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Abstract

The prevalent scene text detection approach follows four

sequential steps comprising character candidate detection,

false character candidate removal, text line extraction, and

text line verification. However, errors occur and accumu-

late throughout each of these sequential steps which often

lead to low detection performance. To address these issues,

we propose a unified scene text detection system, namely

Text Flow, by utilizing the minimum cost (min-cost) flow net-

work model. With character candidates detected by cascade

boosting, the min-cost flow network model integrates the

last three sequential steps into a single process which solves

the error accumulation problem at both character level and

text line level effectively. The proposed technique has been

tested on three public datasets, i.e, ICDAR2011 dataset, IC-

DAR2013 dataset and a multilingual dataset and it outper-

forms the state-of-the-art methods on all three datasets with

much higher recall and F-score. The good performance on

the multilingual dataset shows that the proposed technique

can be used for the detection of texts in different languages.

1. Introduction

Machine reading of texts in scene images has attracted

increasing interests in recent years, largely due to its im-

portant roles in many practical applications such as au-

tonomous navigation, multilingual translation, image re-

trieval, object recognition, etc. One prevalent scene text de-

tection approach typically consists of four sequential steps

namely character candidate detection, false character can-

didate removal, text line extraction, and text line verifica-

tion [4, 7, 26, 30]. However, this prevalent approach suffers

from two typical limitations, i.e., the constraint to texts in

Figure 1: Text detection examples on ICDAR2013 dataset (top

row) and the multilingual dataset (bottom row).

English and the low detection recall.

First, character candidate detection often makes use of

connected components (CCs) that are extracted in different

ways to detect as many text components as possible (for

a high recall). On the other hand, this “greedy” detection

approach includes too many non-text components, leaving

the ensuing false alarm removal (for a high precision) a very

challenging task. In addition, CCs do not work well for texts

of many non-Latin languages such as Chinese and Japanese,

where each character often consists of more than one con-

nected component.

Second, the sequential processing approach often suffers

from a typical error accumulation problem. In particular,

the error occurring in each of the four sequential steps will

propagate to the subsequent steps and eventually lead to

a low detection recall. The situation becomes even worse

considering that many existing techniques focus on the opti-

mization of simply one or a few of the four sequential steps.

In addition, many existing text line extraction techniques

rely heavily on knowledge-driven rules [4, 8, 17] that are
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unadaptable when conditions change.

We propose a novel scene text detection technique to ad-

dress these two typical issues with results illustrated in Fig-

ure 1. First, a sliding window based cascade boosting ap-

proach is adopted for character candidate detection. One

distinctive characteristics of this approach is that character

candidates are detected as a whole, hence the complicated

process of grouping isolated character strokes into a whole

character is not necessary. This feature facilitates the detec-

tion of texts of many non-Latin languages such as Chinese

where each character often consists of multiple CCs.

Second, a novel minimum cost (min-cost) flow network

model is designed which integrates the last three sequential

steps into a single process. The model takes the detected

character candidates as inputs and it mainly deals with a

unary data cost and a pairwise smoothness cost. The data

cost indicates the character confidence and the smoothness

cost evaluates the likelihood of two neighboring candidates

belonging to the same text line. The problem of text line

extraction could hence be formulated into a task of finding

the minimum cost text flows in the network.

The min-cost flow model has a number of advantages.

First, it extracts text lines with a very high recall since no

character-level false alarm reduction is performed before

the text line extraction step. Second, it solves the error ac-

cumulation problem by combining the character confidence

with text layout information, thus eliminates most back-

ground noise at both character level and text line level si-

multaneously. Third, it is simple and easy to implement, as

the adopted features are simple and the min-cost flow net-

work problem can be solved efficiently.

The proposed technique has been evaluated on the IC-

DAR2011 dataset [20], ICDAR2013 dataset [11] and a mul-

tilingual dataset [19] with texts in both English and Chinese.

The experiments show its superior performance and robust-

ness for the detection of texts in different languages.

2. Related Work

The detection of texts in scenes has been studied for

years and quite a number of detection systems have been

reported. Most of those methods as shown in [14, 28] typi-

cally consist of four sequential steps: text candidate detec-

tion, false text candidate removal, text line extraction and

text line verification.

Text candidate detection could be roughly grouped into

two categories, CCs based methods and sliding window

based methods. CCs based techniques detect candidates

utilizing bottom up features such as intensity stability and

stroke symmetry [4, 8, 17, 22, 30]. However, it is infeasible

to process characters composing of multiple components.

Sliding window based techniques apply windows of differ-

ent sizes on the image pyramid and text/non-text classifiers

are designed to eliminate noisy windows [3, 10, 13, 23].

