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Abstract

Person detection is a key problem for many computer vi-

sion tasks. While face detection has reached maturity, de-

tecting people under a full variation of camera view-points,

human poses, lighting conditions and occlusions is still a

difficult challenge. In this work we focus on detecting hu-

man heads in natural scenes. Starting from the recent local

R-CNN object detector, we extend it with two types of con-

textual cues. First, we leverage person-scene relations and

propose a Global CNN model trained to predict positions

and scales of heads directly from the full image. Second,

we explicitly model pairwise relations among objects and

train a Pairwise CNN model using a structured-output sur-

rogate loss. The Local, Global and Pairwise models are

combined into a joint CNN framework. To train and test

our full model, we introduce a large dataset composed of

369, 846 human heads annotated in 224, 740 movie frames.

We evaluate our method and demonstrate improvements of

person head detection against several recent baselines in

three datasets. We also show improvements of the detection

speed provided by our model.

1. Introduction

Common images and videos primarily focus on people.

Indeed, about 35% of pixels in movies and YouTube videos

as well as about 25% of pixels in photographs belong to

people [18]. This strong bias together with the growing

amount of daily videos and photographs urge reliable meth-

ods for person analysis in visual data.

Person detection is a key component for many tasks in-

cluding person identification, action recognition, age and

gender recognition, autonomous driving, cloth recognition

and many others. While face detection has reached matu-

rity [21], the more general task of finding people in images

and video still remains to be very challenging. For exam-

ple, state-of-the-art object detectors [12] reach only 65%
Average Precision for the person class on the Pascal VOC
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Figure 1. Results of head detection for a sample movie frame. The

output of our method (bottom) is obtained from the combination

of Local, Global and Pairwise CNN models. Bounding boxes il-

lustrate detections: yellow – correct, red – false. Links between

detections correspond to the pairwise potentials of our model: yel-

low – attractive, red – repulsive.

benchmark. Common difficulties arise from variations in

human pose, background clutter, motion blur, low image

resolution, occlusions and poor lighting conditions.

Recent advances in Convolutional Neural Networks

(CNN) [19] have brought significant progress in image clas-

sification [17] and other vision tasks. In particular, CNN-

based object detectors such as R-CNN [12] have shown

large gains compared to previous models [11, 37]. Most

of existing methods, however, treat objects independently

and model appearance inside object bounding boxes only.

Meanwhile, information available in the scene around ob-

jects [33] as well as relations among objects [7] are known

to provide complementary contextual cues for recognition.

Such cues are likely to be particularly helpful when object

appearance lacks discriminative cues due to low image res-

olution, poor lighting and other factors.

In this work we build on the recent CNN model for ob-

ject detection [12] and extend it to contextual reasoning.

We particularly focus on person detection and aim to lo-
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cate human heads on images coming from video data. The

choice of heads is motivated by frequent occlusions of other

body parts. When visible, however, other body parts and the

rest of the scene constrain locations of heads in the image.

Moreover, interactions between people put constraints on

the relative positions and appearance of heads. We aim to

leverage such constraints for detection by introducing the

following two models.

First, we propose a Global CNN model which we train to

predict coarse locations and scales of objects given the full

low-resolution image on the input. In contrast to our base

Local model limited to object appearance only, the Global

model uses all pixels of the image for prediction. Inter-

estingly, we find this simple model to provide quite accu-

rate localization of heads across positions and scales of the

image. Second, we introduce a Pairwise CNN model that

explicitly models relations among pairs of objects. Moti-

vated by Desai et al. [7], we build a joint score function for

multiple object hypotheses in the image. This score func-

tion considers the relative positions, scales and appearance

of heads. All parameters of the score function depend on

the image data and are learned by optimizing a structured-

output loss function. Our final joint model combines Local,

Global and Pairwise CNN models (see Figure 1).

