
Multi-kernel Correlation Filter for Visual Tracking

Ming TANG and Jiayi FENG

National Lab of Pattern Recognition, Institute of Automation,

Chinese Academy of Sciences, Beijing 100190, China

{tangm,jyfeng}@nlpr.ia.ac.cn ∗

Abstract

Correlation filter based trackers are ranked top in terms

of performances. Nevertheless, they only employ a single

kernel at a time. In this paper, we will derive a multi-

kernel correlation filter (MKCF) based tracker which ful-

ly takes advantage of the invariance-discriminative power

spectrums of various features to further improve the perfor-

mance. Moreover, it may easily introduce location and rep-

resentation errors to search several discrete scales for the

proper one of the object bounding box, because normally

the discrete candidate scales are determined and the cor-

responding feature pyramid are generated ahead of search-

ing. In this paper, we will propose a novel and efficient scale

estimation method based on optimal bisection search and

fast evaluation of features. Our scale estimation method is

the first one that uses the truly minimal number of layers of

feature pyramid and avoids constructing the pyramid before

searching for proper scales.

1. Introduction

Visual object tracking is one of the most challenging

problems in computer vision [32, 18, 20, 26, 23]. To adapt

to unpredictable variations of object appearance and back-

ground during tracking, one strategy is to select a single

strong feature that is robust to any variation. However,

this has been known to be difficult [33, 11], especially for

the model-free tracking task in which no prior knowledge

about the target object is known except for the initial frame.

Therefore, designing an efficient scheme to combine several

complementary features is a natural alternative.

In such a natural scheme, different features would cap-

ture different channels of target information and result in a

better performance [35, 37, 21, 7]. Since any feature pos-

sesses its own invariance and discriminative power, what re-

ally distinguishes one feature from another is its location at

∗This work was supported by Natural Science Foundation of China.

Grant No. 61375035.

The corresponding author of the paper is Ming TANG.

#21 #263 #340

#70 #423 #467

#240 #300 #450

Figure 1. Qualitative comparisons of our Multi-kernel Correla-

tion Filter (MKCF) with state-of-the-art trackers, Struck [13],

KCF [15], and CN2 [7] on 3 sequences [36]. The figure is best

viewed in color.

the invariance-discriminative power spectrum [33]. And the

location may vary for different types of variations. Com-

plementary features should be selected in such a way that

they are not at the same location of the spectrum for the

same appearance variation. In other words, complementary

features must be at different spectrum locations under the

same variation, especially in long term tracking because the

object appearance and its local background may vary sub-

stantially. Concatenation of several features into a single

kernel space, however, may confuse their characteristics on

the invariance-discriminative power spectrums, and is not a

good choice. Consequently, a multiple kernel feature, i.e.,

a combination of several kernels, one for each feature, is a

natural choice.

In recent years, correlation filter based trackers have

been proposed [4, 15, 7, 6, 16] and achieved top per-

formance. Bolme et al.[4] proposed a correlation filter

based tracker, called Minimum Output Sum of Squared Er-

ror (MOSSE), with classical signal processing techniques.

3038

They used a base image patch and several circulant virtu-

al ones to train the filter directly in the Fourier domain.

Henriques et al. [15, 16] utilized the circulant structure pro-

duced by a base sample to propose a kernelized correlation

filter (KCF). The KCF used a single kernel and enabled fast

learning with fast Fourier transforms instead of costly ma-

trix operation, providing the highest tracking speed [36].

Danelljan et al. [7] extended the KCF with low-dimensional

adaptive color channels and achieved state-of-the-art per-

formance in a comprehensive evaluation. Nevertheless, the

correlation filter based tracker can not yet utilize multi-

ple kernels simultaneously. In this paper, we will extend

the correlation filter based tracker further to its multiple

kernel version and demonstrate its superior performance.

Fig. 1 shows a qualitative comparison to indicate that our

approach, MKCF, outperforms other trackers in challeng-

ing sequences Shaking, Trellis, and Walking2 [36].

Another challenging problem in visual tracking is the ro-

bust estimation of object scale in complex scenes. Current-

ly, there exist two popular strategies to tackle this problem.

One is the analytical method [2, 27] which moves and ana-

lytically deforms a template to minimize the difference be-

tween the template and an image region, and the other ex-

haustively searches for the proper scale among several dis-

cretized scales [1, 6]. In order to handle large variations

of scale effectively and efficiently, Danelljan et al. [6] ap-

plied the idea of kernelized correlation filter to a pyramid

representation of candidate bounding boxes to speed up ex-

haustive searches greatly. Nevertheless, their approach had

to construct the pyramid in advance as the search method

does, thus was in fact still based on several discrete scales.

And in order to estimate object scales accurately, the pyra-

mid had to include 33 layers. In this paper, we will present

a novel method, which is based on fast feature pyramids [8]

and optimization technique to efficiently determine the opti-

mal scale in the continuous scale space. As far as we know,

our scale estimation method is the first one which explores

the truly minimal number of layers of feature pyramid and

avoids constructing the pyramid before searching for prop-

er scales. Moreover, our optimal scale estimation is gener-

ic, and can be incorporated into any tracker which does not

contain inherent scale estimation.

In summary, the main contributions of our work in-

cludes two aspects. 1) A multi-kernel correlation filter

(MKCF) based tracker is proposed. In fact, the MKCF can

be accepted as a general framework of correlation filter in

the sense that it embraces both strengths of multiple chan-

nels and multiple kernels. 2) An optimal and efficient algo-

rithm is developed to determine the scale of target object.

In this paper, the power law of image scaling [30, 8] is in-

troduced into visual tracking community for the first time in

order to quickly determine the object scale.

The remainder of this paper is organized as follows. In

Sec.2, we briefly overview the related work. In Sec.3, the

general correlation filter framework of multiple kernels and

multiple channels is derived. And the optimal and efficien-

t algorithm to search for proper scales is presented. Our

tracking algorithm, MKCF, is then described in detail. To

understand the MKCF more clearly, Sec.4 provides details

of our implementation. Experimental results and compari-

son with other state-of-the-art approaches are presented in

Sec.5. Sec.6 summarizes our work.