The major limitation is the high computational cost pro-

cessing numerous windows. However, sliding window tech-

niques have the advantage of incorporating high level tex-

ture and shape information, and character with multiple

components can be detected as a whole.

Since a large number of non-text candidates are detected

in the previous step for a better recall, various text/non-text

classifiers such as support vector machine and random for-

est [17, 19, 30], as well as convolutional neural networks

[2, 8, 9, 22] are adopted to remove false alarms. However,

making a hard decision is less reliable when no text line

level context is considered.

To extract text line from those surviving candidates, a

widely adopted technique is hierarchical clustering [4, 8,

30], which iteratively merges two candidate text lines if

they share a candidate until no text lines could be merged.

Graph-based models such as Conditional Random Field

(CRF) have been proposed [19, 21] to label the candidates

as text or non-text by graph cut algorithm. Then a learning-

based method is presented in [19] which extracts text lines

by partitioning a minimum spanning tree into sub-trees. To

improve the detection precision, extracted text lines may be

further filtered by line level features or average text confi-

dence [7, 26, 30].

Existing works [4, 7, 26, 30] focus on increasing the per-

formance of these sequential steps for better detection re-

sults. However, the error occurring in the proceeding steps

will propagate to the subsequent steps and eventually lead

to a low recall. Therefore, an integrated model jointly mod-

eling these sequential steps becomes essential. On the other

hand, no integrated model has yet been proposed to solve

the text detection problem. There are similar models be-

ing utilized in word recognition tasks [16, 24]. In [16], a

CRF model incorporating unary and pairwise terms is built

to model character detections and the interactions between

them. The optimal word for the text image is obtained by

minimizing the graph energy based on given lexicons.

The proposed min-cost flow model is structurally sim-

ilar to the CRF-based model. However, the CRF model in

[16] is applied on cropped words where layout is simple; the

model is unable to determine the corresponding text lines of

each character, which needs to be properly addressed in text

detection. Besides, the number of detected noisy character

candidates is much larger for text detection task. Hence

applying the lexicon scheme similar to that in text recog-

nition is less feasible, especially for languages with thou-

sands of character classes such as Chinese. This is due to

the fact that text/non-text classifier is more reliable and ef-

ficient than character classifier. In addition, for images with

multi-scripts, script needs to be identified first before using

the correct lexicon.

Hence, we formulate those isolated steps into an inte-

grated framework, namely Text Flow, where error no longer
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Figure 2: The pipeline of our proposed system.

accumulates and all steps can be jointly optimized in a sin-

gle model. Meanwhile, false alarms are removed more re-

liably with line level context. In addition, both Latin and

non-Latin scripts are well addressed by the proposed model.

3. Our Proposed System

Figure 2 shows the pipeline of the proposed scene text

detection system. The character candidate detection is han-

dled by a fast cascade boosting technique. A “Text Line

Extraction” technique is designed which takes the detected

character candidates as inputs and output the verified text

lines directly. It integrates the traditional false character

candidate removal, text line extraction, and text line veri-

fication into a single process and can be solved by a novel

mini-cost flow network model efficiently.

3.1. Character Candidate Detection

We detect character candidates by combining the sliding

window scheme with a fast cascade boosting algorithm as

exploited in [3]. In particular, the cascade boosting in [3]

is simplified by ignoring the block patterns in the sliding

window. Furthermore, only six simple features (pixel in-

tensity, horizontal and vertical gradients and second order

gradients) are adopted to accelerate the feature extraction

process. The features are computed at each pixel location

and concatenated as the feature vector for boosting learn-

ing. In fact, fewer feature operations improve the character

recall while the weaker character confidence will be later

compensated by a convolutional neural network. Positive

training examples are the ground truth character bounding

boxes and negative examples are obtained by a bootstrap

process, hence reducing the chance of each window enclos-

ing multiple characters or single character stroke.

The sliding window approach is capable of capturing

high level text-specific shape information such as the dis-

tinct intensity and gradient distribution along the character

stroke boundary. In contrast, the CCs based approach fo-

cuses on low level features such as intensity stability and

is more liable to various false alarms. In addition, the

use of the cascade boosting plus some speedup strategies

(integral feature map, Streaming SIMD Extensions 2 [6],

multi-thread window processing etc.) compensates for the

high computational cost of the sliding window process. On

the ICDAR2013 dataset, it takes 0.82s per image on av-

(a) (b) (c)

Figure 3: Character candidate that are detected by our proposed

cascade boosting technique.

erage which is comparable to the MSER based technique

(0.38s on average [30]). Furthermore, the cascade boost-

ing method could detect whole characters instead of isolated

components which are taken as negative samples during the

training process. This feature helps to reduce the complex-

ity greatly for situations where one single character such as

Chinese consisting of multiple isolated components or one

CC consisting of several characters (due to the touching).