To train and test our model, we introduce a new large

dataset with 369, 846 human heads annotated in 224, 740
video frames from 21 movies. We show the importance of

our large dataset for training and evaluate our method on

the new and two existing datasets. The results demonstrate

improvements of the proposed contextual CNN model com-

pared to other recent baselines including R-CNN [12] on all

three datasets. We also demonstrate a speed-up of object

detection provided by our Global model. Our new dataset

and the code are publicly available from the project web-

page [1].

The rest of the paper is organized as follows. We review

related work in Section 2. Section 3 describes the parts of

our contextual CNN model. Section 4 introduces datasets

followed by the presentation of experimental results in Sec-

tion 5. Section 6 concludes the paper.

2. Related works

The history of object detection with neural networks

dates back to the 90s [36], but methods of these group have

started to outperform others, e.g DPM [11], only after the

seminal work of Krizhevsky et al. [17]. Szegedy et al. [30]

and Sermanet et al. [28] applied CNN as a sliding win-

dow detector at multiple scales. The R-CNN model [12]

is a combination of a CNN and a support vector machine

(SVM) operating on object proposals generated by the se-

lective search [35]. The pipeline of our Local model is sim-

ilar to the one of R-CNN (see Section 3.1 for details).

The use of image context was proposed to support object

detection in [33]. Contextual information can be modeled

at a global scene level as well as at the level of object re-

lations. For example, Murphy et al. [23] propose a CRF

model for jointly solving the task of object detection and

scene classification. Modolo et al. [22] uses context forest

to predict object location and to speed-up object detection

using global scene information. Erhan et al. [9] uses CNN

to predict coordinates of object bounding boxes. Our Global

CNN model predicts likely locations and scales of objects

by producing a multi-scale heat map for the whole image.

Desai et al. [7] models spatial constellations of objects

in the image and constructs an energy with unary and pair-

wise potentials. Unary potentials represent the confidence

of object hypotheses based on the local image evidence,

while pairwise potentials model spatial arrangement of ob-

jects in the image. Hoai and Zisserman [13] substitute the

pairwise dependencies with a latent variable that represents

the preferable configuration of object hypotheses. In both

works [7, 13] binary potentials do not depend on the actual

image data, moreover, unary potentials are trained indepen-

dently of the joint model. Our Pairwise model exploits ob-

ject context, i.e. builds a graphical model (an energy func-

tion) reasoning about multiple image locations jointly. Our

approach is richer compared to [7] and [13] as it allows

pairwise dependencies to be conditioned on the image data

and we can train the base detector jointly with the graphical

model on top of it.

Our Pairwise CNN model incorporates the structured-

output loss. The idea of combining the structured-

prediction objective with neural networks has been ex-

plored in [2, 19]. Recently Domke [8] and Chen et al. [4]

use the dual message passing formulation of the inference

task to construct a joint objective of the CNN parameters

and the message-passing variables. This approach was ap-

plied to the small scale denoising and binary segmentation

tasks in [8] and to the image tagging and word recognition

tasks [4]. Jaderberg et al. [14] shows how to directly com-

bine the structured SVM (SSVM) [31, 34] objective with

the procedure of training a CNN for text recognition. CNNs

with structured prediction have been recently explored for

the task of human pose estimation. Chen and Yuille [5]

propose a model with data-dependent pairwise potentials

but the different parts of the model were trained separately.

Tompson et al. [32] construct a specific NN that mimicked

the behaviour of several rounds of a message-passing infer-

ence algorithm. Our Pairwise model is trained with an ex-

plicit structured-output surrogate loss with an external in-

ference routine inside and enables to fine-tune all the pa-

rameters of the model jointly.

3. Context-aware CNN model

This section presents main components of our contextual

CNN model. In Section 3.1, we describe our Local model

building on R-CNN [12]. In Section 3.2, we introduce the

Global CNN model trained to score object proposals using
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the context of the full image. Section 3.3 describes our

extension of CNNs with a structured-output loss function

aimed to model pairwise relations between objects.

3.1. Local model

Our Local model follows R-CNN [12] and uses selective

search proposals [37] to restrict the set of object hypotheses.