2. Related Work

Multiple kernel learning (MKL) aims at simultaneous-

ly learning a kernel and the associated predictor in super-

vised learning settings. Rakotomamonjy et al. [28] pro-

posed an efficient algorithm, named SimpleMKL, for solv-

ing the MKL problem through reduced gradient descent in a

primal formulation. Varma and Ray [33] extended the MKL

formulation in [28] by introducing an additional constraint

on combinational coefficients and applied it to object clas-

sification. Vedaldi et al. [34] and Gehler and Nowozin [11]

applied MKL based approaches to object detection and clas-

sification. Cortes et al. [5] studied the problem of learning

kernels of the same family with an L2 regularization for

ridge regression (RR) [29]. In this paper, we extend the

MKL formulation in [28] to RR, and present a novel multi-

kernel RR approach.

In recent years, Bolme et al. [4] proposed an extension

of traditional correlation filters [19] referred to as Minimum

Output Sum of Squared Error (MOSSE) filter. The origi-

nal MOSSE was expressed in the Fourier domain. In fact,

it is easy to observe that the expression of MOSSE in the

spatial domain is just the ridge regression [29] with a lin-

ear kernel. Therefore, Henriques et al. [15] proposed the

kernelized correlation filter (KCF) by introducing the ker-

nel trick into ridge regression [29]. The generalizations

of MOSSE and KCF to multiple channels have also been

proposed [3, 10, 14]. Danelljan et al. [7] further extend-

ed the KCF to multiple channels, one per adaptive color

attribute. Henriques et al. [17] utilized the circulant struc-

ture of Gram matrix to speed up the training of pose detec-

tors in the Fourier domain. It is noted that all these work-

s [4, 15, 3, 10, 14, 7] can only employ a single kernel. In

this paper, we propose a brand new multi-kernel correlation

filter which is able to fully take advantage of invariance-

discriminative power spectrums of various features.

Ruderman and Bialek [30] explored how the statistics of

natural images behave as a function of the scale at which an

image ensemble is captured. And their discovery implies

that the ratio of the statistics of two image sets under two

different scales is approximately the power function of the

ratio of the two scales. Dollár [8] extended this power law

to a pair of images of the same scene, and pointed out that

the feature ratio of two images under different scales is also

3039

approximately the power function of the ratio of the two

scales. In this paper, we utilize Dollár’s power law to speed

up the determination of the object scale during tracking. To

the best of our knowledge, it is the first time to make use of

the power law in the visual tracking community.

3. Multi-kernel Correlation Filter Based

Tracking

3.1. Training Multi­kernel Correlation Filter

The training goal of ridge regression [29] is to find func-

tion f(x) which minimizes the squared error over training

samples xi’s and their regression targets yi’s, i.e.,

min
f

1

2

l−1
∑

i=0

(f(xi)− yi)
2 + λ||f ||2k, (1)

where l is the number of samples, f lies in a bounded con-

vex subset of a Reproducing Kernel Hilbert Space defined

by a positive definite kernel function k(,), and λ ≥ 0 is

the regularization parameter. By means of the Representer

Theorem [31], the solution f∗ to the Tikhonov regulariza-

tion problem can be expressed as

f∗(x) =
l−1
∑

i=0

αik(xi,x). (2)

Then, ||f ||2k = α⊤Kα, where α = (α0, α1, . . . , αl−1)
⊤,

and K is the positive semi-definite kernel matrix with κij =
k(xi,xj) as its elements. Problem (1) becomes to find α,

i.e.,

min
α∈Rl

1

2
||y −Kα||22 +

λ

2
α⊤Kα, (3)

where y = (y0, y1, . . . , yl−1)
⊤.

It has been shown that using multiple kernels in-

stead of a single one can improve the algorithm-

s’ discrimination [22, 33]. Given the base kernel-

s, km where m = 1, 2, . . . ,M , a usual approach

is to consider k(xi,xj) be a convex combination of

base kernels, i.e., k(xi,xj) = d⊤k(xi,xj), where

k(xi,xj) = (k1(xi,xj), k2(xi,xj), . . . , kM (xi,xj))
⊤,

d = (d1, d2, . . . , dM)⊤,
∑M

m=1
dm = 1, and dm ≥ 0.

Hence we have

K =

M
∑

m=1

dmKm, (4)

where Km is the mth base kernel matrix with κm
ij =

km(xi,xj) as its elements. Substituting K in Eq. (4) for

that in (3) and introducing the additional constraint on the

sum of dm’s, we obtain the object function F (α,d) of mul-

tiple kernel version of ridge regression problem (3) as fol-

lows.

min
α,d

F (α,d) =
1

2

∥

∥

∥

∥

∥

y −

M
∑

m=1

d2mKmα

∥

∥

∥

∥

∥

2

2

+

λ

2
α⊤

M
∑

m=1

d2mKmα+
ν

2

(

M
∑

m=1

d2m − 1

)2

,

(5)

where λ = 10−3 and ν = 10−2 in our current experi-

ments. In order to ensure that all combination coefficients

are positive, d2m’s, instead of dm’s, are used in Eq. (5), i.e.,

K =
∑M

m=1
d2mKm. It is noted that Eq. (5) is equivalent to

a constrained multiple kernel optimization problem with the

third item of Eq. (5) as its constraint and ν as its Lagrangian

multiplier, and its optimal solution can be expressed as

f∗(x) =

l−1
∑

i=0

αid
2⊤k(xi,x), (6)

where d2 ≡ (d21, d
2
2, . . . , d

2
M)⊤.

It should be pointed out that Eq. (5) is also the La-

grangian function with ν as its Lagrangian multiplier with-

out a second power on
(

∑M
m=1

d2m − 1
)

. In this case,

minα,d F (α,d) is a linear programming (LP) problem

w.r.t. d2, given α. Since the optimal solution of LP prob-

lem will always be at the vertex of linear feasible region,

the optimal d∗2 must be a unit vector. This means that

the combination of multiple kernels will be discarded and

only one kernel left. This case does not meet our goal

of exploring multiple kernels simultaneously to improve

the tracking performance. Therefore, a second power on
(

∑M
m=1

d2m − 1
)

is necessary for Eq. (5).