These distinctive characteristics are illustrated in Figure 3

where most characters are detected as a whole and few win-

dows contain more than one character.

The detected character candidate is considered positive

if (Area(D) ∩ Area(G))/(Area(D) ∪ Area(G)) > 0.5
where D is detected candidate and G is the ground truth

character bounding box. Note that each ground truth char-

acter window is re-computed as a square bounding box for

a fair evaluation. Under this configuration, the proposed ap-

proach achieves 23.1% in precision and 89.2% in recall.

3.2. Text Line Extraction

We handle the text line extraction by a min-cost flow net-

work model [1] which has been successfully applied for the

multi-object tracking problem [32]. The target is to inte-

grate multiple scene text detection steps into a single pro-

cess and accordingly solve the typical error accumulation

problem in most existing scene text detection techniques.

A flow network consists of a source, a sink, and a set of

nodes that are linked by edges. Each edge has a flow cost

and a flow capacity defining the allowed flows across the

edge. The min-cost flow problem is to find the minimum

cost paths when sending a certain amount of flows from the

source to the sink. When applied to the text line extrac-

tion problem, the nodes correspond to the detected charac-

ter candidates and the flows in the network correspond to

text lines. We therefore refer to this flow network solution

as “Text Flow”. Intuitively, if we want to extract text flows

and meanwhile eliminate non-text candidates both at char-

acter level and line level, the network should have a mech-

anism that deals with three issues: character/non-character

confidence, transition constraints and cost between neigh-

boring candidates, and probability of choosing a candidate

to be the starting and ending point of a text flow.
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(a) (b)

Figure 4: Illustration of the min-cost flow network construction: (a) shows the six detected character candidates where the edges show the

reachability of the detected character candidates. (b) shows the constructed min-cost flow network. For each candidate in (a), a pair of

nodes (filled and empty blue circles) are created and an edge linking the two candidates is created and associated with a data cost. A source

node (S) and a sink node (T ) (blue rectangles) are created and they are connected to all character candidates in the network. The green

path in (b) shows a true text flow.

Figure 5: Spatial and geometrical relationship between two neigh-

boring candidates: Each detected character candidate is repre-

sented by a square patch in our system.

3.2.1 Min-Cost Flow Network Construction

Based on the assumption that all text lines start from the left

to the right, all character candidates are first sorted accord-

ing to their horizontal coordinates. The flow network can

thus be constructed as illustrated in Figure 4. First, a pair of

nodes are created for each character candidate with an edge

in between that represents the data cost. Second, a directed

edge from character candidate A to candidate B is created

with a smoothness cost if A could reach B based on the

transition constraints to be explained later. Third, a source

node and a sink node are created and each candidate is con-

nected to both, where the edge connecting with the source

has an entry cost and the edge connecting with the sink has

an exit cost.

For each character candidate A, the next character can-

didate B, which A could connect to, should be restricted by

certain constraints to reduce the errors as well as the search

space. Three constrains are employed in our model as illus-

trated in Figure 5. (1) the horizontal distance between A and

B should satisfy the condition H(A,B)/min(WA,WB) <
TH . (2) the vertical distance between A and B should sat-

isfy the condition V (A,B)/min(WA,WB) > TV . (3)

the size similarity of A and B should satisfy the condition

(|WA − WB |)/min(WA,WB) < TS . Extensive tests on

the training datasets show that by setting TH , TV and TS to

2, 0.6, and 0.2 respectively can efficiently reduce the search

space yet keep the correct text flows. These conditions can

be relaxed to expand the search space in order to detect text

lines not complying with the aforementioned constrains.

Figure 4 shows a simple illustration of the flow network

construction process. As Figure 4b shows, each character

candidate is represented by a pair of filled and empty blue

nodes with an edge representing the data cost. Likewise,

the smoothness cost is associated by an edge between two

neighboring character candidates. In addition, each candi-

date is connected to both the source and the sink with the

entry and exit costs, respectively. The text line extraction

problem is to find certain number of text flows that have the

minimum cost from the source to the sink. Note that all the

costs are represented by edges in network.

