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Abstract

In this paper, we present a concise framework to approx-

imately construct feature maps for nonlinear additive ker-

nels such as the Intersection, Hellinger’s, and χ2 kernels.

The core idea is to construct a set of anchor points for each

individual feature and assign to every query the feature map

of its nearest neighbor or the weighted combination of those

of its k-nearest neighbors in the anchors. The constructed

feature maps can be compactly stored by a group of nearest

neighbor (binary) indication vectors along with the anchor

feature maps. The approximation error of such an anchored

feature mapping approach is analyzed. We evaluate the per-

formance of our approach on large-scale nonlinear support

vector machines (SVMs) learning tasks in the context of vi-

sual object classification. Experimental results on several

benchmark data sets show the superiority of our method

over existing feature mapping methods in achieving reason-

able tradeoff between training time and testing accuracy.

1. Introduction

Discriminative classification using kernel Support Vector

Machines (SVMs) is one of the standard techniques used

in supervised machine learning and computer vision. Ac-

cording to the linearity or nonlinearity of the kernel func-

tion K(·, ·), the kernel SVMs can be categorized as lin-

ear SVMs or nonlinear SVMs. It is commonly acknowl-

edged that the nonlinear SVMs tend to achieve better per-

formances than those linear ones. For instance, by using χ2

kernel SVMs, Yang et al. [31] observed ∼ 15% improve-

ment over linear SVMs on the Caltech-256 dataset [12],

Li [18] achieved more than 5% improvement on MNIST

dataset [15]. Maji and Berg [19] improved classification

accuracy by more than 10% using Intersection kernel on

Caltech-101 dataset [10] and DaimlerChrysler pedestrian

dataset [21]. Vedaldi and Zisserman [27] demonstrated the

effectiveness of the Hellinger’s kernel by an increase of

12% in classification accuracy on the Caltech-101 dataset.

Although often being inferior to their nonlinear coun-

terparts in accuracy, the linear SVMs have been shown to

scale well to sample and/or feature size by using large-scale

optimization tools such as stochastic optimization and con-

sensus optimization [9, 24, 4, 5]. Models that operate on the

nonlinear kernel matrices usually take much longer time to

train and test than those linear ones. For example, a dataset

with half a million training examples and each of which

consists of thousands of features might take days to train

with any nonlinear kernels, not to mention using billion

or trillion features. In contrast, it only needs a few hours

to train using linear SVMs. Thus, with the current trend

of using ultra-high-dimensional representations and exam-

ples, huge computational cost and increasing storage space

of nonlinear SVMs have gradually been a bottleneck for the

extensive use of nonlinear classifiers.

The appealing classification performance of nonlinear

SVMs and the scalability of linear SVMs inspire re-

searchers to develop the so called feature mapping tech-

nique to bridge the gap between linear and nonlinear

SVMs [27, 18, 30, 20]. The common spirit of this type

of methods is to map a data sample x ∈ R
D to a higher

dimensional feature vector φ(x) such that the linear prod-

uct of any two samples φ(x)⊤φ(y) can well approximate

the kernel function K(x,y) evaluated on these two sam-

ples. After such a feature mapping, nonlinear SVMs can be

converted into linear ones for efficient and scalable training

and testing, while preserving the classification quality of the

original nonlinear classifiers.

In this paper, we are particularly interested in construct-

ing feature maps for the following nonlinear kernels with

additive structure:

K(x,y) =

D
∑

d=1

Kd(xd, yd), (1)

where Kd are bi-variate nonlinear functions. For exam-

ple, the χ2 kernel with Kχ2(x,y) =
∑D

i=1
2xiyi

xi+yi
and the

Intersection kernel with Kmin(x,y) =
∑D

i=1 min(xi, yi)
are two popular instances of additive kernels. The additive

structure of these kernels allows us to perform feature map-

ping independently for individual features. That is, we may
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construct for each feature xd a feature map φ(xd) such that

Kd(xd, yd) ≈ φ(xd)
⊤φ(yd) and then simply set φ(x) as

the concatenation of φ(xd).
We develop in this paper a nearest neighbor coding based

approach to accomplish the task of additive kernel feature

mapping. The intuition is that if a (scalar) feature space

can be well covered by a small set of anchors, then the fea-

ture maps of that feature space are hopefully to be well ap-

proximated by those feature maps of the anchors. Based on

this idea, we propose to first find a group of anchor points

to cover each individual feature dimension using, e.g., uni-

form partition or k-means clustering [6], and then construct

the feature maps for the anchors through Singular Value De-

composition (SVD) [8]. Finally, we define the feature map

of a query feature point as that of its nearest neighbor (or

a linear combination of those of its k-nearest neighbors) in

the corresponding anchors. Figure 1 illustrates the working

mechanism of the proposed feature mapping strategy. The-

oretic analysis shows that the approximation error of our

method is controlled by the covering accuracy of the anchor

points. The merits of the proposed nearest neighbor feature

mapping method are highlighted as follows:

• Generality: the proposed method is a general frame-

work applicable to any additive kernels whose compo-

nents are Mercer kernels [11].