Theorem 1 Let {Km} be positive semi-definite. Then, (a)

given α, F (α,d) is convex w.r.t. d2; (b) given d2, F (α,d)
is convex w.r.t. α.

F (α,d) is a differentiable function, we can find a mini-

mizer simply by taking its gradients w.r.t. α and d and then

solving them. To solve α, we let ∇αF (α,d) = 0, and

achieve that

α =

(

M
∑

m=1

d2mKm + λI

)−1

y, (7)

where I is the l × l identity matrix. We propose two ap-

proaches to find out d2. One is an iteration approach, and

the other is analytic. The iteration approach employs the

gradient descent method to achieve the minimum step by

step, i.e.,

d2
t+1 = d2

t + γd,t∇d2F (α,dt)

= d2
t +

γd,t

2
(d2B− c),

(8)

3040

where B is an M × M matrix with elements bmn =
α⊤Kmnα + 2ν, Kmn = KmKn + KnKm, c is an M
dimensional vector with cn = α⊤Kn(2y − λα) + 2ν as

its elements, γd,t > 0 is the optimal step length in the tth

iteration [9]. Theorem 1 (a) ensures that such iteration will

converge to the minimum. Or, the optimization process (8)

will terminate at the boundary of region d2 ≥ 0 whenever

any of the component of d2
t+1 is less than or equal to 0.

The analytic approach finds out d2 through solving the

system of equations ∇dF (α,d) = 0. Specifically, it is easy

to derive from ∇dF (α,d) = 0 that

dn

[

α⊤

(

M
∑

m=1

d2mKmn

)

α+ 2ν
M
∑

m=1

d2m

]

= dncn, (9)

where dn is an element of d. Therefore,

dn = 0, or

α⊤

(

∑M
m=1

d2mKmn

)

α+ 2ν
∑M

m=1
d2m = cn.

(10)

Suppose dn = 0 only if n ∈ S0 ⊂ Sa ≡ {1, 2, . . . ,M},

and S̄0 = Sa \ S0, where the cardinality of S0 equals N ,

and 0 ≤ N < M . Then Eq. (10) can be expressed as

∑

m∈S̄0

(α⊤Kmnα+ 2ν)d2m = cn, (11)

where n ∈ S̄0. This is a system of linear equations w.r.t.

d2m’s, and can be briefly expressed as

d2
p = cpB

−1
p , (12)

where Bp is a (M −N)× (M −N) matrix with elements

bmn = α⊤Kmnα + 2ν, d2
p and cp are two column vectors

with d2m’s and cn’s as elements, respectively, m,n ∈ S̄0.

If Bp is not invertible, the generalized inverse B+
p will be

calculated instead of B−1
p . If any element of cpB

−1
p is less

than 0, there does not exist any solution d2
p for Eq. (12) in

such S0 and S̄0. Otherwise, according to Theorem 1, alter-

nately evaluating Eqs. (7) and (12) will make F (α,d) con-

verge to a point (α∗, s(d∗2
p ∪ d0)), where d∗2

p is evaluated

via Eq. (12) and initially d2
p = (1/M, 1/M, . . . , 1/M), d0

is the vector with dn, n ∈ S0, as its elements, d∗2
p ∪d0 is the

union set of all components of both d∗2
p and d0, s(v) sorts

the elements of v ascendingly according to their subscripts,

and generates a new column vector d∗2. For example, sup-

pose S0 = {2}, S̄0 = {1, 3}, d∗2
p = {d21, d

2
3} = {0.4, 0.6},

and d0 = {d2} = {0}. Then d∗2 = s(v) = s(d∗2
p ∪d0) =

{d21, d2, d
2
3} = {0.4, 0, 0.6}. In practice, a satisfactory con-

vergency (α∗,d∗2) can be achieved after a couple of itera-

tions of Eqs. (7) and (12).

In fact, N can take any value from 0 to M −1, and given

N , there are CN
M different S0’s. To distinguish these S0’s

one another, we introduce SN,c
0 to represent the S0 whose

cardinality is N and whose elements are the cth combina-

tion of CN
M ones. The CN

M combinations consist of all pos-

sible N elements of Sa. It is clear that c = 1, 2, . . . , CN
M .

Through evaluating the convergent point by means of the

above process for every SN,c
0 , at most

∑M−1

N=0
CN

M mini-

mizers of F (α,d) will be found. The minimizer that makes

F (α,d) minimal among the minimizers will be accepted as

the optimal solution of Eq. (10).

It is interesting to examine the optimization of F (α,d)
in the case that only two complementary features are in-

cluded, i.e. M = 2, given α. Because (d21 + d22 − 1)2 is

one of the three items to optimize in Eq. (5), it is advan-

tage for the optimization that d21 = 1 if d22 = 0, or vice

verse. Therefore, there are three combinations of the values

of d21 and d22, i.e., (1, 0), (0, 1), and (v1, v2), where (v1, v2)
is obtained through solving Eq. (12) with N = 0. This

means that the optimal solution of Eq. (10) will be selected

from three candidates: only employing one of two comple-

mentary features, and using the linear combination of both

features. And the final solution that minimizes F (α,d) will

be among the three candidates of d2, and will be applied to

the construction of object appearance model in the current

frame.

It is clear that the analytic approach to solving d is pre-

ferred if M is small enough. In our current implementation,

we found that the analytic approach is more efficient than

the iteration one because M = 2. The former spent about

half of the time the later spent. Of cause, the iteration ap-

proach may be more efficient than the analytic one if M is

large. And that how many kernels will be applied depends

on the tradeoff between the performance and computational

burden.

3.2. Fast Evaluation in Training

All correlation filter based tracking algorithms [4, 15, 17,

7] consider the training samples, xi, to be generated through

cyclically shifting a base sample. Therefore, the optimiza-

tion of F (α,d) described in the preceding section can be

speeded up by means of fast Fourier transform (FFT).

