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Abstract

The long short-term memory (LSTM) neural network is

capable of processing complex sequential information since

it utilizes special gating schemes for learning representa-

tions from long input sequences. It has the potential to

model any sequential time-series data, where the current

hidden state has to be considered in the context of the past

hidden states. This property makes LSTM an ideal choice

to learn the complex dynamics of various actions. Unfor-

tunately, the conventional LSTMs do not consider the im-

pact of spatio-temporal dynamics corresponding to the giv-

en salient motion patterns, when they gate the information

that ought to be memorized through time. To address this

problem, we propose a differential gating scheme for the L-

STM neural network, which emphasizes on the change in

information gain caused by the salient motions between the

successive frames. This change in information gain is quan-

tified by Derivative of States (DoS), and thus the proposed

LSTM model is termed as differential Recurrent Neural Net-

work (dRNN). We demonstrate the effectiveness of the pro-

posed model by automatically recognizing actions from the

real-world 2D and 3D human action datasets. Our study is

one of the first works towards demonstrating the potential of

learning complex time-series representations via high-order

derivatives of states.

1. Introduction

Recently, Recurrent Neural Networks (RNNs) [28], e-

specially Long Short-Term Memory (LSTM) model [14],

have gained significant attention in solving many challeng-

ing problems involving time-series data, such as action

recognition [12, 8, 13], multilingual machine translation

[30, 4], multimodal translation between videos and sen-

tences [34], robot control [21] and time-series alignment

[32]. In these applications, learning an appropriate repre-

sentation of sequences is an important step in achieving ar-

∗Corresponding author

tificial intelligence.

Compared with many existing spatio-temporal features

[17, 29, 5, 24] from the time-series data, RNNs use either a

hidden layer [28] or a memory cell [14] to learn the time-

evolving states which models the underlying dynamics of

the input sequence. For example, [2, 8] have used LSTMs

to model the video sequences to learn their long short-term

dynamics. In contrast to the conventional RNN, the major

component of LSTM is the memory cell which is modulat-

ed by three gates - input, output and forget gates. These

gates determine the amount of dynamic information enter-

ing/leaving the memory cell. The memory cell has a set of

internal states, which store the information obtained over

time. In this context, these internal states constitute a repre-

sentation of an input sequence learned over time.

In many recent works, the LSTMs have shown tremen-

dous potential in action recognition tasks [2, 13, 8]. The ex-

isting LSTM model represents a video by integrating over

time all the available information from each frame. Howev-

er, we observed that for an action recognition task, not all

frames contain salient spatio-temporal information which

are discriminative to different classes of actions. Many

frames contain non-salient motions which are irrelevant to

the performed action.

This inspired us to develop a new family of LSTM mod-

el that automatically learns the dynamic saliency of the ac-

tions performed. The conventional LSTM fails to capture

the salient dynamic patterns, since the gate units do not ex-

plicitly consider whether a frame contains salient motion

information when they modulate the input and output of the

memory cells. Thus the model is insensitive to the dynam-

ic evolution of the hidden states given the input video se-

quences. To address this problem, we propose the differ-

ential RNN (dRNN) model that learns these salient spatio-

temporal representations of actions.

Specifically, dRNN models the dynamics of actions by

computing different-orders of Derivative of State (DoS) that

are sensitive to the spatio-temporal structure of input se-

quence. In other words, depending on the DoS, the gate

units can learn the appropriate information that should be
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required to model the dynamic evolution of actions. To

train the dRNN model, we use truncated Back Propaga-

tion algorithm to prevent the exploding or diminishing er-

rors through time [14]. In particular, we follow the rule that

the errors propagated through the connections to those DoS

nodes would be truncated once they leave the current mem-

ory cell.

Finally, we demonstrate that the dRNNs can achieve

the state-of-the-art performance on both 2D and 3D action

recognition datasets. Specifically, dRNNs outperform the

existing LSTM model on these action recognition tasks,

consistently achieving the better performance with the same

input sequences. On the other hand, when compared with

the other algorithms based on special assumptions about

spatio-temporal structure of actions, the proposed general-

purpose dRNN model can still reach competitive perfor-

mance.

The remainder of this paper is organized as follows. In

the next section 2, we review several related work to the

action recognition problem. The background and details

of RNNs and LSTMs are reviewed in section 3. Section

4 presents the proposed differential RNNs (dRNNs). The

experimental results are presented in section 5. Finally, we

conclude and discuss the future work related to dRNNs in

section 6.