• Theoretical guarantee: the approximation error of

the proposed feature maps is well bounded.

• Sparsity: The feature maps can be compactly stored

as a group of nearest neighbor binary indication vec-

tors along with the feature maps of anchors.

The performance of our method has been extensively eval-

uated on several visual classification benchmark datasets.

2. Related Work

As an appealing strategy to convert nonlinear kernel

methods into linear ones, approximating kernel functions

via explicit feature maps has recently gained huge popular-

ity in computer vision and machine learning. For example,

random Fourier feature maps [23, 2, 16, 29, 14] have at-

tracted much attention by expressing the kernel as a Fourier

expansion. Almost all these algorithms are designed for

shift-invariant kernels and share a common spirit: the fea-

ture maps are often generated based on a finite set of random

basis functions (i.e., cosine and sine functions) which are

independent on the training data. In contrast, the Nyström

method [32, 28] randomly samples from the training exam-

ples and it can yield better generalization error bound when

there is a large gap in the eigen-spectrum of the kernel ma-

trix. It has been shown in [17, 3] that Chebyshev polynomi-

als can improve random Fourier approximation by remov-

ing the need to use periodic approximations to the χ2 func-

tion. Analogous to random Fourier feature maps, Yang et

Figure 1. Schematic process of the key working mechanism. For

each individual feature component, we find a group of anchor

points to cover the training samples of that component and con-

struct the feature maps of the anchor set as a feature maps pool of

that component. Given an input image feature vector, we assign to

each feature component the feature map of its nearest neighbor or

the weighted combination of its k nearest neighbors in the corre-

sponding anchor set and concatenate them as a joint feature map

for linear classifiers training/testing.

al. [30] developed random Laplace feature maps for a fam-

ily of kernel functions adapted to the semigroup structure

of Rd
+. In order to extend feature maps to kernels suitable

for histograms, Li et al. [16] developed approximate feature

maps for arbitrary, locally compact Abelian groups, such as

the Intersection and χ2 kernels. Vedaldi and Zisserman [27]

extended feature maps to a family of additive homogeneous

kernels of which the Intersection, χ2, Jensen-Shannon (JS),

and Hellinger’s kernels are special cases. Inspired by kernel

PCA, Perronnin et al. proposed addkPCA [22] to construct

feature maps for additive kernels by applying Nyström ap-

proximation to each dimension of the data independently.

Although efficient, it should be noted that addkPCA is data-

dependent and thus is of limited interests in applications

such as online learning [27].

In addition to those general purpose feature maps for ap-

proximating certain kernel families, there are several fea-

ture maps proposed to approximate specific kernels. For

instance, Maji and Berg [20] have proposed a sparse fea-

ture map for the Intersection kernel Kmin = min (x, y), ob-

taining up to 103 speedup in the learning of corresponding

SVMs. Li et al. [18] recently proposed a random projection

based algorithm called Sign Stable Projections to speedup

χ2 kernel SVMs.

In contrast to these prior methods which are more or less

restricted to certain families of kernels, or are dependent on

training data, we develop in this paper a general framework

to construct feature maps applicable to a broader class of

additive kernels with Mercer components.

3. Additive Nearest Neighbor Feature Maps

In this section we present a novel method to construct

feature maps for additive kernels. The principle of our

method is: for each individual feature component, we as-

sign to a query sample the feature map of its nearest neigh-
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bor (or a linear combination of the feature maps of its k
nearest neighbors) in a small set of anchor samples that

approximately cover that feature space. In high level, our

method contains the following three core steps:

• Feature-wise anchors construction: For each feature

component, we construct a set of anchors which span

as much as possible of the data variability (§ 3.2).

• Feature maps for anchors: We then build feature

maps for each set of anchor points based on the SVD

of a kernel matrix evaluated on these anchors (§ 3.3).