3.2.2 Flow Network Costs

The costs in the flow network are explained in this part. The

data cost C1 is defined as follows:

C1(A) = −p(Text|A) (1)

where A is the character candidate image patch and

p(Text|A) is the confidence of A being a text region which

is measured by a text/non-text Convolutional Neural Net-

work (CNN) classifier. The CNN structure is similar to the

one that is implemented for the handwritten digit recogni-

tion [12]. It consists of three convolutionnal layers, where

each layer consists of three steps namely convolution, max

pooling and normalization. Two fully connected layers are

stacked on the last layer, followed by a softmax layer.

The CNN is trained by using the image patches that are

obtained by applying the character detector on the training

images. An image patch (enclosed by a sliding window)

is taken as a positive sample if the overlapping with any

4654



ground truth patches is larger than 0.5. This step is to min-

imize the processing error so that the training and testing

data are obtained under similar conditions. The data cost

is negatively correlated with the confidence of how likely

a character candidate is a true character. Higher confi-

dence therefore corresponds to more negative cost which

decreases the cost of a text flow passing through it. A true

text flow thus will run through character candidates with

higher confidence to have a lower cost.

The smoothness cost penalizes two neighboring charac-

ter candidates that are less likely to belong to the same text

line. It exploits two simple features including candidate size

and the normalized distance between two candidates. The

smoothness cost C2 is defined as follows:

C2(A,B) = α ∗D(A,B) + (1− α) ∗ S(A,B) (2)

where D(A,B) is the Euclidean distance between the cen-

ter of character candidates A and B as normalized by

the mean of their window widths. S(A,B) is the size

difference of A and B defined as S(A,B) = (|WA −
WB |)/min(WA,WB). Parameter α controls the weight

of the distance cost and size cost. Note that the smooth-

ness cost is non-negative, i.e., C2 ≥ 0. It is large when the

two connected character candidates are spatially far away or

have very different sizes, meaning that they are less likely to

be neighboring characters in a text flow. As a result, a text

flow prefers the edge with a smaller smoothness cost while

searching for a min-cost flow path.

Though every node has the chance to be the start-

ing/ending of a text line, their probabilities are different.

As text lines are usually linear, intuitively those candidates

lying in the middle of a group of candidates are less likely

to be the starting/ending point of a text line. The entry cost

is therefore defined as follows:

Cen(A) = −max
j

C1(j) (3)

where j denotes all possible candidates that could reach

candidate A in the directed graph. If no candidate reaches

A, Cen(A) is set to 0. The exit cost can be similarly de-

fined except that j ranges over all the candidates that could

be reached by A. Equation 3 makes sense because if no

character candidate precedes A, the chance of a text flow

starting at A is large which is consistent with a small entry

cost at A. On the contrary, the entry cost will increase if

there are preceding character candidates in front of A. Note

that Cen(A) not only depends on the spatial position of A
but also the text confidence of its preceding candidates. The

exit cost Cex(A) is defined following the similar idea.

3.2.3 Min-Cost Flow Network

To implement the min-cost flow network for text line ex-

traction, the data cost and the smoothness cost (including

entry/exit cost) should not be both positive (or negative) to

avoid the empty zero-cost flow occasions (or flows having

too many candidates). We therefore define the smoothness

cost to be positive and the data cost to be negative so that

the total cost can be decreased when sending a flow through

a series of character candidates. As a result, the min-cost

flow prefers a network path consisting of character candi-

dates that have similar size and are close to each other (so

as to have smaller positive smoothness costs) and charac-

ter candidates that have high text confidence (so as to have

more negative data cost). A true text flow is highlighted

by a green color path in Figure 4b because character can-

didates along this path have much higher text confidence

and the neighboring candidates also have similar sizes (the

distances between neighboring candidates are roughly the

same in this case).

The objective function of the min-cost flow based text

line extraction can thus be defined as follows:

S = argmin
Γ

{

∑

i

Cen(i) ∗ fen,i +
∑

i

β ∗ C1(i) ∗ fi

+
∑

i,j

C2(i, j) ∗ fi,j +
∑

i

Cex(i) ∗ fi,ex

}

(4)

where C1(i) is the unary data cost of a character candidate

i and C2(i, j) is a pairwise cost between two candidates i
and j. Cen(i) and Cex(i) are the entry and exit costs of

the candidate, respectively. Parameter β is the weight be-

tween the data cost and the smoothness cost. Variables fi,
fi,j , fen,i and fi,ex represent the number of flows passing

through the unary edges, the pairwise edges, and the edges

connecting with the source and the sink, respectively. They

should be either 0 or 1 to enforce that each character belongs

to at most one text line and they are determined while solv-

ing the min-cost flow problem. Γ denotes all possible flow

paths from the source to the sink. The optimal text flows

(which are identified by combinations of fi, fi,j , fen,i and

fi,ex.) should be those in Γ that minimize the overall costs

as defined in Equation 4 given the flow number.