2. Related Work

Action recognition has been a long-standing research

problem in computer vision and pattern recognition com-

munity, which aims to enable a computer to automatical-

ly understand the activities performed by people interacting

with the surrounding environment and with each other [23].

This is a challenging problem due to the huge intra-class

variance of actions performed by different actors at various

speeds, in diverse environments (e.g., camera angles, light-

ing conditions, and cluttered background).

To address this problem, many robust spatio-temporal

representations have been constructed. For example,

HOG3D [17] uses the histogram of 3D gradient orientations

to represent the motion structure over the frame sequences;

3D-SIFT [29] extends the popular SIFT descriptor to char-

acterize the scale-invariant spatio-temporal structure for 3D

video volume; actionlet ensemble [35] utilizes a robust ap-

proach to model the discriminative features from 3D posi-

tions of the tracked joints captured by depth cameras.

Although these descriptors have achieved remarkable

success, they are usually engineered to model a specific

spatio-temporal structure in an ad-hoc fashion. Recent-

ly, the huge success of deep networks in image classifica-

tion [18] and speech recognition [11] has inspired many re-

searchers to apply the deep neural networks, such as 3D

Convolutional Neural Networks (3DCNNs) [3] and Recur-

rent Neural Networks (RNNs) [2, 8], to action recognition.

In particular, [3] developed a 3D convolutional neural net-

work that extends the conventional CNN by taking space-

time volume as input. On the contrary, [2, 8] used LSTMs

to represent the video sequences directly, and modeled the

dynamic evolution of the action states via a sequence of

memory cells.

Meanwhile, the existing approaches combine deep neu-

ral networks with spatio-temporal descriptors, achieving

competitive performance. For example, in [3], a LSTM

model takes a sequence of Harris3D and 3DCNN descrip-

tors extracted from each frame as input, and the result on K-

TH dataset has shown the state-of-the-art performance [3].

3. Background

In this section, we briefly review the recurrent neural net-

work as well as its variant, long short-term memory model.

Readers who are familiar with them might skip to the next

section directly.

3.1. Recurrent Neural Networks

Traditional recurrent neural networks (RNNs) [28] mod-

el the dynamics of an input sequence of frames {xt ∈
R

n|t = 1, · · · , T} through a sequence of hidden states

{st ∈ R
m|t = 1, · · · , T} thereby learning the spatio-

temporal structure of the input sequence. For example, a

classical RNN model uses the following recurrent equation

st = tanh(Wssst−1 +Wsxxt + bs) (1)

to model the hidden state st at time t by combining the in-

formation from the current input xt and the past hidden state

st−1, where the hyperbolic tangent tanh(·) is an activation

function with range [−1, 1], Wsx and Wss are two map-

ping matrices to the hidden state, and bs is the bias vector.

The hidden state can be mapped to an output sequence

{zt ∈ R
k|t = 1, · · · , T} as

zt = tanh(Wzsst + bz) (2)

where each zt represents an 1-of-k encoding of the con-

fidence scores on k classes of actions. Then, this output

vector can be transformed to a vector of probabilities yt by

softmax function as

yt,c =
exp(zt,c)
k∑

l=1

exp(zt,l)

, (3)

with each entry yt,c being the probability of frame t belong-

ing to class c ∈ {1, · · · , k}.

3.2. Long Short-Term Memory

The above classical RNN is limited in learning the long-

term representation of video sequences, due to the expo-

nential decay in retaining the context information of video
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frames [14]. To overcome this limitation, Long Short-Term

Memory (LSTM) [14], a variant of RNN, has been designed

to learn the long-range dependency between the output la-

bel and the input frame, which has achieved competitive

performance on action recognition task [2][3].

In particular, LSTMs are composed of a sequence of

memory cells, each containing an internal state st storing

the memory of the input sequence up to time t. To store

the memory with respect to a context in long period of time,

three types of gate units are incorporated into LSTMs to

control what information would enter and leave the memo-

ry cell over time [14]. These gate units are activated by a

nonlinear function of input/output sequences as well as in-

ternal states, making them powerful enough to model the

dynamically changing context given that the human actions

evolve at various time scales.