• Nearest neighbor feature mapping: Given a query

vector, we assign to each feature component the fea-

ture map of its nearest neighbor or the linear combi-

nation of those of its k nearest neighbors in the cor-

responding anchor set. The joint feature map is then

constructed by concatenating the feature maps of indi-

vidual features (§ 3.4).

Before elaborating these steps in details, we introduce in

§3.1 a naive nearest neighbor feature mapping strategy that

inspires our approach.

3.1. Warm up

Naive nearest neighbor feature maps. Let X ⊆ R
D be

a feature space of interest and K(·, ·) be a Mercer kernel

defined over X × X . Assume that we are given a set of

anchor points X̂ ⊂ R
D of size N that well spans X . For

any element x̂ ∈ X̂ , we assume that its feature map φ(x̂)
are available on hand, i.e., K(x̂, x̂′) ≈ φ(x̂)⊤φ(x̂′). Then

for any x ∈ X , it is natural to define

φ(x) := φ(N (x)),

where N (x) is the nearest neighbor of x in X̂ , i.e.,

N (x) := argmin
x̂∈X̂ ‖x − x̂‖. It can be imagined

that φ(x) should be a reasonable feature map of x. In-

deed, for any (x,y) ∈ X × X , since X is well approxi-

mated by X̂ , it holds that K(x,y) ≈ K(N (x),N (y)) ≈
φ(N (x))⊤φ(N (y)) = φ(x)⊤φ(y). The closer x is to its

nearest neighbor N (x), the more accurate the feature maps

are expected to be.

A curse of dimensionality. The above anchor points based

nearest neighbor feature mapping strategy is rather general

in the sense that it can be defined for any Mercer kernel.

Unfortunately, there is no free lunch: to ensure accurate ap-

proximation, the anchor set size N is expected to have ex-

ponential dependency on the dimensionality D. To roughly

justify this curse, we note that the accuracy of the above fea-

ture mapping strategy is largely controlled by representation

quality of X̂ to X . Intuitively, it is desirable that any x ∈ X
and its nearest neighbor x̂ ∈ X̂ should be close enough

so that K(x,y) can be well approximated by K(x̂, ŷ). The

following concept of ǫ-cover, which is standard in statistical

learning theory [25], can be used to find an approximation

to a rich data set:

Definition 1 (ǫ-Cover). Given any ǫ > 0. An ǫ-cover of a

set X ⊆ R
D is a set X̂ ⊆ R

D such that for each x ∈ X
there is a x̂ ∈ X̂ such that ‖x − x̂‖ ≤ ǫ. The ǫ-covering

number of X is

N(ǫ,X , D) := min{|X̂ | : X̂ is an ǫ-cover of X}.

It is reasonable to assume that the anchor set X̂ is

an ǫ-cover of X for some ǫ. For a compact manifold

X with intrinsic dimensionality D, it is well known that

N(ǫ,X , D) = O(ǫ−D). This implies that the size of an

ǫ-cover X̂ is expected to be exponential in D. Thus, a

direct estimation of multivariate nearest neighbor feature

maps φ(x) is neither computationally efficient nor storage

economic even for moderately large D.

To summarize the descriptions so far, although general,

the anchor points nearest neighbor assignment based feature

mapping method suffers from the curse of dimensionality.

In the following subsections, we will further explore the

structure of additive kernels and introduce a feature-wise

nearest neighbor feature mapping approach which success-

fully overcomes such a barrier of computation and storage.

3.2. Feature­wise anchor points construction

Recall that we are interested in the additive kernels as

expressed in (1). Our proposal is to take advantage of such

an additive structure to perform element-wise anchor set

nearest neighbor feature mapping. Let X = {xm}Mm=1

be a set of data samples of cardinality M and xm =
[x1,m, . . . , xD,m]⊤. For each feature d ∈ [1, . . . , D], we

denote Xd = {xd,m}Mm=1 as the one-dimensional set con-

taining all the observed samples of feature d. Given ǫ > 0,

the following two strategies can be used to construct an ǫ-
cover of Xd:

• Uniform partition. Assume xd,m are bounded and

uniformly distributed. Without loss of generality we

assume that xd,m ∈ [0, 1]. In this case, we simply

choose N = ǫ−1 and set

X̂d =

[

0,
1

N
,
2

N
, ..., 1

]

. (2)

Apparently, X̂d is an ǫ-cover of Xd. The advantage of

such a quantization strategy is that it is data indepen-

dent whilst the disadvantage is that it makes uniform

distribution assumption on the data which could be re-

strictive in real applications.

