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Abstract

The objective of this work is to detect shadows in im-

ages. We pose this as the problem of labeling image re-

gions, where each region corresponds to a group of super-

pixels. To predict the label of each region, we train a kernel

Least-Squares SVM for separating shadow and non-shadow

regions. The parameters of the kernel and the classifier are

jointly learned to minimize the leave-one-out cross valida-

tion error. Optimizing the leave-one-out cross validation

error is typically difficult, but it can be done efficiently in

our framework. Experiments on two challenging shadow

datasets, UCF and UIUC, show that our region classifier

outperforms more complex methods. We further enhance

the performance of the region classifier by embedding it in

an MRF framework and adding pairwise contextual cues.

This leads to a method that significantly outperforms the

state-of-the-art.

1. Introduction

Shadow removal is desirable in many situations. Shad-

ows are common in natural scenes, and they are known to

wreak havoc in many computer vision tasks such as image

segmentation and object detection. Therefore the ability

to generate shadow-free images would benefit many com-

puter vision algorithms. Furthermore, for aesthetic reasons,

shadow removal can benefit image editing and computa-

tional photography algorithms.

Automatic shadow detection and removal from single

images, however, are very challenging. A shadow is cast

whenever an object occludes an illuminant of the scene; it

is the outcome of complex interactions between the geome-

try, illumination, and reflectance present in the scene. Iden-

tifying shadows is therefore difficult because of the limited

information about the scene’s properties.

There have been a number of approaches for shadow de-

tection. Purely physics-based methods such as the illumina-

tion invariant approaches of [5, 6] only work on high qual-

ity images. For consumer photographs and web quality im-

ages, statistical learning-based approaches [8, 9, 19, 34, 36]

Figure 1. Shadow detection as a region labeling problem. top-

left: input image, top-right: superpixels, bottom-left: regions ob-

tained by merging superpixels, bottom-right: shadow prediction.

appear more successful, but results are still far from perfect.

In this paper, we propose a novel algorithm for shadow

detection. We pose shadow detection as an image labeling

problem, similar to some statistical learning-based meth-

ods [8, 10, 34]. Given an image, we first divide it into mul-

tiple regions, where each region is a group of superpixels,

as illustrated in Fig. 1. We use a region classifier to es-

timate the shadow probability of each region based on its

appearance features. Subsequently, we improve shadow de-

tection by considering contextual cues between neighboring

regions. The contextual cues are incorporated in our frame-

work as pairwise potentials in a Markov Random Field

(MRF). We solve the optimization with QPBO [18, 24] to

produce the final shadow labels.

One particular novelty of our approach is the framework

for training a strong shadow region classifier that can effec-

tively integrate multiple types of local cues. In particular,

we jointly learn a classifier and a discriminative kernel that

combines chromatic, intensity, and texture properties for

shadow detection. Unlike existing approaches for shadow

detection [8, 9, 14, 34], we propose to use Least Square Sup-

port Vector Machine (LSSVM). LSSVM has been shown to
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perform equally well as SVM in many classification bench-

marks [27]. LSSVM has a closed-form solution, which is a

computational advantage over SVM. Furthermore, once the

solution of LSSVM has been computed, the solution for a

reduced training set obtained by removing any training data

point can be found efficiently. This enables using the same

training data for both learning the classifier and the kernel

parameters. As will be seen, optimizing the kernel parame-

ters is crucial for improving the discriminative power of the

shadow classifier, and this can be done efficiently using our

framework. Moreover, our method can be implemented in

GPU, reducing the computational cost further.

As will be shown, our shadow region classifier outper-

forms more complex methods even without using contex-

tual cues. Nonetheless, context is important for shadow de-

tection as it is often difficult to discern shadows based on the

local appearance of individual regions, even for human ob-

servers. We therefore enhance our method by incorporating

contextual cues as pairwise potentials in an MRF frame-

work. We introduce two types of potentials: affinity and

disparity. The affinity potentials encourage similar adjacent

regions to have the same label, while the disparity potentials

prefer different labels for shadow/non-shadow region pairs

(using the output of a classifier for region pairs).

We perform experiments on the challenging UCF [8]

and UIUC [36] shadow datasets and observe that the

proposed method outperforms the current state-of-the-art

method [10]. On the UIUC dataset, our method reduces

the false negative rate of [10] by 35.3% while maintaining a

similar false positive rate. On the UCF dataset, our method

reduces the false negative rate and false positive rate by 9%

and 13.5%, respectively.

2. Previous Work

2.1. Shadow detection in images

Shadow detection in images is a well studied problem.