Formally, a LSTM cell has the following gates:

1. The input gate it controls the degree to which the input

information would enter the memory cell to influence its

internal state st at time t. The activation of this gate has the

following recurrent form

it = σ(Wisst−1 +Wizzt−1 +Wixxt + bi)

where the sigmoid σ(·) is an activation function with the

range [0, 1], with 0 meaning the gate is closed and 1 mean-

ing the gate is completely open; Wi∗ are the mapping ma-

trices and bi is the bias vector.

2. The forget gate ft modulates the previous state st−1 to

control its contribution to the current state (c.f. Eq(4)). It is

defined as

ft = σ(Wfsst−1 +Wfzzt−1 +Wfxxt + bf )

with the mapping matrices Wf∗ and the bias vector bf .

With the input/forget gate units, the internal state st of

each memory cell can be updated below:

st = ft ⊙ st−1 + it ⊙ st− 1
2

(4)

where we define the pre-state st− 1
2

as

st− 1
2
= tanh(Wszzt−1 +Wsxxt + bs).

The pre-state can be considered as an intermediate state be-

tween two consecutive frames, aggregating the information

from the last output zt−1 and the current input xt. Then it

is combined with the gated information from the previous

state st−1 to update the current state st as in Eq. (4).

3. The output gate ot:

ot = σ(Wosst +Wozzt−1 +Woxxt + bo).

It gates the information output from a memory cell which

would influence the future states of LSTM cells. Then the

output of a memory cell can be expressed as

zt = ot ⊙ tanh(Wzsst + bz) (5)

Figure 1. Architecture of the proposed dRNN model at time t. In

the memory cell, the input gate it and the forget gate ft are con-

trolled by DoS
d(n)

st−1

dt(n) at t − 1, and the output gate ot is con-

trolled by the DoS d(n)
st

dt(n) at t.

where ⊙ stands for element-wise product.

In brief, LSTM proceeds by iteratively applying Eq. (4)

and Eq. (5) to update the state st and output zt. In this pro-

cess, the forget gate, output gate and input gate play a criti-

cal role in controlling the information entering and leaving

the memory cell. More details about LSTMs can be found

in [14].

4. Differential Recurrent Neural Networks

For an action recognition task, not all video frames

contain salient patterns to discriminate between differen-

t classes of actions. Many spatio-temporal descriptors, such

as 3D-SIFT [29] and HoGHoF [19], have been proposed

to localize and encode the salient spatio-temporal points.

They detect and encode the spatio-temporal points related

to salient motions of the objects in video frames, revealing

the important dynamics of actions.

In this paper, we develop a novel LSTM model to auto-

matically learn the dynamics of actions, by detecting and

integrating the salient spatio-temporal sequences. The con-

ventional LSTMs might fail to capture these salient dynam-

ic patterns, because the gate units do not explicitly consider

the impact of dynamic structures present in input sequences.

This makes the model inadequate to learn the evolution of

action states. To address this problem, we propose a dif-

ferential RNN (dRNN) model to learn and integrate the dy-

namics of actions.

The proposed dRNN model is based on the observation

that the internal state of each memory cell contains the ac-

cumulated information about the spatio-temporal structure,

i.e., it is a long short-term representation of an input se-

quence. So the Derivative of States (DoS)
dst

dt
quantifies

the change of information at each time t. In other word-
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s, a large magnitude of DoS is an indicator of a salien-

t spatio-temporal structure containing the informative dy-

namics caused by an abrupt change of action state. In this

case, the gate units should allow more information to en-

ter the memory cell to update its internal state. Otherwise,

when the magnitude of DoS is small, the incoming informa-

tion should be gated out of the memory cell so the internal

state would not be affected by the current input. Therefore,

DoS should be used as a factor to gate the information flow

into and out of the internal state of memory cell over time.

Moreover, we can involve higher-orders of DoS

{
dnst

dtn
|n ≥ 2} to detect and capture the higher-order dy-

namic patterns for the dRNN model. For example, when

modeling a moving object in a video, the first-order DoS

captures the velocity while the second-order captures its ac-

celeration. These different orders of DoS will enable dRNN

to better represent the dynamic evolution of action states.

Figure 1 illustrates the architecture of the proposed dRN-

N model. Formally, we have the following recurrent equa-

tions to control the gate units with the DoS up to order N :

it = σ(

N∑

n=0

W
(n)
id

d
(n)

st−1

dt(n)
+Wizzt−1 +Wixxt + bi) (6)

ft = σ(

N∑

n=0

W
(n)
fd

d
(n)

st−1

dt(n)
+Wfzzt−1 +Wfxxt + bf ) (7)

ot = σ(

N∑

n=0

W
(n)
od

d
(n)

st

dt(n)
+Wozzt−1 +Woxxt + bo) (8)

where
d(n)st−1

dt(n)
is the n-order DoS, and W

(n)
∗d are the cor-

responding mapping matrices.