We extend the bounding box of each proposal with a small

margin to capture local image context around objects. The

image patch corresponding to each proposal is then resized

to fit the input layer of the CNN. As we are interested in

head detection, we select bounding boxes with square-like

aspect ratios R ∈ [2/3, 3/2] and refer to them as candi-

dates.

The R-CNN model is based on the AlexNet archi-

tecture [17] pre-trained on the ImageNet dataset [6].

We have considered several alternatives including VGG-

S [3], VGG-verydeep-16 [29] and Oquab et al. [24]. In

our experiments VGG-S slightly outperformed AlexNet

but was significantly slower in both training and test-

ing. VGG-verydeep-16 showed better performance but was

much slower. The network of Oquab et al. [24] had bet-

ter accuracy and similar speed compared to AlexNet (see

Section 5.3 for details). For experiments in this paper we

use the pre-trained network of Oquab et al. [24] extended

by one fully-connected layer (with 2048 nodes) initialized

randomly and followed by ReLu and DropOut.

To train the network, we optimize parameters by mini-

mizing the sum of independent log-losses using stochastic

gradient descent (SGD) with momentum. Differently from

R-CNN which deploys the second pass of training using

SVM, we use the outputs of CNN to score candidates. We

found this training procedure to work better for our problem

compared to the standard R-CNN training. More details on

our training procedure can be found in [39].

3.2. Global model

Our Global model uses image-level information to rea-

son about locations of objects in the image. The Global

model is a CNN that takes the whole image as input and

outputs a score for each cell of a multi-scale heat map. The

input image is isotropically rescaled and zero-padded to fit

the standard CNN input of 224× 224 pixels. The output of

the network is defined as a multi-scale grid of scores, cor-

responding to object hypotheses with coarsely discretized

locations and scales in the image (see Figure 3). Object hy-

potheses form a grid of C = 284 square cells of four sizes

(28x28, 56x56, 112x112 and 224x224 pixels) and the stride

corresponding to the 50% of cell size. Except the output

layer, the architecture of the Global CNN is identical to our

Local model described in Section 3.1.

The Global CNN is trained with SGD, minimizing the

sum of C log-loss functions, one per each grid cell c ∈

{1 · · · C},

ℓ(fc(x), yc) =
∑

y∈{0,1}

log(1 + exp ((−1)yc+y+1 fc, y(x))) ,

(1)

where fc(x) ∈ R
2 is the output of the network for grid cell

c of input image x; yc ∈ {0, 1} is the label indicating the

class of the grid cell c: background or head. We set the

label of a grid cell to head if the Intersection-over-Union

(IoU) overlap-ratio between the cell and any ground-truth

bounding box in the image x is larger than 0.3, otherwise

the label is set to background.

Due to the coarse resolution of grid cells, our Global

model does not provide accurate localization. We therefore

use the Global model to rescore the candidates of Local and

Pairwise models. For this purpose, we match each candi-

date with the corresponding grid cell and compute affine

combination of their scores. Each candidate is matched to

a grid cell with the maximum IoU overlap-ratio. The pa-

rameters of affine score combination are optimized by cross

validation on the validation set.

3.3. Pairwise model

In this section we describe our Pairwise model that aims

to jointly reason about multiple object candidates. Follow-

ing Desai et al. [7] we formulate the model as a joint score

function where variables correspond to object candidates.

In the prior work [7, 11, 13] unary potentials of the score

function are defined by the response of the local object de-

tector at corresponding locations, whereas higher-order po-

tentials model spatial relations between candidates. Our

Pairwise model enriches the model of [7] by making all

potentials of the score function (2) dependent on the im-

age data and, in contrast to [5], allows to perform the joint

training of all parameters. We describe details of our model

in Section 3.3.1.

We train parameters of our model by minimizing the

structured surrogate loss using stochastic gradient descent

algorithm. The details of our training procedure are pre-

sented in Section 3.3.2.