Earlier methods such as [5, 6] detect shadows by compar-

ing the gradients of an image and its illumination invariant

representations. In [22] cues from illumination invariants

are further combined with the bright channel cue within an

MRF framework. These methods show impressive results

in high quality images, but their performance degrades sig-

nificantly with consumer photographs or web quality pic-

tures [19]. More recent methods use image datasets with

annotated shadow masks to learn the appearance of shad-

ows in images. These methods follow two main approaches:

detecting shadow boundaries or detecting shadow regions.

Lalonde et al. [19] focus on shadow boundaries on the

ground. They train a shadow boundary classifier based on

color and texture features and combine it with scene lay-

out cues from [13] using a CRF to encourage boundary

continuity. Huang et al. [14] use a set of physically in-

spired features to train a shadow boundary pixel classifier

using an SVM. They join pixels confidently predicted as

shadow boundaries with weakly predicted adjacent pixels

in a Canny-like manner. Shadow boundary detection meth-

ods [14, 19] achieve good results, but struggle to segment

closed shadow contours.

To detect shadow regions, Zhu et al. [36] propose a set of

shadow variant and shadow invariant features in monochro-

matic images to learn a shadow region classifier, refined by

a CRF. Guo et al. [8, 9] train two pairwise classifiers to find

pairs of regions in an image that share the same material and

are viewed under the same illumination conditions (both in

shadow or both not in shadow), and same material but illu-

minated differently (only one region in shadow). They min-

imize an energy functional that combines the predictions of

a single region classifier and the positive predictions of their

pairwise classifiers. However, their single region classifier

is not accurate, especially for shadow regions. They use

an SVM with a X 2 kernel that has limited discriminative

power.

Yago et al. [34] propose a multi-kernel model to learn

a shadow region SVM classifier. Their multi-kernel model

is a summation of base kernels, one for each type of local

feature. The main limitation of this model is the assumption

of equal importance for all features. The weights and the

scaling factors of base kernels are not learned. Furthermore,

their approach is computationally expensive.

Most recently, Khan et al. [10] propose a deep learn-

ing approach to learn features for shadow detection. They

train two Convolutional Neural Networks, one for detecting

shadow regions and the other for shadow boundaries. They

use a CRF to label pixels as shadow/non-shadow where the

predictions of the two neural nets are combined into a unary

potential, and the pairwise potential is an Ising prior where

the pairwise penalty is determined by the similarity in in-

tensities between adjacent pixels.

2.2. Least­Squares SVM Classifiers

We use Least-Squares Support Vector Machines

(LSSVM) [26, 28] for region classification. LSSVM has a

closed-form solution, which is a computational advantage

over SVM. Furthermore, once the solution of LSSVM

has been computed, the solution for a reduced training

set obtained by removing any training data point can be

found efficiently. This enables reusing training data for

further calibration (e.g., [11, 12, 29]). This section reviews

LSSVM and the leave-one-out formula.

Given a training set of n data points {xi|xi ∈ ℜd}ni=1

and associated labels {yi|yi ∈ {1,−1}}ni=1, LSSVM opti-

mizes the following:

minimize
w,b

λ||w||2 +
n∑

i=1

(wTxi + b− yi)
2. (1)
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For high dimensional data (d ≫ n), it is more efficient

to obtain the solution for (w, b) via the representer theorem,

which states that w can be expressed as a linear combina-

tion of training data, i.e., w =
∑n

i=1 αixi. Let K be the

kernel matrix, kij = xT
i xj . The optimal coefficients {αi}

and the bias term b can be found using closed-form formula:

[αT , b]T = My. Where M and other auxiliary variables

are defined as:

R =

[
λK 0n

0T
n 0

]

,Z =

[
K

1T
n

]

, (2)

C = R+ ZZT ,M = C−1Z,H = ZTM. (3)

If xi is removed from the training data, the leave-one-out

decision value is given by:
k
T

i
α+b−yihii

1−hii

, where ki is the

ith column vector of K and hii is the ith element in the

diagonal of H.

3. Shadow Detection by Region Classification

We pose shadow detection as a region classification

problem. Given an image, we first segment it into regions

using a two-step process [34]: 1) apply SLIC [1] superpixel

segmentation to oversegment the image and obtain a set of

superpixels; 2) apply Mean-shift clustering [4] and merge

superpixels in the same cluster into a larger region. This

segmentation process is illustrated in Fig. 1. Once the su-

perpixels have been merged into regions, we use an LSSVM

to predict the shadow probability of each region.