This optimization problem can be efficiently solved by

the min-cost flow algorithm [5] 1. Algorithm 1 shows how

text lines are extracted from the flow network. In particular,

one text line is extracted each time as optimization of mul-

tiple flows in one go has relatively lower performance. The

overlapping characters are removed as described in Step 5,

since character candidates are detected at multiple scales

and some may overlap with others as illustrated in Figure

3. Algorithm 1 terminates when the flow cost Costi > 0.

Our test show that the scene text detection performance is

not sensitive to the α in Equation 2 and β in Equation 4

when both parameters lie in certain ranges (0.3 ≤ α ≤ 0.5,

1https://github.com/iveney/cs2
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Figure 6: Illustration of text line extraction based on the min-cost flow network model: Input images are shown in the leftmost column

and detected character candidates are labelled by green color bounding boxes as shown in the images in the middle column. The extracted

text flows are labelled by green lines that link the identified true character (labeled by blue bounding boxes) as shown in the images in the

rightmost column. The center of each identified true character is labelled by a red dot.

Algorithm 1 Text line extraction by min-cost flow

Input: Graph G with all the cost precomputed

Output: Extracted text flows as well as character candi-

dates in each flow

1: repeat

2: Set the flow number to 1.

3: Solve the min-cost flow problem by algorithm [5]

and get the cost for flow i as Costi.
4: Trace the flow path and its character candidates Lij

from the algorithm output.

5: Delete those character candidates that have more

than 50% overlap with Lij from graph G.

6: until Costi > 0

1.5 ≤ β ≤ 2.5). We set α empirically to 0.4 so that the

smoothness cost will penalize more on the size difference.

Parameter β is set to 2 to make the range of data cost two

times of the smoothness cost. This makes the text flow favor

more on character candidates with higher text confidence.

Under these settings, the cost will be negative for true text

flows and positive otherwise as verified in our experiments.

The extracted text flows are shown as green lines running

through character candidates in Figure 6. As we can see

that false candidates are removed during the text line ex-

traction process and text flows do not zigzag because of the

transition constrains as explained in Section 3.2.1.

The min-cost flow network solution guarantees to find

global minimum cost solutions [1, 5]. Note that beam

search [2] could also be extended to find the optimal flows

in the constructed graph. However, beam search is mostly

used to prune the search space, thus it may prune paths

that lead to an optimal solution. For our constructed graph,

the search space is not large and the min-cost flow network

model can produce an optimal solution efficiently.

The extracted text lines can be further split into words for

the evaluation on the ICDAR2011 dataset and ICDAR2013

dataset where the ground truth is provided at the word level.

We extract words by using the inter-word blank which can

be easily detected by projecting the image gradient of each

extracted text line to the horizontal axis. The inter-word

blank regions usually have very small values along the pro-

jected image gradients.

4. Experiments

The proposed scene text detection technique has been

evaluated on three publicly available datasets, namely, IC-

DAR2011 [20], ICDAR2013 [11] and a multilingual dataset

[19]. In addition, it has been compared with some state-of-

the-art techniques over the three datasets.

4.1. Data and Evaluation Metric

The ICDAR2011 dataset consists of 229 training im-

ages and 255 testing ones. For each word within each im-

age, the ground truth (for detection) includes a manually

labeled bounding box. The ICDAR2013 dataset is a sub-

set of ICDAR2011 dataset since it excludes a small num-

ber of duplicated images over training and testing sets and
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revises ground-truth annotations for several images in the

ICDAR2011 dataset. The dataset consists of 462 images

including 229 for training and 233 for testing.

The third dataset is a multilingual scene text dataset that

was created by Pan et al. as described in [19]. One motiva-

tion of this dataset is for technical benchmarking on texts in

non-Latin languages, specifically on Chinese. The dataset

consists of 248 images for training and 239 for testing and

most images contain texts in both English and Chinese. The

ground truth includes a manually labeled bounding box for

each text line because texts in Chinese cannot be broken

into words without understanding of the text semantics.

The evaluation metrics for these datasets are different

as suggested by the dataset creators. For the multilingual

dataset, only one-to-one matches are considered and the

matching score for a detection rectangle is calculated by

the best match with all ground truth rectangles in each im-

age. For the ICDAR2011 and ICDAR2013 datasets, many-

to-one (many ground-truth rectangles correspond to one de-

tected rectangle) and one-to-many matches (a ground-truth

rectangle corresponds to many detected rectangles) are con-

sidered for a better evaluation. The evaluation metrics are

described in more details in [11, 25].