3.3.1 Model formulation

Score function. Consider a set of V candidate bounding

boxes (nodes) extracted from an image. Let each bounding

box have a binary variable yi, i ∈ V assigned to it. We asso-

ciate label 1 with the object class and label 0 with the back-

ground class. We assume that the ground-truth labels ŷi are

available for all candidates in training images.

For each pair of nodes we choose an order based on

the coordinates of corresponding bounding boxes: the left

box is defined to be the first, the right one – the second.

Let E denote the set of oriented pairs of candidates (set of

edges). We cluster all edges based on relative locations and
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Figure 2. Pairwise model for the object detection task.

scales of bounding boxes1 and denote the cluster index of

edge (i, j) ∈ E by kij ∈ {1, . . . ,K}.

Inspired by Desai et al. [7], we construct a joint score

function S(y;w) that ties together the labels of candidates

in the same image:

S(y;w) =
∑

i∈V

θUi (yi;w) +
∑

(i,j)∈E

θPij(yi, yj , kij ;w), (2)

where w denotes trainable parameters, θUi and θPij are

unary and pairwise potentials depending on w, and y =
(yi)i∈V is a vector of all binary variables.

Note, that different values of potentials in (2) can lead to

exactly the same score function S. We rewrite Eq. (2) in the

more compact form (the set of all representable functions of

binary variables stays the same):

S(y;w) =
∑

i∈V

yi θ
U
i (w) +

∑

(i,j)∈E

yiyj θ
P
ij,kij

(w) (3)

where unary potentials θUi and pairwise potentials θPij,kij
are

represented by real values.

Connecting the score function and the image. Now we

connect the image with potentials of the score function (3)

using several feed-forward neural networks. First, from

the Local model described in Section 3.1 we create a fea-

ture extractor (FE), i.e. a function ϕE that constructs fea-

ture vector fi for the image data xi of candidate i: fi =
ϕE(xi,w

E). Here wE is a vector of trainable parameters

of FE.

To connect features fi with potentials in (3) we con-

struct two additional feed-forward networks: the unary net-

1To cluster edges we apply k-means algorithm with K = 20 to a

subset of oriented edges in training images. Edges in this subset connect

object candidates with positive labels as well as any other candidates with

high scores of the pre-trained Local model. For the clustering we use rela-

tive location features (horizontal and vertical displacements, ratio of sizes)

converted to the log scale and normalized to have zero mean and unit stan-

dard deviation. Further details of the clustering are available from [39].

work (UN) and the pairwise network (PN). The unary net-

work ϕU maps the feature vector fi of a candidate i to

the value of the corresponding unary potential, i.e. θUi =
ϕU (fi,w

U ). The pairwise network ϕP maps the concate-

nated feature vectors of its two candidates to a vector θP
ij

where the k-th component θPij,k corresponds to the one of K

cluster indices, i.e. θPij,kij
= ϕP

kij
(fi,fj ,w

P ). Vectors wU

and wP are the trainable parameters of the UN and PN, cor-

respondingly.

In our experiments we found the following architectures

to work best. The FE was of the same structure as our Local

model (based on the network of Oquab et al. [24]) leading

to 2048 features. In both UN and PN we use just one fully-

connected layer. Addition of more hidden layers did not

improve results.

Precision-recall evaluation. Object detection methods

are typically evaluated in terms of precision-recall (PR) and

average precision (AP) values. To construct the precision-

recall curve given the joint score (3), we follow the ap-

proach of Desai et al. [7]. For each candidate bounding

box i, we compute an individual score si(w) defined as the

difference of the max-marginals of the joint score

si(w) = max
y:yi=1

S(y;w)− max
y:yi=0

S(y;w). (4)

The individual scores are used in the standard precision-

recall evaluation pipeline [10].