Because shadows are the outcome of the complex inter-

action between scene geometry and illumination sources, it

is necessary to consider multiple feature types for shadow

classification. In particular, we propose to base the clas-

sification decision on the chromatic, intensity, and texture

properties of the region. However, it is difficult to combine

heterogeneous feature types and manually tune the impor-

tance of each type. We therefore consider this as a kernel

learning problem where the kernel function has the form:

K(x, y) =

k∑

i=1

wi exp

(

− 1

σi
Di(x, y)

)

. (4)

Here K(x, y) denotes the kernel value between two re-

gions x and y. The function Di(x, y) is the distance be-

tween x and y in some feature space (e.g., X 2 distance be-

tween texton histograms) and it is predetermined. The func-

tion exp(− 1
σi

Di(x, y)) is called the extended Gaussian ker-

nel [16, 31, 35], and the kernel K is the linear combination

of extended Gaussian kernels. The parameters {wi, σi} are

what needs to be learned. Additionally, we constrain the

kernel weights to be non-negative and have unit sum, i.e.,
∑k

i=1 wi = 1.

We propose to jointly learn the kernel and the LSSVM

classifier. Given a set of training regions and corresponding

shadow indicator labels, our goal is to find a set of param-

eters {wi, σi} that yields the lowest leave-one-out balanced

error rate. The balanced error rate is the average of false

positive rate and false negative rate. For brevity, we re-

fer to the balanced error rate simply as error rate or error.

The leave-one-out error for a given kernel is defined and

conceptually computed as follows. First, the leave-one-out

confidence values are computed for all training examples.

The leave-one-out confidence value for a particular training

example is obtained by training a classifier on the remain-

ing examples and evaluating on the left-out sample. The

leave-one-out confidence values are then compared against

the ground truth shadow annotation to compute the leave-

one-out error rate. In general, estimating the leave-one-out

error is computationally prohibitive because classifier train-

ing must be done many times, once per training example.

However, as explained in Sec. 2.2, using LSSVM, the leave-

one-out confidence values can be obtained efficiently with-

out training the leave-one-out classifiers.

The leave-one-out error is a function of the kernel param-

eters. Even though calculating the value of this function for

a particular kernel can be done efficiently, it is still unclear

how to find a set of kernel parameters that yields the lowest

leave-one-out error. Unfortunately, the leave-one-out error

function is not convex. Even worse, this function is noncon-

tinuous and piece-wise constant, and therefore a gradient-

based optimization approach is unlikely to work well. To

see this, recall that the set of possible error rates are dis-

crete; the interval between two adjacent discrete values is

inversely proportional to the number of training examples.

This function is non-differentiable at many locations, and

has zero gradients at the other locations.

To optimize the set of kernel parameters, we propose to

use beam search with random steps. We first discretize the

space of kernel parameters using a grid (details in Sec. 3.2).

Starting from a random parameter vector, we perform a

number of iterative updates, and in each update we:

1. Randomly choose one kernel parameter and assign a

new random value. If necessary, re-normalize {wi} to

have unit sum.

2. Train an LSSVM and compute the leave-one-out error

for the new set of parameters.

3. Update the parameter set if it yields lower leave-one-

out error than the current best value.

In our experiments, we perform 500 iterations. If the leave-

one-out error does not decrease after 25 consecutive itera-

tions, we randomly assign new values to all parameters.

The method proposed here has advantages over some ex-

isting kernel learning approaches. One popular approach is

multiple kernel learning, e.g., [2, 15, 20, 32]. Many mul-

tiple kernel learning methods, however, can only learn a

linear combination of base kernels; they cannot be used to
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learn other parameters such as the scaling factor of a gener-

alized Gaussian kernel. This problem can be circumvented

by creating multiple kernel instances with different parame-

ter settings. However, this explodes the number of base ker-

nels, so the optimization typically requires a differentiable

objective function [15, 32]. Furthermore, most existing ap-

proaches learn the kernel parameters to optimize an objec-

tive function defined on the surrogate loss of training data,

not the held-out data. Thus the same training data is used

for both classifier training and kernel learning. The double-

use of training data reduces the generalization ability of the

algorithms. To avoid this problem, one can maintain a sepa-

rate set of validation data and use the wrapper approach [3]

for optimizing kernel parameters. This assumes we have

enough labeled data for training and validation. Moreover,

optimizing the kernel’s parameters on a single set of valida-

tion data has the risk of overfitting to the validation data.