4.2. Experimental Results

The cascade boosting models for the three public

datasets are trained by using the corresponding training im-

ages, respectively. The CNN models used in the min-cost

flow network are trained using the character candidate sam-

ples detected from the training images. In addition, for each

character candidate sample in the three public datasets, we

create 30 synthetic samples by rotation, shifting, blurring,

adding Gaussian noise and so on. The total positive and

negative training samples are roughly 600,000 for both.

Tables 1 and 2 show experimental results on the IC-

DAR2011 dataset and ICDAR2013 dataset, respectively.

As the two tables show, the proposed technique ob-

tains similar results for the ICDAR2011 dataset and IC-

DAR2013 dataset and it outperforms state-of-the-art tech-

niques clearly. The winning algorithm in the ICDAR Ro-

bust Reading Competition 2013 [11] reports a F-score of

75.89% while our text flow technique obtains 80.25% as

shown in Table 2. The superior performance can be ex-

plained by the proposed min-cost flow model that reduces

the error accumulation significantly.

For the multilingual dataset, the first two methods in Ta-

ble 3 produce state-of-the-art detection performance, where

Pan et al. [19] are actually the creators of the dataset and Yin

et al. [30] won the Robust Reading Competition 2013. As

Table 3 shows, our proposed technique outperforms the best

performing method [30] by up to 10% in detection recall

and 7% in F-score. To further analyze the performance on

the multilingual dataset, we divide the testing dataset into

Table 1: Text detection results on ICDAR2011 dataset (%)

Method Year Recall Precision F-score

Kim et al. [20] 2011 62.47 82.98 71.28

Huang et al. [7] 2013 75.00 82.00 73.00

Yao et al. [26] 2014 65.70 82.20 73.00

Baseline - 67.13 81.48 73.61

Yin et al. [29] 2015 66.01 83.77 73.84

Neumann and Matas [18] 2013 67.50 85.40 75.40

Yin et al. [30] 2014 68.26 86.29 76.22

Zamberletti et al. [31] 2014 70.00 86.00 77.00

Huang et al. [8] 2014 71.00 88.00 78.00

Jaderberg [9] 2015 - - 81.00

Text Flow - 76.17 86.24 80.89

Table 2: Text detection results on ICDAR2013 dataset (%)

Method Year Recall Precision F-score

Shi et al. [21] 2013 62.85 84.70 72.16

Baseline - 66.54 80.69 72.93

Ye and David [27] 2014 62.26 89.17 73.33

Yin et al. [29] 2015 65.11 83.98 73.35

Neumann and Matas [17] 2013 64.84 87.51 74.49

Yin et al. [30] 2013 66.45 88.47 75.89

Lu et al. [15] 2015 69.58 89.22 78.19

Text Flow - 75.89 85.15 80.25

Table 3: Text detection results on Multilingual dataset (%)

Method Recall Precision F-score Speed (s)

Pan et al. [19] 65.9 64.5 65.5 3.11

Baseline 67.2 78.6 72.4 0.88

Yin et al. [30] 68.5 82.6 74.6 0.22

Text Flow 78.4 84.7 81.4 0.94

two parts, i.e., Chinese and English, and evaluate the perfor-

mance separately. There are totally 951 text lines of which

669 are in Chinese (∼70%) and 282 in English (∼30%).

We manually label the correctly detected text lines as Chi-

nese or English and compute the recall for these two sub-

sets, which are 79.1% (Chinese) and 76.6% (English) re-

spectively. Since it is not possible to label a false positive

into Chinese or English, the precision cannot be obtained.

This result further proves that Text Flow is robust in pro-

cessing different scripts of languages.

To verify that the good performance is attributed to the

min-cost flow model instead of the CNN classifier, a base-

line scene text detection system is implemented for com-

parison. The system consists of the four sequential compo-

nents, i.e, character candidate detection (same as the pro-

posed method), character candidate elimination, text line

extraction and text line verification. The text candidate

and text line elimination is done by thresholding the CNN

scores. While the text line extraction follows the methods in

[4, 8, 22] which iteratively merge two text lines with similar

geometric and heuristic properties. The result of the base-

line system is shown in Table 2 which decreases more than

7% in F-score. This comparison justifies that the min-cost
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Figure 7: Successful scene text detection examples on the ICDAR datasets (first three samples) and the multilingual dataset (ensuing four

samples). Representative failure cases (last three samples) are illustrated, most of which suffer from the typical image degradation such as

complex background, rare fonts, etc. Miss-detections are labeled by red bounding boxes.

flow model contributes much more to the good performance

than the CNN classifier.