Because kernel matrices Kms are circulant [15], and the

inverses, products, and sums of circulant matrices are still

circulant [12], Kmn is circulant. Denote kmn to be the first

row of Kmn, and k′
m the first column of Km. It is clear

that k′
m = k⊤

m because Km is symmetric. The evaluation

of Eq. (7) can be accelerated by

α = F−1
1





F1(y)

F1

(

∑M
m=1

d2mkm

)

+ λ



 , (13)

and that of Eq. (12) can be done by

kmn = F−1
1 (F∗

1 (k
′
n)⊙F1(km))+

F−1
1 (F∗

1 (k
′
m)⊙F1(kn)),

(14a)

3041

bmn = α⊤F−1
1 (F∗

1 (kmn)⊙F1(α)) + 2ν, (14b)

cm = (λα− y)⊤F−1
1 (F∗

1 (km)⊙F1(α))− 1.
(14c)

It is clear that the linear combination of circulant matri-

ces is still circulant. Therefore,
∑M

m=1
d2mKm is circulant,

and its first row is
∑M

m=1
d2mkm. The evaluation of F (α,d)

can then be accelerated as follows.

F2(α,d) =
1

2

∥

∥

∥

∥

∥

y −F−1
1

(

F∗
1

(

M
∑

m=1

d2mkm

)

⊙F1(α)

)∥

∥

∥

∥

∥

2

2

+

λ

2
α⊤F−1

1

(

F∗
1

(

M
∑

m=1

d2mkm

)

⊙F1(α)

)

.

(15)

It is noted that only the first two items of F (α,d) are nec-

essary for the evaluation of F (α,d), as its third item is e-

quivalent to a constraint.

3.3. Fast Detection

3.3.1 Determine Central Location

According to Eq. (6), the multiple kernel correlation filter

evaluates the responses of all test samples zj = Pjz, j =
0, 1, . . . , l − 1, in the current frame I as

yj(z) =
M
∑

m=1

d2m

l−1
∑

i=0

αikm(zj ,xi), (16)

where z is the base test sample, P is the permutation ma-

trix [15, 16]. xi = Pix, i = 0, 1, . . . , l−1, x is the weight-

ed average of located samples in several earlier frames (i.e.,

xnew in Sec. 3.3.4). Because km(,), m = 1, 2, . . . ,M , is

permutation-matrix-invariant, the response map, y(z), of

all virtual samples generated by z can be evaluated as

y(z) ≡ (y0(z), . . . , yl−1(z))⊤ =
M
∑

m=1

d2mC(km)α, (17)

where km = (km,0, . . . , km,l−1), km,i = km(z,Pix),
and C(km) is the circulant matrix with km as its first row.

Therefore, the response map can be accelerated as follows.

y(z) =
M
∑

m=1

d2mF−1
1

(

F∗
1 (km)⊙F1(α)

)

. (18)

The element of y(z) which takes the maximal value is ac-

cepted as the optimal object location in I.

3.3.2 Identify Optimal Scale

Suppose that ι(I) ≡ ιmax(y(z)) is the center location of the

test patch whose response is maximal among all test patches

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
16.5

17

17.5

18

18.5

19

19.5

20

20.5

Scale

ρ
(s

)

CarScale Frame:191

S*
0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

16

16.5

17

17.5

18

18.5

19

19.5

Scale

ρ
(s

)

CarScale Frame:199

S*
0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

35

40

45

50

55

60

65

70

75

80

Scale

ρ
(s

)

Singer1 Frame:7

S*
0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

40

45

50

55

60

65

70

75

80

85

90

Scale

ρ
(s

)

Singer1 Frame:63

S*

(a)

(b)

Figure 2. (a) ρ(s) usually has a dominant mode, which is as-

sumed to be the optimal object scale s∗ in current frame. 0.618

method [24] is employed to search for s∗. The object scale s of

the last frame is supposed to be 1. (b) ρ0(s) usually also has a

dominant mode. Its curve around s∗, however, is sometime a little

bit too flat in comparison with ρ(s)’s. See Sec. 3.3.2 for details.

The figure is best viewed with high resolution display.

in I, D(ι, s) is an I’s patch, whose center is ι, with scale

s, sx is the scale of patch x, and R(D, s) denotes the image

patch D re-sampled by s. Let

ρ(s) ≡ PSR (y (R(D(ι(I), s), sx))) , (19)

where PSR is the peak to sidelobe ratio [4] in the response

map y(·). Intuitively, the evaluation of ρ(s) consists of four

steps. The first is to extract a patch D(ι(I), s), and the sec-

ond to re-sample D(ι(I), s) by scale sx. The re-sampled

D(ι(I), s) will be used as base sample then. The third is

to generate the response map y(·) by using the base sample

and Eq. (17), and the last to evaluate the PSR of y(·). It

is noted that sx is the template scale in the last frame. We

experimentally observed that ρ(s) usually possesses a dom-

inant mode. Fig. 2 (a) shows several ρ(s)’s generated in our

experiments on sequences CarScale and Singer1. There-

fore, it is reasonable to assume that the correct scale, s∗,

of the object will maximize PSR, i.e., s∗ = argmaxs ρ(s).
Then the optimization technique is employed to seek out s∗

efficiently in our tracker.

In fact, the optimal solution, s∗, of ρ(s) can easily

be sought out through exact line search because ρ(s) is

a univariate function. In our current implementation, we

employed the golden section method, also called 0.618

method [24], to optimize ρ(s). This is because the 0.618

method only evaluates ρ(s) once per iteration. Specifical-

ly, suppose that the aspect ratio of the target object is con-

stant in the whole sequence, the object scale is 1 and the

length and width of the located bounding box are lo and

wo, respectively, in the last frame, and the initial inter-

val of s for searching is set to be δs = [0.9, 1.1]. Then,

||δs|| = 0.2, where || ∗ || is the length of interval ∗, the max-

imum of length and width of the maximal candidate bound-

ing boxes are 1.1 · max(lo, wo), the minimum of those are

0.9·max(lo, wo), and their difference is 0.2·max(lo, wo) =

3042

||δs||max(lo, wo). As iteration proceeds, ||δs|| gets smaller

and smaller until ||δs||max(lo, wo) < 1 pixel. When the

iteration stops, s∗ is obtained and returned.