3.1. Feature and kernel details

In order to determine if a region is in shadow we will

look at its chromatic, intensity and textural properties. For

each region, we compute a 21-bin histogram for each of the

components (L*,a*,b*) of the perceptually uniform color

space CIELAB. To represent texture, we compute a 128-

bin texton histogram. We run the full MR8 filter set [33] in

the whole dataset and cluster the filter responses into 128

textons using k-means. Shadow regions tend to be less

textured and darker. The CIELAB color space has been

shown to perform well for shadow edge identification in

outdoor scenes [17] as well as to improve reflectance seg-

mentation [7]. The two color opponent channels behave

differently under illumination changes. Especially in out-

door environments, the b* channel (yellow-blue) is more

sensitive to shadows than the a* channel (red-green), which

is shadow invariant to a certain degree [30]. To compare

textures between regions we use the X 2 distance between

their texton histograms. For color histograms, it is more

appropriate to use the Earth Mover’s Distance (EMD) [25]

because neighboring bins in the L*,a*,b* histograms repre-

sent proximate values and their ground distance is uniform

(property of the CIELAB space), in contrast to texton his-

tograms. Furthermore, EMD is more accurate in measuring

distances between histograms of continuous entities (such

as L,*a,*b), it is less sensitive to quantization error and it

can be efficiently computed for 1D histograms. Since our

features are normalized histograms (unit mass), both the X 2

and EMD distances are metrics. Hence, we can use them in

the form of extended Gaussian distances [16, 35]. Our ker-

nel therefore has the form:

K(x, y) =
∑

l∈{L,a,b,t}

wl exp

(

− 1

σl
Dl(x, y)

)

, (5)

where DL, Da, Db are EMD distances for L*, a*, b* his-

tograms, and Dt is X 2 distance for texton histograms.

3.2. Optimization grid details

Our task is to optimize the leave-one-out error over

eight kernel parameters, which are the kernel weights

{wL, wa, wb, wt} and the scaling factors {σL, σa, σb, σt}.

We define an 8-dimensional grid; one dimension per ker-

nel parameter. The discrete values for each scaling factor

σl form a set of multiples of the mean distance. This is

inspired by a common heuristic: using the mean of the pair-

wise distances as the scaling factor [35]. If {x1, . . . , xn} is

the set of training examples, the mean distance is computed

as µl =
1

(n−1)n

∑

i 6=j Dl(xi, xj). The possible discrete val-

ues of σl are {sµl|s ∈ { 1
8 ,

1
6 ,

1
4 ,

1
2 , 1, 2, 4, 6, 8}}. For the

weight wl of a base kernel, we use {s/40|s ∈ {1, · · · , 10}}
as the set of possible values.

3.3. Error rate computation details

Our optimization criterion is the leave-one-out balanced

error rate. This requires having a threshold for separat-

ing between positive and negative predictions. While the

LSSVM classifier also has the default threshold of 0, this

setting is optimized for the total error rate instead of the

balanced error rate. To resolve this issue, we first use Platt

scaling [23] to map the decision values of LSSVM to prob-

abilities, and then use the probability threshold of 0.5.

More specifically, suppose fi is the leave-one-out score

for the ith training example. We map fi to a probability us-

ing a sigmoid function: Pa,b(fi) = 1/(1 + exp(afi + b)),
where a, b are the parameters of the function. Let N+ and

N− be the number of positive and negative training exam-

ples, and yi the label of the ith training example. Assuming

a uniform uninformative prior over the probabilities of the

correct labels, the MAP estimates for the target probabilities

are: ti =
N++1
N++2 if yi = 1 and ti =

1
N

−
+2 otherwise. The

parameters a, b are set by solving, using Newton’s method

with backtracking line search [21], the regularized maxi-

mum likelihood problem:

max.
a,b

∑

i

(ti log(Pa,b(fi)) + (1− ti) log(1− Pa,b(fi))) .

3.4. GPU acceleration and running time

Efficient GPU implementation is an advantage of our

kernel learning algorithm. Each of the many iterations, in-

volves computing a kernel, solving an LSSVM, and calcu-

lating the leave-one-out balanced error rate. Computing a

kernel for a set of kernel weights requires several element-

wise matrix exponentiation and additions, efficiently per-

formed by GPU. Furthermore, the distance matrices be-

tween training regions Dl(·, ·) need to be computed just
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once. Solving an LSSVM involves a series of matrix op-

erations (Sec. 2.2), that have GPU implementation. Leave-

one-out error computation is efficient, even on a CPU.

In our experiments, the number of training examples

is around 12K, corresponding to a kernel matrix of size

12K×12K. For each iteration, our Matlab GPU implemen-

tation takes 1.25s to load the distance matrices to the GPU,

0.25s to compute the kernel, 7.5s to train an LSSVM, and

0.2s to compute the leave-one-out error (including Platt’s

scaling). The total is less than 10s per iteration. Without

GPU, each iteration takes about 30s. We run our algorithm

for 500 iterations, and the training procedure typically ter-

minates within 1.5 hours. Notably, the random grid opti-

mization procedure can also be parallelized to further re-

duce the training time.