Figure 7 shows several sample results from the three

public datasets. As we observe, the proposed technique

works well on shaded texts, uncommon fonts, low con-

trast texts. Besides, it can detect both English and Chinese

present in one image with the same character detector, as

illustrated in Figure 7. In addition, those characters with

multiple isolated components are easily addressed in our

framework while it may be quite complicated for CCs based

methods to group those components into a character. Those

facts demonstrate the superiority of the proposed method

being utilized as a general text detection framework regard-

less of the language scripts. On the other hand, the pro-

posed method could miss some true text or detect non-text

objects falsely under certain challenging conditions such as

rare handwriting font, text similar patterns, vertical texts,

etc.

4.3. Discussion

The good performance of our proposed technique is

largely due to the min-cost flow network model which inte-

grates multiple steps into a single process and accordingly

solves the typical error accumulation problem. In particu-

lar, the min-cost flow network model incorporates the char-

acter level text confidence and the inter-character level spa-

tial layout jointly which outperforms those approaches that

exploit either character level confidence or inter-character

level spatial layout alone. In addition, the good perfor-

mance is also partially due to the cascade boosting model

which gives a high recall of character candidates as well

as the CNN employed in the min-cost flow network which

provides reliable character confidence.

The proposed text detection system runs on a 64-bit

Linux desktop with a 2.00GHz processor. On ICDAR2011

dataset, the processing time of MSER based methods are

0.43s and 1.8s per image, respectively as reported in [30]

and [17]. In comparison, the average processing time of

the proposed method is 1.4s per image. On the multilingual

dataset, our system is much faster than the hybrid method

[19] and is comparable with the MSER based method [30]

as shown in Table 3. Though the sliding window scheme is

adopted for the text candidate detection, the proposed tech-

nique is quite fast because of the accelerating strategy in the

character candidate detection step and the efficient min-cost

flow network solution.

5. Conclusion

In this paper, a novel text detection system, Text Flow, is

proposed. The system consists of two steps including char-

acter candidate detection handled by cascade boosting and

text line extraction solved by a min-cost flow network. The

proposed system can capture the whole character instead of

isolated character strokes and the processing time is compa-

rable with the CCs based techniques. To handle the typical

error accumulation problem, a flow network model is de-

signed to integrate the three sequential steps into a single

process which is solved by a min-cost flow technique. Ex-

periments on the ICDAR2011 dataset, ICDAR2013 dataset

and the multilingual dataset show that the proposed tech-

nique outperforms the state-of-the-art techniques greatly.

Besides, the proposed system is superior in detecting texts

in other non-Latin languages with a competitive speed com-

pared to CCs based methods.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows:

theory, algorithms, and applications. 1993. 3, 6

[2] A. Bissacco, M. Cummins, Y. Netzer, and H. Neven. Pho-

toOCR: Reading text in uncontrolled conditions. In Interna-

4658



tional Conference on Computer Vision (ICCV), pages 785–

792, 2013. 2, 6

[3] X. Chen and A. Yuille. Detecting and reading text in nat-

ural scenes. In Computer Vision and Pattern Recognition

(CVPR), pages 366–373, 2004. 2, 3

[4] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural

scenes with stroke width transform. In Computer Vision and

Pattern Recognition (CVPR), pages 2963–2970, 2010. 1, 2,

7

[5] A. V. Goldberg. An efficient implementation of a scaling

minimum-cost flow algorithm. Journal of algorithms, pages

1–29, 1997. 5, 6

[6] P. Guide. Intel R© 64 and ia-32 architectures software devel-

opers manual. 2010. 3

[7] W. Huang, Z. Lin, J. Yang, and J. Wang. Text localization in

natural images using stroke feature transform and text covari-

ance descriptors. In International Conference on Computer

Vision (ICCV), pages 1241–1248, 2013. 1, 2, 7

[8] W. Huang, Y. Qiao, and X. Tang. Robust scene text detection

with convolution neural network induced mser trees. In Eu-

ropean Conference on Computer Vision (ECCV), pages 497–

511, 2014. 1, 2, 7

[9] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.

Reading text in the wild with convolutional neural networks.

International Journal of Computer Vision, pages 1–20, 2015.

2, 7

[10] M. Jaderberg, A. Vedaldi, and A. Zisserman. Deep features

for text spotting. In European Conference on Computer Vi-

sion (ECCV), pages 512–528. 2014. 2

[11] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, S. R. Mestre,

J. Mas, D. F. Mota, J. A. Almazan, L. P. de las Heras,

et al. ICDAR 2013 robust reading competition. In Inter-

national Conference on Document Analysis and Recognition

(ICDAR), pages 1484–1493, 2013. 2, 6, 7

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, pages 2278–2324, 1998. 4

[13] J.-J. Lee, P.-H. Lee, S.-W. Lee, A. L. Yuille, and C. Koch.

