

lar scenes in different categories. Since the number of train-

ing videos is small in this dataset, it is more challenging to

learn representative features. Similar to UCF-101, HMDB-

51 also has 3 split settings to separate the dataset into train-

ing and testing videos, and we report the mean classification

accuracy over these three splits.

In the experiments, the video clip consists of 5 tem-

porally sampled pairs of video clips {V clip,V
diff
clip } with

dt = 9 and st = 5. These sampled video clips are represen-

tative enough to convey the long-range motion dynamics.

Firstly, we use the TCL path of FSTCN (orange arrows in

Figure 1) and split 1 of HMDB51 to investigate whether us-

ing two different convolution kernels in TCL is better than

using one kernel only. The sizes of the two different kernels

are 3×3 and 5×5 respectively. Results of this investigation

Table 1. Results of TCL path of FSTCN and optical flow stream

CNN of [10] on HMDB-51 (split 1)

Training setting Accuracy

TCL (only 3× 3 kernel) 46.0%

TCL (only 5× 5 kernel) 47.1%

TCL (5× 5 kernel + 3× 3 kernel) 48.4%

Training on HMDB-51 without additional data [10] 46.6%

Fine-tuning a ConvNet, pre-trained on UCF-101 [10] 49.0%

Training on HMDB-51 with classes added from UCF-101 [10] 52.8%

Multi-task learning on HMDB-51 and UCF-101 [10] 55.4%

are reported in Table 1. Table 1 tells that using two differ-

ent kernels is better than using either one of them, and using

kernel of a larger size is better than using that of a smaller

size. Note that these results are obtained without using our

score fusion scheme. In Table 1, we also compare with

[10] in the setting of using temporal convolution pipeline

only, i.e., using the TCL path with V
diff
clip as the input for

FSTCN and the optical flow CNN stream for [10]. Our result

(48.4%) of TCL path is better than that (46.6%) of optical

flow CNN stream in [10] when only split 1 of HMDB-51

is used as training videos. We note that auxiliary training

videos are also used in [10] to boost performance, as shown

in Table 1. Using auxiliary training videos is complemen-

tary to our proposed technique of factorized SCL and TCL.

We expect our result can be further improved given auxil-

iary training videos.

Table 2. Mean accuracy on UCF-101 and HMDB-51 using differ-

ent strategies of FSTCN

Training setting UCF-101 HMDB-51

only SCL path 71.3% 42.0%

only TCL path 72.6% 45.8%

only TCL path (SCI fusion) 76.0% 49.3%

FSTCN (single randomly selected clip) 84.5% 54.1%

FSTCN (averaging fusion) 87.9% 58.6%

FSTCN (SCI fusion) 88.1% 59.1%

We present controlled experiments on the UCF-101 and

HMDB-51 datasets in Table 2, where results from differ-

ent proposed contributions are specified. Table 2 tells that

our proposed data augmentation scheme by sampling video

clips, and also the SCI based score fusion scheme effec-

tively improve the recognition performance. In particular,

when features from SCL path and TCL path are concate-

nated and trained globally via back-propagation, about 10%
gain can be obtained, indicating that our learned spatio-

temporal features are complementary with each other. Re-

sults from our main contribution of FSTCN will be presented

shortly by comparing with the state-of-the-art.

Table 3 compares FSTCN with other state-of-the-art

methods, where performance is measured by mean accuracy

on three splits of the HMDB51 and UCF101 datasets. Com-

pared with the state-of-the-art CNN based method [10], our

method outperforms it by about 1% on both datasets, when

averaging fusion is adopted. When a supervised learning
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based SVM score fusion scheme is used in [10], our method

still achieves better or comparable performance on the two

datasets. We note that the results of [10] and [11] are ob-

tained by using auxiliary training videos, while our results

are obtained by using each of the working datasets only.

We expect our results can be further boosted given auxil-

iary training videos.

Table 3. Classification mean accuracy (over three splits) on UCF-

101 and HMDB-51.

Methods UCF-101 HMDB-51

Improved dense trajectories (IDT) [30] 85.9% 57.2%

IDT higher-dimensional encodings [23] 87.9% 61.1%

Spatio-temporal HMAX network [6] [14] -% 22.8%

”Slow fusion” spatio-temporal ConvNet [11] 65.4% -%

Two-stream model (averaging fusion) [10] 86.9% 58.0%

Two-stream model (SVM fusion) [10] * 88.0% 59.4%

FSTCN (averaging fusion) 87.9% 58.6%

FSTCN (SCI fusion) 88.1% 59.1%
* Additional videos are fed into the network to train the optical flow stream since

multi-task learning strategy is applied.

4. Visualization

To visually verify the relevance of learned parameters

in FSTCN, we use back-propagation to visualize important

regions for any action category, i.e., back-propagating the

neuron of that action category in the classifier layer to the

input image domain. Figure 5 gives illustration for several

action categories. The shown “saliency” maps suggest that

learned parameters in FSTCN can capture the most repre-

sentative regions of action categories. For example, the

saliency map of the action “smile” displays a “monster”

face, suggesting that “smile” happens around the mouth.

To investigate whether our learned spatio-temporal fea-

tures are discriminative for action recognition, we plot in

Figure 4 the learned features of several action categories

(“smile”, “laugh”, “chew”, “talk”, “eat” , “smoke”, and

“drink” in the HMDB-51 dataset). These features are vi-

sualized using the dimensionality reduction method tSNE

[29]. Since these action categories are mainly concerned

with face motions, especially with mouth movements, they

cannot be easily distinguished. Figure 4 clearly shows that

spatio-temporal features extracted from the FC layer after

SCL and TCL being concatenated, are more discriminative

than either spatial features extracted from the second FC

layer of SCL, or temporal features extracted from the sec-

ond FC layer of TCL.

5. Conclusion

In this paper, a novel deep learning architecture, termed

FSTCN, is proposed for action recognition. The FSTCN

is a cascaded deep architecture which learns the effective

spatio-temporal features through training using standard

back-propagation. This factorization design mitigates the

Spatial Features Temporal Features 

Figure 4. The feature visualization of seven categories from

HMDB-51. These seven categories focus on the tiny mouth move-

ment and they have the same scene with the big head in the center.

Spatial features are extracted from the second FC layer of SCL

and temporal features are from the second FC layer of TCL, and

spatio-temporal features are from the FC layer after SCL and TCL

being concatenated. All the features are visualized using the state-

of-the-art method tSNE which can be viewed better in color.

Figure 5. The visualization of the “saliency” map which maximize

the output score, from left to right, from top to down, the category

is smile, clap, pull-up and climbing. Better to be seen in the color

version.

compound difficulty of high kernel complexity and insuffi-

cient training videos. The T-P operator provides a novel fea-

ture and temporal representation for actions. Moreover, two

parallel kernels in the TCL assists it to learn more represen-

tative temporal features. In addition, the additional SCL ex-

tracts more abstract spatial appearance which largely com-

pensates the deficiency of TCL as shown in the experimen-

tal results. Extensive experiments on the action benchmark

datasets present the superiority of our algorithm even with-

out additional training videos.
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