Finally, it is worth pointing out that we do not use the

derivative of inputs as a measurement of salient dynamic-

s to control the gate units. The derivative of inputs would

amplify the unwanted noises which are often contained in

the input sequence. This derivative of inputs only represent

the local dynamic saliency, in contrast to the long short-term

change in the information gained over time. For example, a

motion may have been performed several frames ago. Us-

ing derivative of inputs would treat it as a novel salient mo-

tion, even though it has already been stored by LSTM. On

the contrary, DoS does not have this problem, because the

internal state st has long-term memory of the past motion

pattern, even though the same motion had previously oc-

curred.

4.1. Discretized Model

Since the model is defined in the discrete-time domain,

the first-order derivative
dst

dt
, as the velocity of information

change, can be discretized as the difference of states

vt �
dst

dt

.
= st − st−1 (9)

for its simplicity [9].

Similarly, we can consider the second order of DoS as

the acceleration of information change can be discretized as

at �
d2st

dt2
.
= vt − vt−1 = st − 2st−1 + st−2 (10)

In this paper, we only consider the first two orders of DoS.

Higher orders can be derived in a similar way.

With the above recurrent equations, at time step t, the

dRNN model proceeds in the following order.

• Compute input gate activation it and forget gate acti-

vation ft by Eq. (6) and Eq. (7);

• Update state st with it and ft by Eq. (4);

• Compute discretized DoS {
d(n)st

dt(n)
|n = 1, · · · , N} up

to order N at time t, e.g. Eq. (9) and Eq. (10);

• Compute output gate ot by Eq. (8);

• Output zt gated by ot from memory cell by Eq. (5);

• (Optional) Output the label yt by applying the softmax

to zt by Eq. (3).

Now it is obvious that this model is termed differential

RNNs (dRNNs) because of the central role of derivatives of

states in detecting and capturing the salient spatio-temporal

structures.

4.2. Learning Algorithm

To learn the model parameters of dRNNs, we define a

loss function to measure the deviation between the target

class ct and yt at time t:

ℓ(yt, ct) = − log yt,ct .

For an action recognition task, the label of action is of-

ten given at the video level. Since LSTMs have the ability to

memorize the content of an entire sequence, the last memo-

ry cell of LSTMs ought to contain all the necessary informa-

tion for action recognition. Thus, for a sequence of length

T , and a given training label c, the dRNNs can be trained by

minimizing the loss at time T , i.e., ℓ(yT , c) = − log yT,c.

Otherwise, if an individual label ct is given to each frame

t in the sequence, we can minimize the cumulative loss over

the sequence:
T∑

t=1

ℓ(yt, ct).

Both types of loss functions can be minimized by Back

Propagation Through Time (BPTT) [6], which unfolds a

dRNN model over several time steps and then runs the back

propagation algorithm to train the model. To prevent the
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back-propagated errors from decaying or exploding expo-

nentially, LSTMs usually use truncated BPTT [14]. The

idea is rather simple: once the back-propagated error leaves

the memory cell or gates, it will not be allowed to enter the

memory cell again. In the proposed dRNNs, we also use the

truncated errors to learn the model parameters. In particu-

lar, we do not allow the errors to re-enter the memory cell

once they leave it through the DoS nodes vt and at.

Formally, we assume the following truncated derivatives

of gate activations:

∂it

∂vt−1
⊜ 0,

∂ft

∂vt−1
⊜ 0,

∂ot

∂vt

⊜ 0

and
∂it

∂at−1
⊜ 0,

∂ft

∂at−1
⊜ 0,

∂ot

∂at
⊜ 0

where ⊜ stands for the truncated derivative. The details

about the implementation of truncated BPTT can be found

in [14].

5. Experiments and Results

We compare the performance of the proposed method

with the state-of-the-art LSTM and non-LSTM methods

present in existing literature on both 2D and 3D human ac-

tion datasets.

5.1. Datasets

The proposed method is evaluated on the KTH 2D action

recognition dataset, as well as MSR Action3D dataset.