In each iteration, the length of searching interval is nar-

rowed to 0.618 times the one in the last round. In other

words, the computational complexity of 0.618 method is

O(log(max(lo, wo))). In comparison, the traditional ex-

haustive method has to search each layer of pyramid, and

requires O(max(lo, wo)) to find out the optimal scale.

Another possible choice is to use f∗() of Eq. (6), instead

of PSR, to find out the optimal object scale. That is,

ρ0(s) ≡ y0 (R(D(ι(I), s), sx)) . (20)

We observed experimentally that, similar to ρ(s), ρ0(s) al-

so usually possesses a dominant mode. Fig. 2 (b) shows

several ρ0(s)’s generated in our experiments in the same

sequences and frames as used in Fig. 2 (a). Nevertheless,

ρ0(s) may become a little bit too flat around the optimal

scale, therefore, is not as robust as ρ(s). In fact, the per-

formance will decrease at least 1% on the visual tracking

benchmark [36] if Eq. (20), rather than Eq. (19), is utilized.

Consequently, Eq. (19) is adopted to identify the optimal

scale in our tracker.

3.3.3 Fast Feature Scaling

Refer to Eq. (19) again; R(D(ι(I), s), sx) will re-sample

D(ι(I), s) by scale sx. In order to accelerate the evalua-

tion of R(D(ι(I), s), sx), rather than rescaling image patch

D(ι(I), s) and then extracting its feature in every iteration,

we applied Dollár’s power law [8] to rescale the feature di-

rectly. It has been pointed out that the processing time can

be reduced several times in this way [8]. Specifically, if Xm

is the mth feature of image patch X , then Dollár’s power law

states that

R(D(ι(I), s), sx)m ≈

R(D(ι(I), s)m, sx) ·
(sx
s

)−λm

,
(21)

where λm is a feature related constant, R(,)m and D(,)m
are the mth features of patches R(,) and D(,), respectively.

To fully take this advantage to speed up searching for

the optimal scale of the object, we extract in practice the

features of an image only once. And all the feature scal-

ing operations discussed in Sec. 3.3.2 will be performed on

feature channels.

3.3.4 Updating Filter

In our tracker, the object appearance model is (α,d2,x).
We adopt the following formulation to update x.

xnew
m = (1− ηm)R(xm, s∗) ·

(

s∗

sx

)−λm

+ηmD(ι(I), s∗)m,

(22)

where ηm is the learning rate, s∗ is the optimal object scale

in the current frame (Sec. 3.3.2), m = 1, 2 . . . ,M . It is

clear that xnew
m is the weighted sum of historical templates

and the mth channel feature of object bounding box in the

current frame, where the historical template has to be fast

scaled to the current scale s∗ by means of Dollár’s power

law [8]. xnew ≡ (xnew
1 , . . . ,xnew

M). αnew and (dnew)2 are

evaluated by using xnew and Eqs. (12), (13), (14), and (15).

It is noted that km(x,x′) will be evaluation by only using

xm and x′
m.

The whole process of our tracker is summarized in Alg.1.

4. Implementation Details

Each of color and HOG features uses a kernel, i.e.,

M = 2. The color scheme proposed in [7] is adopted in

our tracker. To enhance the robustness against object de-

formation and speed up tracking, the HOG feature has only

six gradient orientations and the cell size is 4 × 4. Gaus-

sian kernel is used for both features with σcolor = 0.4 and

σHOG = 0.5, which ensures that all Kms are positive def-

inite [25]. According to Dollár et al. [8], the resizing co-

efficients λm in Eq.(21) are set as follows: λcolor = 0 and

λHOG = 0.078.

In order to reduce high-frequency noise in the frequency

domain resulted from the large discontinuity between op-

posite edges of a cyclic-extended image patch, all feature

patches (e.g. xm and D(ιmax(y(z)), s)m) are banded with

a sine window for a sine window can reduce values near the

borders to zero, and eliminate discontinuities.

In spite of the high efficiency of our continuous scale es-

timation, introducing scale processing inevitably increases

the time complexity of our tracker. It is generally observed

that, in most cases, the variation of target scale is much s-

lower than that of its location. Therefore, it is superfluous

to execute scale estimation as frequently as location. In our

current experiments, the ratio of the number of scale esti-

mations to that of locations is 0.5.

5. Experimental Results

Our tracker MKCF was implemented in MATLAB. The

experiments were performed on a PC with Intel Core i5

3.20GHz CPU and 16GB RAM. We compared our MKCF

to other 4 state-of-the-art trackers, Struck [13], DSST [6],

CN2 [7], and KCF [16] with the visual tracking bench-

mark [36] which includes 50 image sequences. All param-

eter values of MKCF were kept consistent across all exper-

imental comparisons. It is noted that DSST is the winner of

VOT2014 challenge.1 The mean fps of MKCF over the 50

sequences is about 15.

The performance of our tracker were quantitatively eval-

uated with popular criteria used in [1, 15, 36, 7, 6, 16], i.e.,

1www.votchallenge.net/vot2014/results.html

3043

Algorithm 1 Multi-kernel Correlation Filter Based Tracker

- Input: Frame t, t = 0, 1, 2, . . ., initial object patch x0 of

l1 × l2 × c′, where c′ is the number of feature channels,

l1 × l2 Gaussian-shaped regression target y.

- Output: optimal locations l∗1, l
∗
2 . . . in subsequen-

t frames.

- Initialization: t = 0, x = xt.

- Training (Secs. 3.1 and 3.2):

1. Generate virtual training set based on x, vF = ∞.

2. for N = 0 to M − 1

for c = 1 to CN
M

Calculate (α,d2) by using x and E-

qs. (12), (13), (14), and (15).

If vF > F (α,d2)

vF = F (α,d2), (αo,d
2
o) = (α,d2).

- Location (Sec. 3.3):

3. Determine the object location by using (αo,d
2
o) and

Eq. (18) in frame t+ 1.

4. Determine the object scale by using Eqs. (19) and

(21).