When the number of candidates is small, i.e. |V| ≤ 20,

both maximization problems of (4) can be solved exactly

using exhaustive search. When the number of candidates

becomes larger, the exhaustive search becomes too slow. In

this case one can use the cascade of QPBO [16] and TRW-

S [15] methods to approximate si. Specifically, QPBO al-

lows to quickly determine the optimal label for some can-

didates. On our dataset QPBO works surprisingly well, i.e.,

in many cases it is able to label all nodes. If some nodes are

unlabeled by QPBO, one can apply the exhaustive search
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when the number of unlabelled nodes is at most 20 and

TRW-S otherwise.

We have tried using 16 and 32 candidates per image. The

exact inference is tractable only in the first case. In this

paper we use 16 candidates per image as the large number of

candidates did not improve performance on our validation

set.

3.3.2 Training the model

We train parameters of our model by minimizing a struc-

tured surrogate loss using the stochastic gradient descent

algorithm2. The algorithm for parameter update consists of

the following four steps:

1. Select the set of candidates by applying the non-

maximum suppression [11] on top of the scores pro-

duced by the Local model.

2. Perform the forward pass through the model to com-

pute potentials of the joint score function.

3. Perform the inference to compute the structured loss

and its gradient (see below).

4. Back-propagate the gradient through the model.

We explain details of the algorithm below.

Structured surrogate loss. A structured loss is a function

that maps the current values of parameters, image data x =
(xi)i∈V and the ground-truth labeling ŷ = (ŷi)i∈V to a

real number. A popular choice for the surrogate loss for

structured-prediction tasks is the structured SVM (SSVM)

objective [31, 34]:

ℓSVM(w, ŷ,x) = max
y

(

S(y;w,x)+h(y, ŷ)
)

−S(ŷ;w,x)

(5)

where h(y, ŷ) ≥ 0 measures the agreement between the

two labelings. Possible choices for h include the Hamming

loss, the Hamming loss with penalties normalized by the

frequency of classes, or higher-order losses making use of

assumption that each ground-truth object is assigned to ex-

actly one object candidate [25]. Notice, that in (5) the joint

score S depends on parameters w and image data x implic-

itly through potentials θU and θP .

However, in our experiments we have observed that the

SSVM loss is less suited for the detection task, i.e. optimiz-

ing the objective (5) does not lead to good results in terms

of precision-recall measure. To tackle this problem, we pro-

pose a new surrogate loss which directly imposes penalties

on the wrong values of individual scores (4) extracted from

the joint score S. Specifically, this loss can be written as

ℓ(w, ŷ,x) =
∑

i:ŷi=1

v(si(w,x)) +
∑

i:ŷi=0

v(−si(w,x))

(6)

2As common in the deep learning literature we ignore the non-

differentiability issues and assume that in practice we can always compute

the gradient.

where v can be any non-increasing function bounded from

below. We use v(t) = log(1 + exp(−t)) which brings us

closer to the training of conventional detector with a soft-

max loss.

Gradient of the structured loss. To optimize the struc-

tured loss w.r.t. the model parameters w, we need to com-

pute the gradient of the objective w.r.t. model parameters.

We can always achieve this goal using the back-propagation

method under two assumptions: 1) the gradient can be back-

propagated through the modules of the model, i.e. all the

partial derivatives of ϕE , ϕU , ϕP w.r.t. the input and the

parameters can be computed; 2) the scores of the candi-

dates (4) can be computed exactly.

To start the back-propagation procedure, we compute the

gradient of structured loss w.r.t. potentials θUi , θPij,k of the

joint score function S. Jaderberg et al. [14] have in details

explained how to do this for the SSVM loss (5). Here we

explain how to differentiate the loss (6). First, the gradient

of the loss (6) w.r.t. the scores can be expressed as

dℓ

dsi
= (−1)ŷi+1v′(si(−1)ŷi+1), v′(t) =

− exp(−t)

1 + exp(−t)
.

The gradient of the score (when existent) w.r.t. poten-

tials can be computed exactly if we can compute all max-

marginals exactly:

dsi
dθUp

= yi,1p −yi,0p ,
dsi

dθPpq,k
= (yi,1p yi,1q −yi,0p yi,0q )[kij = k]

where yi,tq is the q-th component of yi,t = argmax
y:yi=t

S(y;w)

for t ∈ {0, 1}. Here, [·] is the Iverson bracket notation.