KTH dataset. We choose KTH dataset [27] for it is a

de facto benchmark for evaluating action recognition algo-

rithms. This makes it possible to directly compare with the

other algorithms. There are two KTH datasets - KTH-1 and

KTH-2, which both consist of six action classes: walking,

jogging, running, boxing, hand-waving and hand-clapping.

The actions are performed several times by 25 subjects in

four different scenarios: outdoors, outdoors with scale vari-

ation, outdoors with different clothes and indoors. The se-

quences are captured over homogeneous background with a

static camera recording 25 frames per second. Each video

has a resolution of 160× 120, and lasts for about 4 seconds

on KTH-1 dataset and for about a second for KTH-2 dataset.

There are 599 videos in the KTH-1 dataset and 2, 391 video

sequences in the KTH-2 dataset.

MSR Action3D dataset. The MSR Action3D dataset

[20] consists of 567 depth map sequences performed by 10
subjects using a depth sensor similar to the Kinect device.

The resolution of each video is 320 × 240 and there are 20
action classes where each subject performs each action t-

wo or three times. The actions are chosen in the context of

gaming. They cover a variety of movements related to arms,

legs, torso etc. This dataset has a lot of noise in the joint lo-

cations of the skeleton as well as high intra-class variations

and inter-class similarities, making it a challenging dataset

for evaluation among the existing 3D datasets. We follow

a similar experiment setting from [35], where half of the

subjects are used for training and the other half are used

for testing. This setting is much more challenging than the

subset one used in [20], because all actions are evaluated

together and the chance of confusion is much higher.

5.2. Feature Extraction

We are using densely sampled HOG3D features to repre-

sent each frame of video sequences from the KTH dataset.

Specifically, we uniformly divide the 3D video volumes in-

to a dense grid, and extract the descriptors from each cell

of the grid. The parameters for HOG3D are the same as

the one used in [17]. We extract HOG3D features using the

standard KTH optimized dense sampling parameters men-

tioned on the authors’ webpage [1]. The size of the descrip-

tor was 1000 per cell of grid, and there are 56 such cells in

each frame, yielding a 56, 000 dimensional feature vector

per frame. We apply PCA to reduce the dimension to 450,

retaining 97% of energy among the principal components,

to construct a compact input into the dRNN model.

For 3D action dataset, MSR Action3D, a depth sensor

like Kinect provides an estimate of 3D joint coordinates of

body skeleton, and the following features were extracted to

represent MSR Action3D depth sequences – (1) Position:

3D coordinates of the 20 joints obtained from the skeleton

map. These 3D coordinates were then concatenated result-

ing in a 60 dimensional feature per frame; (2) Angle: nor-

malized pair-wise angles. The normalized pair-wise angles

were obtained from 18 joints of the skeleton map. The t-

wo feet joints were not included. This resulted in a 136

dimensional feature vector per frame; (3) Offset: offset of

the 3D joint positions between the current and the previous

frame [38]. These offset features were also computed us-

ing the 18 joints from the skeleton map resulting in a 54

dimensional feature per frame; (4) Velocity: histogram of

the velocity components obtained from point cloud. This

feature was computed using the 18 joints as in the previ-

ous cases resulting in a 162 dimensional feature per frame;

(5) Pairwise joint distances: The 3D coordinates obtained

from the skeleton map were used to compute pairwise joint

distances with the centre of the skeleton map resulting in a

60 dimensional feature vector per frame. For the following

experiments, these five different features were concatenated

to result in a 583 dimensional feature vector per frame.

5.3. Architecture and Training

The architectures of the dRNN models trained on the two

datasets are shown in Table 1. For the sake of fair compar-

ison, we adopt the same architecture for the dRNN models

of both orders on two datasets. We can see that the number

of memory cell units is smaller than the input units on both
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Dataset KTH MSR Action3D

Input Units 450 583

Memory Cell State Units 300 400

Output Units 6 20

Table 1. Architecture of the dRNN model used on two datasets.

Each row shows the number of units in each component. For the

sake of fair comparison, we adopt the same architecture for the

dRNN models of both orders on two datasets.
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Figure 2. Objective loss curve over training epochs on the KTH

dataset.

Figure 3. The curve of the 1st and 2nd orders of DoS over an exam-

ple of sequence for the action “boxing.” Note that the local maxi-

mum of DoS corresponds to the change from punching to relaxing.

datasets. This can be interpreted as follows. The sequence

of an action video often forms a continuous trajectory em-

bedded in a low-dimensional manifold of the input space.