Adaboost for text detection in natural scene. In Interna-

tional Conference on Document Analysis and Recognition

(ICDAR), pages 429–434, 2011. 2

[14] J. Liang, D. S. Doermann, and H. Li. Camera-based analysis

of text and documents: a survey. International Journal of

Document Analysis and Recognition, pages 84–104, 2005. 2

[15] S. Lu, T. Chen, S. Tian, J.-H. Lim, and C.-L. Tan. Scene text

extraction based on edges and support vector regression. In-

ternational Journal on Document Analysis and Recognition,

pages 1–11, 2015. 7

[16] A. Mishra, K. Alahari, and C. V. Jawahar. Top-down and

bottom-up cues for scene text recognition. In Computer

Vision and Pattern Recognition (CVPR), pages 2687–2694,

2012. 2

[17] L. Neumann and J. Matas. Real-time scene text localization

and recognition. In Computer Vision and Pattern Recogni-

tion (CVPR), pages 3538–3545, 2012. 1, 2, 7, 8

[18] L. Neumann and J. Matas. On combining multiple segmen-

tations in scene text recognition. In International Confer-

ence on Document Analysis and Recognition (ICDAR), pages

523–527, 2013. 7

[19] Y.-F. Pan, X. Hou, and C.-L. Liu. A hybrid approach to detect

and localize texts in natural scene images. In IEEE Transac-

tions on Image Processing, pages 800–813, 2011. 2, 6, 7,

8

[20] A. Shahab, F. Shafait, and A. Dengel. ICDAR 2011 robust

reading competition: Reading text in scene images. In Inter-

national Conference on Document Analysis and Recognition

(ICDAR), pages 1491–1496, 2011. 2, 6, 7

[21] C. Shi, C. Wang, B. Xiao, Y. Zhang, and S. Gao. Scene

text detection using graph model built upon maximally stable

extremal regions. Pattern recognition letters, pages 107–116,

2013. 2, 7

[22] L. Sun, Q. Huo, W. Jia, and K. Chen. Robust text detec-

tion in natural scene images by generalized color-enhanced

contrasting extremal region and neural networks. In Inter-

national Conference on Pattern Recognition (ICPR), pages

2715–2720, 2014. 2, 7

[23] K. Wang, B. Babenko, and S. Belongie. End-to-end scene

text recognition. In International Conference on Computer

Vision (ICCV), pages 1457–1464, 2011. 2

[24] J. J. Weinman, E. G. Learned-Miller, and A. R. Hanson.

Scene text recognition using similarity and a lexicon with

sparse belief propagation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, pages 1733–1746, 2009.

2

[25] C. Wolf and J.-M. Jolion. Object count/area graphs for the

evaluation of object detection and segmentation algorithms.

International Journal of Document Analysis and Recogni-

tion, pages 280–296, 2006. 7

[26] C. Yao, X. Bai, and W. Liu. A unified framework for multi-

oriented text detection and recognition. IEEE Transactions

on Image Processing, pages 4737–4749, 2014. 1, 2, 7

[27] Q. Ye and D. Doermann. Scene text detection via inte-

grated discrimination of component appearance and consen-

sus. In Camera-Based Document Analysis and Recognition

(CBDAR), pages 47–59, 2014. 7

[28] Q. Ye and D. S. Doermann. Text detection and recognition in

imagery: A survey. IEEE Transactions on Pattern Analysis

and Machine Intelligence, pages 1480–1500, 2015. 2

[29] X.-C. Yin, W.-Y. Pei, J. Zhang, and H.-W. Hao. Multi-

orientation scene text detection with adaptive clustering.

IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, pages 1930–1937, 2015. 7

[30] X.-C. Yin, X. Yin, K. Huang, and H.-W. Hao. Robust text

detection in natural scene images. In IEEE Transactions on

Pattern Analysis and Machine Intelligence, pages 970–983,

2014. 1, 2, 3, 7, 8

[31] A. Zamberletti, L. Noce, and I. Gallo. Text localization based

on fast feature pyramids and multi-resolution maximally sta-

ble extremal regions. In Asian Conference on Computer Vi-

sion (ACCV) Workshops, pages 91–105, 2014. 7

[32] L. Zhang, Y. Li, and R. Nevatia. Global data association

for multi-object tracking using network flows. In Computer

Vision and Pattern Recognition (CVPR), pages 1–8, 2008. 3

4659