Combining the two derivatives via the chain rule we get

dℓ

dθUp
=

∑

i∈V

dℓ

dsi

dsi
dθUp

,
dℓ

dθPpq,k
=

∑

i∈V

dℓ

dsi

dsi
dθPpq,k

.

Back-propagation of the gradient. The next step of the

back-propagation procedure is to compute the derivatives of

the loss w.r.t. parameters of the UN and PN

dℓ

dwU
=
∑

i∈V

dℓ

dθUi

dθUi
dwU

,
dℓ

dwP
=
∑

(i,j)∈E

K
∑

k=1

dℓ

dθPij,k

dθPij,k
dwP

(7)

and w.r.t. the output of the feature extractor

dℓ

dfi

=
dℓ

dθUi

dθUi
dfi

+
∑

j:(i,j)∈E

dℓ

dθPij,kij

dθPij,kij

dfi

+
∑

j:(j,i)∈E

dℓ

dθPji,kji

dθPji,kji

dfi

. (8)
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Notice that all the derivatives of potentials w.r.t. parameters

and features can be computed by propagating the gradient

through networks ϕU and ϕP. Finally, propagation of the

gradient (8) through ϕE gives us the direction of the update

for parameters wE of the FE.

4. Datasets

In this section we present our new head detection dataset,

HollywoodHeads (HH), and discuss two other datasets we

use for evaluation: TVHI [26, 13] and Casablanca [27].

4.1. HollywoodHeads dataset

HollywoodHeads dataset contains 369, 846 human heads

annotated in 224, 740 video frames from 21 Hollywood

movies3. The movies vary in genres and represent differ-

ent time epochs. To create annotation, we have manually

annotated tracks of human heads in action-rich movie clips.

For each head track, head bounding boxes, i.e., the small-

est axis-parallel rectangles including all visible pixels of the

head, were manually annotated on several key frames. The

bounding boxes on remaining frames were linearly interpo-

lated and manually verified to be correct. In total, we have

collected 2, 380 clips with 3, 872 human tracks, spanning

over 3.5 hours of video. The dataset is divided into the train-

ing, validation and test subsets which have no overlap in

terms of movies3. Given the redundancy of consequent video

frames, we have temporally subsampled videos in the vali-

dation and test subsets. In summary, the training set of Hol-

lywoodHeads contains 216, 719 frames from 15 movies, the

validation set contains 6, 719 frames from 3 movies and the

test set contains 1, 302 frames from another set of 3 movies.

Human heads with poor visibility (e.g., strong occlusions,

low lighting conditions) were marked by the “difficult” flag

and were excluded from the evaluation. The Hollywood-

Heads dataset is available from [1].

4.2. TVHI dataset

The extended TV Human Interaction (TVHI) dataset [26,

13] consists of 1, 313 frames of TV show episodes anno-

tated with bounding boxes of human upper bodies. Frames

are split into the two sets: 599 for training and 714 for test-

ing. To evaluate head detection using upper-body annota-

tion, we have applied bounding-box regression to the output

of head detectors [21]. The parameters of regression were

tuned on the TVHI training subset for each tested method.

4.3. Casablanca dataset

The Casablanca dataset [27] contains 1, 466 frames from

the movie “Casablanca”. The frames are annotated with

3List of movies used in HollywoodHeads dataset. Training set: Amer-

ican beauty, As Good As It Gets, Big Fish, Big Lebowski, Bringing out the

dead, Capote, Clerks, Crash, Dead Poets Society, Double Indemnity, Erin

Brockovich, Fantastic 4, Fargo, Fear And Loathing In Las Vegas, Fight

Club. Validation set: Five Easy Pieces, Forrest Gump, Gang Related. Test

set: Gandhi, Charade, I Am Sam.