Thus, a lower-dimension state space suffices to capture the

dynamics of such a trajectory.

We plot the learning curve for training the model on K-

TH dataset in Figure 2. The learning rate of BPTT algo-

rithm is set to 0.0001. The figure shows that the objective

loss continuously decreases over 50 epochs. Usually after

40 epochs, the training of dRNN model begins to converge.

5.4. Results on KTH Dataset

There are several different evaluation protocols used on

KTH dataset in literature. This can result in as large as 9%
differences in performance across different experiment pro-

tocols as reported in [10]. For the sake of fair compari-

son, we follow the cross-validation protocol [3], in which

we randomly select 16 subjects to train the model, and test

over the remaining 9 subjects. The performance is reported

by the average across five such trails.

First, we compare the dRNN model with the conven-

tional LSTM model in Table 2. Here we report the cross-

validation accuracy on both KTH-1 and KTH-2 datasets. In

addition, Figure 5 shows the confusion matrix obtained by

the 2-order dRNN model on KTH-1 dataset. This confusion

matrix is computed by averaging over five trials in the above

cross-validation protocol. The performance of conventional

LSTM has been reported in literature [13, 3]. We note that

these reported accuracies often vary with different types of

features. Thus, a fair comparison between different models

can only be made with the same type of input feature.

For the dRNN model, we report the accuracy with up

to the 2-order of DoS. The table shows that with the same

HOG3D feature, the proposed dRNN models outperfor-

m the conventional LSTM model, and the 2-order dRNN

yields a better accuracy than its 1-order counterpart. Al-

though higher-order of DoS might improve the accuracy

further, we do not report the result since it becomes trivial

to simply add more orders of DoS into dRNN, and the im-

proved performance might not compensate for the increased

computational cost. Moreover, with an increased order of

DoS, more model parameters would have to be learned with

the limited training examples. This tends to cause overfit-

ting problem, making the performance stop improving or

even begin to degenerate after the order of DoS reaches a

certain number. Therefore, for most of practical applica-

tions, the first two orders of dRNN should be sufficient.

Baccouche et al. [3] reported an accuracy of 94.39% and

92.17% on KTH-1 and KTH-2 data sets, respectively. But

it is worth noting that they used a combination of 3DCNN

and LSTM, where 3DCNN plays the crucial role in reach-

ing such performance. Actually, 3DCNN model alone can

reach an accuracy of 91.04% and 89.40% on KTH-1 and

KTH-2 data sets as reported in [3]. On the contrary, they re-

ported that the LSTM with Harris3D feature only achieved

87.78% on KTH-2, as compared with 92.12% accuracy ob-

tained by 2-order dRNN with HOG3D feature. In Table 2,

under a fair comparison with the same feature, the dRNN

models of both orders outperform their LSTM counterpart

with the same HOG3D feature.

In Figure 3, to support our motivation of learning LST-

M representations based on the dynamic change of states

evolving over frames, we illustrate some example frames

of “boxing” action versus the curve of L2-norm of 1-order
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Figure 4. Frame-by-frame prediction of action category over time.
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Figure 5. Confusion Matrix on the KTH-1 dataset obtained by the

2-Order dRNN model.

and 2-order DoS on KTH dataset. It shows the change

from “punching” to “relaxing” at the local maximum of

DoS, showing the ability of the dRNN model to capture the

salient dynamics for the action. We also illustrate the pre-

dictions over time in Figure 4. From the result, we found

that as time evolves, the proposed dRNNs are faster in learn-

ing the salient dynamics for predicting the correct action

category than the LSTMs. Moreover, the 2nd order of DoS

is better than the 1st order of DoS in learning the salient

features.

We also show the performance of the other non-LSTM

state-of-the-art approaches in Table 3. Many of these com-

pared algorithms focus on the action recognition prob-

lem, relying on the special assumptions about the spatio-

temporal structure of actions. They might not be applicable

to model the other type of sequences which do not satisfy

these assumptions. In contrast, the proposed dRNN mod-

el is a general-purpose model, not being tailored to specific

type of action sequences. This also makes it competent on

3D action recognition task as we will show below.