4. Incorporating Context in Shadow Detection

We enhance shadow detection by embedding the shadow

region classifier in an MRF framework. As before, we first

segment an image into regions {Ri}. We construct a graph

where each node corresponds to a region and each edge cor-

responds to a pair of neighboring regions. We associate a

binary label xi for each graph node to indicate whether the

corresponding region is in shadow or not (xi = 1 if Ri is

shadow and xi = −1 otherwise). Shadow detection is then

posed as the minimization of the following energy function:

∑

i

φ(xi) +

affinity
︷ ︸︸ ︷
∑

i,j∈Ωa

ψa(xi, xj)+

disparity
︷ ︸︸ ︷
∑

i,j∈Ωd

ψd(xi, xj) . (6)

In the above {xi} is the set of variables that need to be op-

timized. The first term of the above energy is the sum of

unary potentials. The unary potential φ(xi) is based on the

probability that region Ri is in shadow, and this depends on

the decision value of the shadow region classifier (Sec. 3).

The last two terms are the sums of pairwise potentials. They

correspond to contextual cues between neighboring regions.

4.1. Unary potentials

We define the unary potential φ(xi) in terms of the pre-

dictions of the single region classifier (LSSVM with prob-

abilistic output): φ(xi) = −ωiP (xi|Ri), where ωi is the

area in pixels of the region Ri, and P (xi|Ri) is the Platt’s

scaling probability. The unary potential encourages agree-

ment between the label of a region and the prediction based

on the appearance of the region.

4.2. Affinity pairwise potentials

We model relationships between neighboring regions

with two types of pairwise potentials. The affinity potential

ψa penalizes assigning different labels to similar regions.

The similarity metric between two regions Ri, Rj is based

on the kernel used for the single region classifier. For Ri,

Rj where K(Ri, Rj) > 0.5, the affinity potential term is:

ψs(xi, xj) =

{
ωij K(Ri, Rj) if xi 6= xj ,
0 otherwise.

The penalty for having different shadow labels is the sim-

ilarity between the two regions weighted by the geometric

mean of the areas of the regions, i.e., ωij =
√
ωiωj , where

ωi and ωj are the areas of Ri and Rj , respectively.

4.3. Disparity pairwise potentials

For disparity potentials, we classify shadow/non-shadow

transitions between two regions of the same material. We

train an LSSVM that takes a pair of neighboring regions

and predicts if the input is a shadow/non-shadow pair. We

use an RBF kernel with the following features:

• The X 2 distance between the texton histograms.

• The EMD between corresponding L*, a* and b* his-

tograms of the two regions.

• The average RGB ratios. Given two regions i and

j, compute the ratios of region average intensity for

each R, G and B channels: ρR = Ri/Rj , ρG =
Gi/Gj , ρB = Bi/Bj , and the feature vector is: ((ρR+
ρG + ρB)/3, ρR/ρB , ρG/ρB).

We penalize same shadow labeling for the pairs of regions

that are classified as positive by the learned classifier. The

penalty is the prediction confidence weighted by the geo-

metric mean of the regions’ areas:

ψd(xi, xj) =

{
0 if xi 6= xj ,
ωij P

d(1|Ri, Rj) otherwise.

The energy function (6) requires optimizing the node labels

of a sparse graph. This energy function has submodular

pairwise interactions ψa(xi, xj) and supermodular interac-

tions ψd(xi, xj). We optimize it using QPBO [18, 24].

5. Experiments

5.1. Experimental setup

We perform experiments on the UCF Shadow

dataset [36] and the UIUC Shadow dataset [8]. Both

datasets come with shadow masks for performance eval-

uation. For the UCF dataset, shadow masks are provided

by human annotators. In contrast, UIUC shadow masks

are obtained automatically. Each shadow image of the

UIUC dataset has a corresponding non-shadow version,

without the shadow-casting objects. The shadow masks for

the UIUC dataset are based on the difference between the

shadow and non-shadow images, as illustrated in Fig. 2. It

typically leads to a good shadow mask, but not always.
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(a) W/o light source (b) With light source (c) Shadow mask

Figure 2. Generation of ‘ground truth’ shadow masks on UIUC

dataset. Two images of the same scene are taken, with and without

blocking a light source. The shadow mask is obtained by consid-

ering the difference between two images. This process typically

yields a good shadow mask, but not always. Top: good shadow

mask. Bottom: bad shadow mask; the top of the tea box is not in

shadow, and should have not been a part of the shadow mask.

Method Shadow Non Shad. BER

UnarySVM [9] 45.7 8.9 27.3

MK-SVM [34] 20.5 4.3 12.4

ConvNet [10] 16.4 5.3 10.6

LooKOP (this paper) 14.9 4.2 9.5

Table 1. Performance of several region classifiers on the UIUC

shadow dataset. This table shows the error rates for shadow area

(second column), non-shadow area (third column), and the bal-

anced error rate (last column). For error rates, a lower number

indicates better performance. Best results are printed in bold.