5. Update x by using Eqs. (22).

6. t = t+ 1, go to 1.

center error, distance precision, precision plot, overlap ratio,

overlap precision, and success plot. Center error is calculat-

ed as the average Euclidean distance between the centers of

located objects and their ground truths in a sequence. Dis-

tance precision is the percentage of frames where the ob-

jects are located within the center errors in 0 to tc pixels,

where tc = 20, and the precision plot is simply a curve of

the distance precisions with tc changing from 0 to 50 pixel-

s. Overlap ratio is defined as the average ratio of intersec-

tion and union of the estimated bounding box and ground

truth in a sequence, overlap precision as the percentage of

frames where the overlap ratio exceeds to in a sequence,

where to = 0.5. And the success plot is simply a curve of

overlap precisions with to changing from 0 to 1.

5.1. Fast Feature Scaling vs. Traditional One

In our approach, we extract the feature from a patch only

once in a frame, and then scaling the patch’s feature is ap-

proximately implemented by directly scaling the extracted

feature channels. Such a way will significantly reduce the

computational cost in extracting features [8]. While saving

the processing time, it is also desirable not to lose much

in tracking accuracy. Fig. 3 includes the average precision

and success plots of the two versions, MKCF and MKCFN,

of our tracker over the 28 sequences annotated with scale

variation [36]. MKCF is just described in Alg. 1, while

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Center Error Threshold

D
is

ta
n
c
e
 P

re
c
is

io
n

Precision Plot

MKCF [0.750]

MKCFN [0.745]

DSST [0.745]

KCF on HOG [0.679]

Struck [0.639]

CN2 [0.600]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e
rl
a
p
 P

re
c
is

io
n

Success Plot

MKCF [0.570]

MKCFN [0.565]

DSST [0.549]
KCF on HOG [0.429]

Struck [0.427]

CN2 [0.385]

Figure 3. The average success plot of two versions, MKCF and

MKCFN, of our tracker, DSST [6], KCF [16], Struck [13], and

CN2 [7] over 28 sequences annotated with scale variation [36].

See Secs. 5.1 and 5.2 for details. The area under curve (AUC) of

three trackers are reported in the legend.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Center Error Threshold
D

is
ta

n
c
e
 P

re
c
is

io
n

Precision Plot

MKCF [0.781]

KCF on HOG [0.743]

Struck [0.653]

CN2 [0.637]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e
rl
a
p
 P

re
c
is

io
n

Success Plot

MKCF [0.591]

KCF on HOG [0.521]

Struck [0.476]

CN2 [0.445]

Figure 4. The average precision and success plots of our MKCF,

Struck [13], KCF [16], and CN2 [7] over 50 sequences [36]. The

mean distance precision scores and AUCs of each tracker are also

reported in the legend. The figure is best viewed in color.

MKCFN is a variant of MKCF of which the fast Dollár’s

law [8] is replaced by a traditional one. The traditional

scheme scales the patch’s feature by first scaling original

patches and then calculating their features in the scaled o-

riginal channels. Except for the scaling schemes pointed out

above, MKCF and MKCFN are exactly the same in terms of

implementation and parameter setting. Surprisingly, Fig. 3

indicates that using the fast Dollár’s law scheme generates

higher distance and overlap precisions than using the tradi-

tional one, and the AUC of MKCF is also larger than that of

MKCFN. In contrary to the conclusion in object detection

domain that approximately scaling features with Dollár’s

law will slightly reduce the detection accuracy [8], approxi-

mate feature extraction scheme indeed improves the robust-

ness and accuracy of tracking. The experimental compari-

son reveals the contrary affects of the approximate scheme

on object detection and visual tracking.

5.2. Comparison to State­of­the­art Trackers

Fig. 4 shows the average precision and success plots of

our tracker MKCF, Struck [13], KCF [16], and CN2 [7] over

the 50 sequences. The mean distance precisions and AUCs

are also included in it. It is seen that our tracker outperforms

other three ones.

We also compared our MKCF to Struck, KCF (on HOG),

and CN2 over the 50 sequences with respect to the 11 anno-

3044

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on Background Clutters

MKCF [0.781]

KCF on HOG [0.753]

CN2 [0.642]

Struck [0.584]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Center Error Threshold
D

is
ta

n
c
e

 P
re

c
is

io
n

Precision Plot on Deformation

MKCF [0.780]

KCF on HOG [0.748]

CN2 [0.624]

Struck [0.514]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on Fast Motion

KCF on HOG [0.611]

Struck [0.596]

MKCF [0.574]

CN2 [0.484]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on In−Plane Rotation

MKCF [0.775]

KCF on HOG [0.73]

CN2 [0.678]

Struck [0.612]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on Illumination Variation

MKCF [0.754]

KCF on HOG [0.734]

CN2 [0.592]

Struck [0.552]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on Low Resolution

Struck [0.545]

MKCF [0.519]

CN2 [0.405]

KCF on HOG [0.381]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on Motion Blur

KCF on HOG [0.661]

MKCF [0.628]

CN2 [0.556]

Struck [0.540]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on Occlusion

MKCF [0.763]

KCF on HOG [0.754]

CN2 [0.634]

Struck [0.560]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on Out−of−Plane Rotation

MKCF [0.773]

KCF on HOG [0.733]

CN2 [0.656]

Struck [0.593]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on Out−of−View

MKCF [0.671]

KCF on HOG [0.654]

Struck [0.539]

CN2 [0.438]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Center Error Threshold

D
is

ta
n

c
e

 P
re

c
is

io
n

Precision Plot on Scale Variation

MKCF [0.750]

KCF on HOG [0.679]

Struck [0.639]

CN2 [0.600]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Background Clutters

MKCF [0.586]

KCF on HOG [0.541]

Struck [0.462]

CN2 [0.457]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Deformation

MKCF [0.606]

KCF on HOG [0.545]

CN2 [0.436]

Struck [0.391]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Fast Motion

MKCF [0.477]

KCF on HOG [0.472]

Struck [0.461]

CN2 [0.377]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on In−Plane Rotation

MKCF [0.578]

KCF on HOG [0.505]

CN2 [0.468]

Struck [0.444]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Illumination Variation

MKCF [0.581]

KCF on HOG [0.503]

Struck [0.427]

CN2 [0.420]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Low Resolution

MKCF [0.406]

Struck [0.373]

CN2 [0.315]