Test set Local
Local
Global

Local
Pairwise

Local
Pairwise
Global

Casablanca 71.8 72.1 72.5 72.7

HH 71.8 72.5 71.9 72.7

TVHI 87.8 89.5 89.2 89.8

Table 1. Performance (% AP) of different context-aware models

on three datasets: Casablanca, HollywoodHeads (HH) and TVHI.

head bounding boxes, however, the annotation of frontal

heads is typically reduced to face bounding boxes and,

therefore differs in the scale and aspect ratio from the Hol-

lywoodHeads annotation. Given some mistakes in the orig-

inal annotation of [27], we have added missing bounding

boxes for heads of all people in the foreground. We have

also applied bounding-box regression [21] to compensate

for differences in annotation policies.

5. Experiments

This section presents our experimental results. First,

we demonstrate the effect of different combinations of pro-

posed models (Section 5.1) and provide the comparison

with the state-of-the-art (Section 5.2). Section 5.3 compares

different architectures of the Local model. We then justify

the need of our new large dataset for training (Section 5.4)

and show improvements in computational complexity that

can be achieved with the Global model (Section 5.5).

To evaluate the detection performance, we use the

standard Average Precision (AP) measure based on the

Precision-Recall (PR) curve [10]. Detections having high

overlap ratio with the ground truth (IoU > 0.5) are consid-

ered as true positives. Multiple detections assigned to the

same ground truth are penalized and declared as false pos-

itives. Matches to “difficult” head annotations are ignored

in the evaluation, i.e. such detections are considered neither

as true positives nor as false positives.

5.1. Results of context­aware models

We compare performance of the following four models:

the Local model (Sec .3.1), the combination of the Local

and Global models (Section 3.2), the combination of the Lo-

cal and Pairwise models (Section 3.3) and the combination

of all the three proposed models. The performance of head

detection is evaluated on HollywoodHeads, Casablanca and

TVHI datasets. Qualitative results of the Global and Pair-

wise models are illustrated in Figures 3 and 4 respectively.

Table 1 presents quantitative results for all models. We ob-

serve that the Global and Pairwise models consistently im-

prove the performance of the baseline Local model. The

combination of all three models demonstrates the best per-

formance on all three datasets.

5.2. Comparison with the state­of­the­art methods

We compare our approach against several baselines: the

CNN-based object detector [12] (R-CNN), DPM-based face
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Figure 3. Qualitative results for the Global model. The top row

shows detections produced by the Local model. The middle row il-

lustrates the multi-scale score map produced by our Global model.

Red color correspond to high score values for the “head” class,

blue color – to low score values. The bottom row demonstrates

detections by the combination of the Local and Global models.

detector [21] (DPM Face) as well as other methods report-

ing results on TVHI [13] (UBC+S) and Casablanca [27]

(VJ-CRF). We have trained R-CNN4 object detector on hu-

man heads using the training subset of HollywoodHeads

dataset. The CNN model was first fine-tuned on all region

proposals used to train our Local model. Given memory

limitations, the SVM phase of R-CNN training was done on

a subset of training images. For the DPM-based face detec-

tor we have used the vanilla DPM model provided by [21].

Results of other methods were taken from original papers.

Results of all compared methods are presented in Fig-

ure 5. Our joint model outperforms other methods on all

three datasets. Consistently with other recent evaluations,

we observe the advantage of CNN-based methods com-

pared to other baselines. As expected, methods trained to

detect faces achieve lower recall on the head detection task

given the large variation of view points in natural images.

Our method significantly outperforms R-CNN on two out

of three datasets and performs slightly better than R-CNN

on the TVHI dataset.

Note that our evaluation on the Casablanca dataset dif-

fers from [27] due to the improved annotation and the use

of VOC evaluation procedure. Our results using the origi-

nal evaluation setup by Ren [27] are reported in [39]. Ad-

ditional results of our method are available from the project

web-page [1].