Dataset Iter 1 Iter 50 Iter 200 Iter 500

UCF 12.6 11.9 11.6 11.5

UIUC 7.3 5.8 5.6 5.5

Table 2. Leave-one-out balanced error rate as a function of it-

erations. This table shows the average error over five trials. The

optimization effectively reduces the error rate as the number of

iteration increases, converging after about 200 iterations.

For quantitative evaluation, we compare the shadow

masks produced by our method to the provided shadow

masks. We compute the classification error rates at the pixel

level on shadow and non-shadow areas separately. We also

report the Balanced Error Rate (BER).

We experimented with different settings of our method.

First, we evaluate the single region classifier without the

contextual cues from pairwise potentials. We refer to this

method as Leave-one-out Kernel Optimization (LooKOP).

Second, we evaluate the fully-developed shadow detection

framework, embedding the LooKOP in the MRF frame-

work; this will be called LooKOP+MRF. We also experi-

ment with a variant of LooKOP+MRF where the Disparity

Pairwise potentials are removed.
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Figure 3. Benefit of pairwise potentials. This figure shows the

balanced error rates for three methods: LooKOP, LooKOP with

Affinity pairwise potential, and LooKOP with both Affinity and

Disparity pairwise potentials.

Methods Shadow Non Shad. BER

UnarySVM+Pairwise [9] 28.4 4.8 16.6

ConvNet+CRF [10] 15.3 4.5 9.9

LooKOP+MRF (this paper) 9.9 4.4 7.2

Table 3. Performance on the UIUC dataset of several complete

shadow detection pipelines. All the methods incorporate pair-

wise potentials between neighboring regions.

5.2. Comparison between single region classifiers

Table 1 compares the performance of several region clas-

sification methods, that predict shadow/non-shadow labels

for each region separately (i.e., no pairwise potentials are

used). UnarySVM [9] uses a predefined kernel SVM. MK-

SVM [34] combines multiple kernels, but kernel weights

are not learned. ConvNet [10] combines the predictions

of two convolutional neural networks: one for shadow re-

gions and the other for shadow boundaries. This method

is referred to as ConvNets (Region+Boundary) in [10].

LooKOP, proposed in this paper, optimizes the kernel pa-

rameters to minimize the leave-one-out balanced error rate.

As can be seen, LooKOP outperforms the other methods

in all evaluation categories. Comparing the balanced error

rate of LooKOP and MK-SVM, we note more than 20%

error reduction. MK-SVM has two main differences from

LooKOP: (i) MK-SVM uses SVM instead of LSSVM; (ii)

MK-SVM uses predefined kernel weights and scaling fac-

tors, instead of learning them. This demonstrates the impor-

tance of learning the kernel parameters. The advantage of

LooKOP over other methods is more significant for shadow

regions. All methods have higher error rates for shadow re-

gions, commensurate to the difficulty of detecting shadows.

Table 2 shows the leave-one-out balanced error rate (on

the training data) of LooKOP as the number of iteration

varies. As can be seen, the error rate decreases as the num-

ber of iterations increases. The optimization procedure con-

verges and the error stabilizes after around 200 iterations.
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(a) Input image (b) Predicted shadow (c) Annotated shadow (d) Prediction vs. annotation

Figure 4. Shadow detection examples. The last column compares the predicted shadow and the provided annotation; false positive is

shown in orange, false negative in green. This figure is best seen in color. Most of the errors occur at the shadow boundaries.

5.3. Incorporating pairwise potentials

Table 3 compares the performance of several fully-

developed shadow detection methods that enhance the sin-

gle region classifiers by incorporating pairwise potentials

between neighboring regions. LooKOP+MRF, proposed in

this paper, combines the benefits of a learned kernel and the

contextual cues from affinity and disparity pairwise poten-

tials. ConvNet+CRF [10] achieved the prior state-of-the-art

result on this dataset. Considering the balanced error rate,

we see that LooKOP+MRF outperforms ConvNet+CRF by

a wide relative margin of 27.3%. The performance gap be-

tween these two methods is even wider in shadow regions.

Table 4 reports the performance of these methods on the

UCF dataset. The first three methods only use the unary po-

tentials, while the last three combine both unary and pair-

wise potentials. Incorporating pairwise potentials improves

the performance of all methods, judging by the balanced

error rate. Our proposed method, LooKOP+MRF, yields

lower error rates than ConvNet+CRF on all evaluation cate-

gories, shadow or non-shadow. Interestingly, even LooKOP,

the proposed method that does not use pairwise potentials,

outperforms ConvNet+CRF on the balanced error rate.