5.5. Results on MSR Action3D Dataset

Table 4 compares the results on MSR Action3D dataset,

and Figure 6 shows the confusion matrix by the 2-order

Dataset Method Accuracy

KTH-1

LSTM + HOF [13] 90.7

LSTM + HOG3D 89.93

1-order dRNN + HOG3D 93.28

2-order dRNN + HOG3D 93.96

KTH-2

LSTM + Harris3D [3] 87.78

LSTM + HOG3D 87.32

1-order dRNN + HOG3D 91.98

2-order dRNN + HOG3D 92.12

Table 2. Cross-validation accuracy over five trails obtained by the

proposed dRNN model in comparison with the conventional LST-

M model on KTH-1 and KTH-2 data sets.

Dataset Method Accuracy

KTH-1

Rodriguez et al. [25] 81.50

Jhuang et al.[15] 91.70

Schindler et al. [26] 92.70

3DCNN [3] 91.04

KTH-2

Ji et al. [16] 90.20

Taylor et al. [31] 90.0

Laptev et al. [19] 91.80

Dollar et al. [7] 81.20

3DCNN [3] 89.40

Table 3. Cross-validation accuracy over five trials obtained by the

other compared algorithms on KTH-1 and KTH-2 datasets.

dRNN model. The results are obtained by following ex-

actly the same experimental setting in [35], in which half of

actor subjects are used for training and the rest are used for

testing. This is in contrast to another evaluation protocol in

literature [20] that splits across 20 action classes into three

subsets and performs the evaluation within each individual

subset. The evaluation protocol we adopt is more challeng-

ing because it is evaluated over all 20 action classes with no

common subjects in training and test sets.

From the results, the dRNN models of both orders out-

perform the conventional LSTM algorithm with the same

feature. Also, both dRNN models perform competitively
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Method Accuracy

Actionlet Ensemble [35] 88.20

HON4D [22] 88.89

DCSF [36] 89.3

Lie Group [33] 89.48

LSTM 87.78

1-order dRNN 91.40

2-order dRNN 92.03

Table 4. Comparison of the dRNN model with the other algorithms

on MSR Action3D dataset.
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Figure 6. Confusion Matrix on the MSR Action3D dataset by the

2-Order dRNN model

as compared with the other algorithms. We notice that the

Super Normal Vector (SNV) model [37] has reported an ac-

curacy of 93.09% on MSR Action3D dataset. However, this

model is based on a special assumption about the 3D geo-

metric structure of the surfaces of depth image sequences.

Thus, this approach is a very special model for solving 3D

action recognition problem. This is contrary to dRNN as a

general model without any specific assumptions on the dy-

namic structure of the video sequences.

In brief, through the experiments on both 2D and 3D hu-

man action datasets, we show the competitive performance

of dRNN compared with both LSTM and non-LSTM mod-

els. This demonstrates its wide applicability in representing

and modeling the dynamics of both 2D and 3D action se-

quences, irrespective of any assumptions on the structure of

video sequences.

6. Conclusion and Future Work

In this paper, we present a new family of differential Re-

current Neural Networks (dRNNs) that extend Long Short-

Term Memory (LSTM) structure by modeling the dynamics

of states evolving over time. The new structure is better at

learning the salient spatio-temporal structure. Its gate units

are controlled by the different orders of derivatives of states,

making the dRNN model more adequate for the representa-

tion of the long short-term dynamics of actions. Experiment

results on both 2D and 3D human action datasets demon-

strate the dRNN model outperforms the conventional LST-

M model. Even in comparison with the other state-of-the-

art approaches based on strong assumptions about the mo-

tion structure of actions being studied, the general-purpose

dRNN model still demonstrates much competitive perfor-

mance on both 2D and 3D datasets. In the future work,

we will test dRNN in combination with more sophisticat-

ed input feature sequences to explore the specific motion

structure of actions.

References

[1] http://lear.inrialpes.fr/people/klaeser/software 3d video

descriptor. 5

[2] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and

A. Baskurt. Action classification in soccer videos with long

short-term memory recurrent neural networks. In Artificial

Neural Networks–ICANN 2010, pages 154–159. Springer,

2010. 1, 2, 3

[3] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and

A. Baskurt. Sequential deep learning for human action

recognition. In Human Behavior Understanding, pages 29–

39. Springer, 2011. 2, 3, 6, 7

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine

translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473, 2014. 1

[5] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and

T. S. Huang. Heterogeneous network embedding via deep

architectures. In Proceedings of the 21th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data

Mining, pages 119–128. ACM, 2015. 1
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