5.3. Architectures of the Local model.

In this section we compare performance and speed of

different architectures of the Local model. We consider

4https://github.com/rbgirshick/rcnn

Figure 4. Qualitative results for the Pairwise model. For each

video frame we show results of the Local model (left) and the

Pairwise model (right). For both methods we choose the score

thresholds such that the precision equals the recall on the valida-

tion set. The plotted bounding boxes show the detections with the

scores above the selected thresholds. Yellow boxes correspond to

correct detections, red – to false positives. For the Pairwise model

we show the strength of links between the candidates detected by

at least one method. Links above a strength threshold (attractive)

are plotted yellow and others – red (repulsive).
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Figure 5. Results of our method compared to the state-of-the-art on the three datasets.

AlexNet Oquab VGG-S verydeep-16

AP 76.3 76.7 77.2 78.5

Train speed 445 284 147 30

Test speed 1490 980 510 74

Table 2. Performance (% AP) of Local models of different archi-

tectures on the HollywoodHeads validation set. Bottom lines re-

port training and testing speed, measured by the number of image

patches processed per second.

Test set 4 movies 8 movies 15 movies

Casablanca 51.2 62.5 72.7

HollywoodHeads 63.3 67.7 72.7

TVHI 88.6 88.8 89.8

Table 3. Performance of models trained on the training sets of dif-

ferent sizes. We report % AP for each test set.

AlexNet architecture [17], VGG-S [3], VGG-verydeep-

16 [29] provided with the MatConvNet framework [38]5

and the model of Oquab et al. [24]. All models were pre-

trained on the ImageNet dataset [6] and fine-tuned on the

training set of the HollywoodHeads dataset as the Local

model. In Table 2 we report values of AP produced by dif-

ferent models together with the train/test speed. We mea-

sure the speed as the number of image patches processed

per second. For each model we choose the size of the train-

ing batch such that the training speed is maximal. In all

cases it happens to be the maximum batch size that fits into

the GPU memory. Experiments of this section were run on

NVIDIA TITAN X with 12G RAM.

5.4. Size of the training set

In this experiment we analyze the amount of training

data required to train our models. Our full training set is

constructed from 15 movies. We also examine the use of

smaller training sets corresponding to the first 8 movies and

the first 4 movies of the full training set respectively. We

use each training set to train parameters of our full model

and evaluate it on three datasets. Corresponding results are

reported in Table 3. We observe that the amount of the train-

ing data and, maybe more importantly, its diversity helps to

improve the performance.

5http://www.vlfeat.org/matconvnet/pretrained/

% left 100 30 20 10 6 4 2

R-CNN 67.1 65.0 63.9 59.0 53.7 48.9 41.3
Local 71.8 68.3 66.8 60.2 53.4 48.8 41.9

Table 4. Performance of the R-CNN method and of our Local

model (% AP) on the test set of HollywoodHeads with different

percentage of candidates left after filtering using the Global model.

5.5. Complexity reduction with the Global model

Here we show that the Global model can suppress false

candidates and reduce the computational complexity of R-

CNN and our Local model at test time. We achieve this by

transferring scores of the Global model detection propos-

als. We then filter out low-score candidates and thus reduce

the number of candidates that have to pass through Local

CNN. We evaluate the performance of detectors with differ-

ent percentage of candidates left after the filtering. Table 4

presents results of this experiment. We observe that detec-

tion performance remains high despite aggressive filtering

by the scores of the Global model.

6. Conclusion

In this work we have addressed the task of detecting

people in still images. We proposed two context-aware

CNN-based models. To train and evaluate our method,

we have collected the new large-scale HollywoodHeads

dataset consisting of movie frames and human head anno-

tations. The combination of our context-aware models and

the CNN-based local detector achieves state-of-the-art re-

sults on our dataset and the two existing human detection

datasets, TVHI and Casablanca.

We believe that our context-aware models can be ex-

tended to tackle general object classes. In particular, the

Microsoft COCO dataset [20] contains many small object

classes with implied spatial constraints. Another possible

direction for future work is to take into account motion

information to extend our methods to perform long-term

tracking.
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