Fig. 3 shows the benefits for embedding LooKOP in an

MRF framework, adding pairwise potentials to incorporate

Methods Shadow Non Shad. BER

UnarySVM [9] 63.3 2.7 33.0

ConvNet [10] 27.5 7.9 17.7

LooKOP (this paper) 22.9 6.2 14.5

UnarySVM+Pairwise [9] 26.7 6.3 16.5

ConvNet+CRF [10] 22.0 7.4 14.7

LooKOP+MRF (this paper) 20.0 6.4 13.2

Table 4. Performance of various methods on UCF dataset.

UnarySVM, ConvNet, and LooKOP are the methods that pre-

dict the shadow label of each region individually. The others are

fully-developed methods, incorporating contextual cues in terms

of pairwise potentials. For each evaluation category, the best per-

formance is printed in bold.

contextual cues. These pairwise potentials reduce the bal-

anced error rates on both datasets. This figure also illus-

trates the importance of the disparity pairwise potentials.

5.4. Qualitative evaluation

Fig. 4 shows some examples of shadow detection using

LooKOP+MRF. Overall, this method works well, achiev-

ing high precision and recall detection results. Most of the

errors occur at the boundaries between shadow and non-

shadow areas. These errors are possibly propagated from
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(a) Input image (b) Predicted shadow (c) Annotated shadow (d) Prediction vs. annotation

Figure 5. Examples of significant mismatches between predicted and annotated shadow regions. The last column compares predicted

shadow and provided annotation; false positives in orange, false negatives in green. Rows (1,2): imperfect shadow masks cause mismatches.

Row (3): limitation of appearance-based approaches that ignore scene geometry.

(a) Input image (b) Segmentation (c) Predicted shadow

Figure 6. Failure due to segmentation. Soft and elongated

shadow regions are hard to detect, partly due to the error during

superpixel segmentation and grouping. This process may produce

regions that contain both shadow and non-shadow pixels.

the process of superpixel segmentation and grouping.

Fig. 5 shows several cases where there are significant dif-

ferences between the predicted shadow mask and the anno-

tated shadow mask. Interestingly, not all mismatches corre-

spond to a bad result, due to annotation inaccuracies. The

shadow mask in the first row of this figure should not have

contained the box-top, (per Fig. 2). In the second row, the

self-shadow regions should have been part of the shadow

mask. The third row is a challenging case. Our method

correctly classifies almost all regions, but for a small brick.

This is a limitation of appearance-based approaches that ig-

nore scene geometry; they cannot distinguish a dark brick

from a brick in shadow. Unfortunately, the Markovian as-

sumptions and pairwise potentials between neighboring re-

gions do not help in this case. Fig. 6 illustrates another

failure mode. Our algorithm fails to detect elongated soft

shadows. This is partly due to the propagated error from

the process of superpixel segmentation and grouping.

6. Summary
We have proposed a framework for shadow detection.

To detect shadows in an image, we first divide it into multi-

ple disjoint regions and use a Least-Square SVM to com-

pute the shadow probability of each region. In an MRF

framework, we jointly optimize the labels of the regions,

taking into account contextual influences of neighboring re-

gions. We have performed experiments on two challenging

datasets, and observed that our method achieves lower er-

ror rate than the prior state-of-the-art; the reduction in bal-

anced error rate is as high as 27.3% on the UIUC dataset.

Qualitatively, we observe minor errors at the boundaries be-

tween shadow and non-shadow areas. Moderate errors can

be attributed to the inability to reason about scene geometry

and the propagation of error from the segmentation process.

We also find multiple cases where there is significant differ-

ence between the predicted shadow mask and the annotated

mask, but those correspond to imperfect annotation.

Acknowledgments. Partially supported by NSF IIS-1161876,

IIS-1111047, FRA DTFR5315C00011, the Subsample project

from DIGITEO Institute, France, and a gift from Adobe Corp.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. IEEE PAMI, 34(11):2274–2281, 2012.

3
[2] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple

3395



kernel learning, conic duality, and the smo algorithm. In

Proc. ICML, 2004. 3
[3] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee.

Choosing multiple parameters for support vector machines.

Machine Learning, 46(1–3):131–159, 2002. 4
[4] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. IEEE PAMI, 24(5):603–619,

2002. 3
[5] G. Finlayson, M. Drew, and C. Lu. Entropy minimization for

shadow removal. IJCV, 85:35–57, 2009. 1, 2
[6] G. Finlayson, S. Hordley, C. Lu, and M. Drew. On the re-

moval of shadows from images. IEEE PAMI, 28(1):59–68,

2006. 1, 2
[7] E. Garces, D. Gutierrez, and J. Lopez-Moreno. Graph-based

reflectance segmentation. In SIACG, 2011. 4
[8] R. Guo, Q. Dai, and D. Hoiem. Single-image shadow detec-

tion and removal using paired regions. In Proc. CVPR, 2011.