KCF on HOG [0.313]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Motion Blur

KCF on HOG [0.514]

MKCF [0.504]

Struck [0.429]

CN2 [0.415]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Occlusion

MKCF [0.579]

KCF on HOG [0.522]

CN2 [0.427]

Struck [0.413]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Out−of−Plane Rotation

MKCF [0.575]

KCF on HOG [0.502]

CN2 [0.443]

Struck [0.432]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Out−of−View

MKCF [0.572]

KCF on HOG [0.559]

Struck [0.462]

CN2 [0.416]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Overlap Threshold

O
v
e

rl
a

p
 P

re
c
is

io
n

Success Plot on Scale Variation

MKCF [0.570]

KCF on HOG [0.429]

Struck [0.427]

CN2 [0.385]

Figure 5. The average precision plots of our MKCF and Struck [13], KCF [16], and CN2 [7] on 11 attributes [36]. The mean distance

precision scores and AUCs of each tracker are also reported in legends. The figure is best viewed with high resolution display.

Boy Car4 CarScale Couple Crossing David Dog1 Doll Dudek Fleetface Freeman1 Freeman3 Freeman4 Girl

MKCF 97.2 100 89.7 45 100 99.6 100 100 98.8 63.6 61 38.7 31.1 83

DSST [6] 100 100 84.5 10.7 100 100 100 99.6 98.1 66.5 36.8 31.3 41.7 24.2

KCF [16] 99.2 36.4 44.4 24.3 95 62.2 65.1 55.2 97.6 66.9 16.3 29.1 18.4 74.2

CN2 [7] 95.3 27.6 44.8 10.7 96.7 58.8 65.3 72.8 96.1 58.7 15 33 17.3 46.4

Struck [13] 99.7 39.8 43.3 54.3 94.2 23.6 65.3 68.8 98.0 66.6 21.8 20.0 15.9 98.0

Ironman Lemming Liquor Matrix mRolling Shaking Singer1 Skating1 Skiing Soccer Trellis Walking Walking2 Woman

MKCF 13.3 27.2 99.4 19 7.3 96.2 100 63.5 4.9 13.5 96.7 99.8 99.8 93.8

DSST [6] 13.3 26.9 40.9 18 6.7 100 100 54.8 4.9 52.8 96.8 99.8 100 93.3

KCF [16] 15.1 44.2 99 13 7.9 1.4 27.6 36.3 7.4 39.3 84 51.5 38 93.6

CN2 [7] 13.3 29.1 20.4 1 7.3 67.4 27.6 37.3 9.9 48.2 65.9 45.9 38.4 24.5

Struck [13] 4.8 64.1 40.6 12.0 15.9 16.7 29.9 37.0 3.7 15.6 78.4 56.6 43.4 93.5

Table 1. Overlap precision in percent on the 28 sequences annotated with scale variation. The best scores are shown in bold.

tated attributions [36]. Fig. 5 reports the average precision

and success plots, the mean distance precisions, and AUCs.

It is seen in Fig. 5 that our MKCF almost consistently out-

performs other three trackers, except for the following three

cases. 1) MKCF is inferior to KCF (on HOG) over the 12

sequences of motion blur, but superior to all other trackers

if the center error threshold tc ≤ 11 or the overlap threshold

to ≥ 0.44. 2) Over the 17 sequences of fast motion, MKCF

is inferior to KCF (on HOG) in the precision plot. 3) MKCF

is inferior to Struck over 4 sequences of low resolution at

distance precision of tc = 20, but superior to all other track-

ers if tc ≤ 17. It has been accepted through experiments

that the representation with HOG-based feature performs

poorly over low resolution sequences [6, 16]. By combining

HOG and its complementary feature color through multi-

kernel technique, our MKCF improves its performance on

low resolution sequences by a large margin.

Table 1 lists a per-sequence comparison of our MKCF

to DSST [6], KCF, Struck, and CN2 in overlap precision.

It is easy to check out that MKCF outperforms all other

trackers on 14 sequences, is superior to DSST on 13 out

of the 28 sequences, and has a similar accuracy to DSST

on 7 sequences. Fig. 3 shows the average distance and suc-

cess plots of MKCF and DSST over 28 sequences annotated

with scale variation. The mean distance precision and AUC

are also reported. We do not show the performance curves

of other state-of-the-art trackers in Fig. 3, because DSST

outperforms them consistently on the 28 sequences [6]. It

is clear from Table 1 and Fig. 3 that MKCF outperforms

DSST on the benchmark.

It is interesting to notice that the difference of perfor-

mance between our MKCF and DSST is made by the differ-

ence of their curves at around 0.5. This means that MKCF

is more robust than DSST in difficult frames where the lo-

cations and scales of object are easily bias away from the

correct ones a little bit more.

6. Conclusion

A novel tracking algorithm, MKCF, has been presented

in this paper. To construct multi-feature appearance mod-

els, we proposed an approach to fusing features of differ-

ent types by means of multiple kernel learning. Instead

of building traditional image pyramids in advance, we em-

ployed the optimization technique to search for the correct

object scale in the continuous scale space efficiently. The

whole tracking algorithm is accelerated by FFT. Extensive

experiments on the benchmark have shown that our algo-

rithm outperforms the state-of-the-art algorithms.

A. Proof of Theorem 1

(a) ∇d2F (α,d) = 1

2
(d2B − c), ∇2

d2F (α,d) = 1

2
B,

where B is an M × M matrix with elements bmn =
α⊤Kmnα+2ν, Kmn = KmKn +KnKm, c is an M × 1
vector with cn = α⊤Kn(2y− λα) + 2ν as its elements. ∵

All Kms are circulant (Theorem 1, [15]) and positive def-

inite, ∴ Km = UΣ2
mU∗ [12], ∴ KmKn = UΣ2

mnU
∗,

where Σ2
mn = Σ2

mΣ2
n, ∴ Kmns are positive definite,

∴ bmn > 0 as ν ≥ 0, ∴ ∀d2,d2Bd2⊤ > 0 if d2 ̸= 0.

Therefore, F (α,d) is convex w.r.t. d2.