1, 2, 5
[9] R. Guo, Q. Dai, and D. Hoiem. Paired regions for shadow de-

tection and removal. IEEE PAMI, 35(12):2956–2967, 2012.

1, 2, 6, 7
[10] S. Hameed Khan, M. Bennamoun, F. Sohel, and R. Togneri.

Automatic feature learning for robust shadow detection. In

Proc. CVPR, 2014. 1, 2, 6, 7
[11] M. Hoai. Regularized max pooling for image categorization.

In Proc. BMVC, 2014. 2
[12] M. Hoai and A. Zisserman. Improving human action recog-

nition using score distribution and ranking. In Proc. ACCV,

2014. 2
[13] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface

layout from an image. IJCV, 75(1):151–172, 2007. 2
[14] X. Huang, G. Hua, J. Tumblin, and L. Williams. What char-

acterizes a shadow boundary under the sun and sky? In Proc.

ICCV, 2011. 1, 2
[15] A. Jain, S. V. N. Vishwanathan, and M. Varma. Spg-gmkl:

Generalized multiple kernel learning with a million kernels.

In ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, 2012. 3, 4
[16] F. Jing, M. Li, H. jiang Zhang, and B. Zhang. Support vector

machines for region-based image retrieval. In Proc.ICME,

2003. 3, 4
[17] E. Khan and E. Reinhard. Evaluation of color spaces for edge

classification in outdoor scenes. In Proc. ICIP., 2005. 4
[18] V. Kolmogorov and C. Rother. Minimizing non-submodular

functions with graph cuts - a review. 2007. 1, 5
[19] J.-F. Lalonde, A. A. Efros, and S. G. Narasimhan. Detecting

ground shadows in outdoor consumer photographs. In Proc.

ECCV, 2010. 1, 2
[20] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and

M. I. Jordan. Learning the kernel matrix with semidefinite

programming. JMLR, 5:27–72, 2004. 3
[21] H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on platt’s proba-

bilistic outputs for support vector machines. ML, 68(3):267–

276, 2007. 4
[22] A. Panagopoulos, C. Wang, D. Samaras, and N. Paragios.

Estimating shadows with the bright channel cue. In CRICV,

2010. 2
[23] J. C. Platt. Probabilistic outputs for support vector machines

and comparisons to regularized likelihood methods. In Ad-

vances in Large Margin Classifiers. MIT Press, 1999. 4

[24] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer.

Optimizing binary mrfs via extended roof duality. In Proc.

CVPR, 2007. 1, 5
[25] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distri-

butions with applications to image databases. In Proc. ICCV,

1998. 4
[26] C. Saunders, A. Gammerman, and V. Vovk. Ridge regression

learning algorithm in dual variables. In Proc. ICML, 1998. 2
[27] J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, B. DeMoor,

and J. Vandewalle. Least Squares Support Vector Machines.

World Scientific, 2002. 2
[28] J. A. K. Suykens and J. Vandewalle. Least squares sup-

port vector machine classifiers. Neural Processing Letters,

9(3):293–300, 1999. 2
[29] T. Tommasi and B. Caputo. The more you know, the less

you learn: From knowledge transfer to one-shot learning of

object categories. In Proc. BMVC, 2009. 2
[30] T. Troscianko, R. Baddeley, C. A. Parraga, U. Leonards, and

J. Troscianko. Visual encoding of green leaves in primate

vision. JoV, 3:137–, 2003. 4
[31] V. N. Vapnik. The nature of statistical learning theory.

Springer-Verlag New York, Inc., New York, NY, USA, 1995.

3
[32] M. Varma and B. R. Babu. More generality in efficient mul-

tiple kernel learning. In Proc. ICML, 2009. 3, 4
[33] M. Varma and A. Zisserman. Classifying images of materi-

als: Achieving viewpoint and illumination independence. In

Proc. ECCV, 2002. 4
[34] T. F. Yago Vicente, C.-P. Yu, and D. Samaras. Single im-

age shadow detection using multiple cues in a supermodular

MRF. In Proc. BMVC, 2013. 1, 2, 3, 6
[35] J. Zhang, S. Lazebnik, and C. Schmid. Local features and

kernels for classification of texture and object categories: a

comprehensive study. IJCV, 73:2007, 2007. 3, 4
[36] J. Zhu, K. Samuel, S. Masood, and M. Tappen. Learning

to recognize shadows in monochromatic natural images. In

Proc. CVPR, 2010. 1, 2, 5

3396