(b) ∇2
αF (α,d) = K(K + λI). ∵ ∀m, Km is positive

definite and circulant, ∴ K is positive definite and circulant.

∴ K = UΣ2
KU∗ [12], K+λI = U(Σ2

K +λI)U∗, K+λI
is positive definite as λ > 0, K(K + λI) = U(Σ4

K +
λΣ2

K)U∗. ∴ K(K + λI) is positive definite as λ > 0.

Therefore, F (α,d) is convex w.r.t. α.

3045

References

[1] B. Babenko, M.-H. Yang, and S. Belongie. Robust objec-

t tracking with online multiple instance learning. IEEE T-

PAMI, 33(No.8):1619 –1632, 2011. 2, 6

[2] S. Baker and I. Matthews. Lucas-kanade 20 years on: A

unifying framework. IJCV, Vol.56(No.3):221–255, 2004. 2

[3] V. Boddeti, T. Kanade, and B. Kumar. Correlation filters for

object alignment. In CVPR, 2013. 2

[4] D. Bolme, R. Beveridge, B. Draper, and Y. Lui. Visual object

tracking using adaptive correlation filters. In CVPR, 2010. 1,

2, 4, 5

[5] C. Cortes, M. Mohri, and A. Rostamizadeh. l2 regularization

for learning kernels. In UAI, 2009. 2

[6] M. Danelljan, G. Hager, F. Khan, and M. Felsberg. Accurate

scale estimation for robust visual tracking. In BMVC, 2014.

1, 2, 6, 7, 8

[7] M. Danelljan, F. Khan, M. Felsberg, and J. van de Weijer.

Adaptive color attributes for real-time visual tracking. In

CVPR, 2014. 1, 2, 4, 6, 7, 8

[8] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature

pyramids for object detection. IEEE T-PAMI, Vol.36:1532–

1545, 2014. 2, 6, 7

[9] R. Fletcher. Practical Methods of Optimization. John Wiley

& Sons, 2nd edition, 1987. 4

[10] H. Galoogahi, T. Sim, and S. Lucey. Multi-channel correla-

tion filters. In ICCV, 2013. 2

[11] P. Gehler and S. Nowozin. On feature combination for mul-

ticlass object classification. In ICCV, 2009. 1, 2

[12] R. Gray. Toeplitz and Circulant Matrices: A review. Now

Publishers Inc., 2006. 4, 8

[13] S. Hare, A. Saffari, and P. Torr. Struck: Structured output

tracking with kernels. In ICCV, 2011. 1, 6, 7, 8

[14] J. Henriques, J. Carreira, R. Caseiro, and J. Batista. Beyond

hard negative mining: Efficient detector learning via block-

circulant decomposition. In ICCV, 2013. 2

[15] J. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploit-

ing the circulant structure of tracking-by-detection with ker-

nels. In ECCV, 2012. 1, 2, 4, 5, 6, 8

[16] J. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. IEEE T-

PAMI, Vol.37(No.3):pp.583–596, 2015. 1, 2, 5, 6, 7, 8

[17] J. Henriques, P. Martins, R. Caseiro, and J. Batista. Fast

training of pose detectors in the fourier domain. In NIPS,

2014. 2, 4

[18] Z. Hong, C. Wang, X. Mei, D. Prokhorov, and D. Tao. Track-

ing using multilevel quantizations. In ECCV, 2014. 1

[19] B. Kumar, A. Mahalanobis, and R. Juday. Correlation Pat-

tern Recognition. Cambridge University Press, 2005. 2

[20] J. Kwon, J. Roh, K.-M. Lee, and L. Van Gool. Robust visual

tracking with double bounding box model. In ECCV, 2014.

1

[21] X. Lan, A. Ma, and P. Yuen. Multi-cue visual tracking using

robust feature-level fusion based on joint sparse representa-

tion. In CVPR, 2014. 1

[22] G. Lanckriet, T. De Bie, N. Cristianini, M. Jordan, and

W. Noble. A statistical framework for genomic data fusion.

Bioinformatics, 20:2626–2635, 2004. 3

[23] D. Lee, J.-Y. Sim, and C.-S. Kim. Visual tracking using per-

tinent patch selection and masking. In CVPR, 2014. 1

[24] D. Luenberger. Introduction to Linear and Nonlinear Pro-

gramming. Addison-Wesley Reading, MA, 1973. 5

[25] C. Micchelle. Interpolation of scattered data: Distance matri-

ces and conditionally positive definite functions. Construc-

tive Appr., Vol.2:pp.11–22, 1986. 6

[26] H. Nam, S. Hong, and B. Han. Online graph-based tracking.

In ECCV, 2014. 1

[27] S. Oron, A. Bar-Hillel, and S. Avidan. Extended lucas-

kanade tracking. In ECCV, 2014. 2

[28] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet.

SimpleMKL. JMLR, 9:2491–2521, 2008. 2

[29] R. Rifkin, G. Yeo, and T. Poggio. Regularized least-squares

classification. Nato Science Series Sub Series III: Computer

and Systems Sciences, pp131-154.:2003, 190. 2, 3

[30] D. Ruderman. The statistics of natural images. Network:

Computation in Neural Systems, 5:517–548, 1994. 2

[31] B. Schölkopf and A. Smola. Learning with Kernels. MIT

press Cambridge, MA, 2002. 3

[32] M. Tang and X. Peng. Robust tracking with discriminative

ranking lists. IEEE T-IP, Vol.21(No.7):3273–3281, 2012. 1

[33] M. Varma and D. Ray. Learning the discriminative power-

invariance trade-off. In ICCV, 2007. 1, 2, 3

[34] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Mul-

tiple kernels for object detection. In ICCV, 2009. 2

[35] Y. Wu, G. Blasch, G. Chen, L. Bai, and H. Ling. Multiple

source data fusion via sparse representation for robust visual

tracking. In FUSION, 2011. 1

[36] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking - a

benchmark. In CVPR, 2013. 1, 2, 6, 7, 8

[37] F. Yang, H. Lu, and M. Yang. Robust visual tracking via

multiple kernel boosting with afnity constraints. IEEE T-

CSVT, 24:242–254, 2014. 1

3046