• k-means-type partition. If the distribution of {xd,m}
is unknown, we consider the following k-means-type

quantization:

{v̂d, ûd,m} = argmin
ud,m,vd

M
∑

m=1

‖xd,m − v⊤
d ud,m‖2,

s.t. ud,m ∈ {0, 1}N ,Card(ud,m) = 1, (3)
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where vd ∈ R
N is the one-dimensional code book

and ud,m is the N -dimensional quantization code. The

constraint in this formulation ensures that the N -bit

code ud,m is binary with only one nonzero element.

Both the code book and the quantization codes are un-

known and can be easily estimated by a k-means-type

iteration procedure, i.e., to alternate between updating

centers and updating nearest neighbor assignment un-

til convergence. After the optimal v̂d is obtained, we

set anchor set X̂d := v̂d. As a greedy scheme, we may

solve a sequence of problem (3) with increasing code

book size N until the criterion ‖xd,m − v̂⊤
d ûd,m‖ ≤

ǫ, ∀m is met. This guarantees that the anchor set X̂d is

an ǫ-cover of Xd. As an extreme case, we may directly

assign X̂d := Xd as a trivial ǫ-cover of Xd. This

cover, however, is typically redundant. Since Xd is a

scalar set, it is expected that |X̂d| = O(ǫ−1). The ad-

vantage of such a k-means-type quantization method

lies in that it adapts well to unknown data distribution.

3.3. Feature maps for anchors

The next step is to perform feature mapping for each

individual anchor point set X̂d, d = 1, ..., D. Gener-

ally speaking, any off-the-shelf feature mapping method

(e.g. [27][18]) can be applied in this step. These existing

methods, however, will inevitably introduce approximation

error. Recall that in this paper we are particularly inter-

ested in the case where each kernel component Kd(·, ·) is

a Mercer kernel. For this special class of kernels, in or-

der to minimize the loss in this step, we propose to use a

SVD based strategy to construct the anchor point feature

maps. Let K̂d ∈ R
N×N be the kernel matrix evaluated

over X̂d × X̂d. Since Kd(·, ·) is a Mercer kernel, we have

K̂d � 0. If K̂d has rank r, then there exists a matrix

Q̂d = [q̂d,1, ..., q̂d,N ] ∈ R
r×N such that K̂d = Q̂⊤

d Q̂d

(e.g., through SVD or Cholesky decomposition [13]). For

any anchor point x̂d,n ∈ X̂d, this implies an exact r-

dimensional feature map φ(x̂d,n) := q̂d,n. In the following

descriptions, we will denote Φ̂d = [φ(x̂d,1), . . . , φ(x̂d,N )]
as the anchor set feature maps matrix of feature d. If the

anchor set K̂d is obtained in a data independent way, e.g.,

using the strategy of uniform partition, then the anchor point

feature maps φ(x̂d,n) will also be data independent. If K̂d

is data dependent, e.g., it is obtained by k-means-type quan-

tization, then the feature map will be data dependent as well.

3.4. Nearest neighbor feature mapping

For any xm ∈ X , we define the feature map of its d-th

element xd,m as

φ(xd,m) := φ(N (xd,m)),

where N (xd,m) denotes the nearest neighbor of xd,m in the

anchor set X̂d. The ANNFM of xm can be constructed by

concatenating its element-wise feature maps as follows:

φ(xm) := [φ(x1,m)⊤, ..., φ(xD,m)⊤]⊤. (4)

It is straightforward to verify that

K(xm,xm′) =

D
∑

d=1

Kd(xd,m, xd,m′)

≈
D
∑

d=1

Kd(N (xd,m),N (xd,m′))

=

D
∑

d=1

φ(N (xd,m))⊤φ(N (xd,m′))

= φ(xm)⊤φ(xm′).

Therefore, it is reasonable to regard φ(xm) as a feature map

for xm. We will analyze the approximation error of such a

feature mapping approach in the next section. It is note-

worthy that the existing additive feature mapping methods

can be taken as special cases of our method when the trivial

anchor sets X̂d = Xd are used.

An appealing merit of ANNFM is that it is storage eco-

nomic when the anchor sets are relatively small. To see this

point, note the feature-wise mapping can be expressed as

φ(xd,m) = φ(N (xd,m)) = Φ̂dûd,m,

where ûd,m is the nearest neighbor indication vector, i.e.,

the entries of ûd,m are all zeros except the entry correspond-

ing to the nearest neighbor. We now rewrite φ(xm) as

φ(xm) = [û⊤
1,mΦ̂

⊤
1 , ..., û

⊤
D,mΦ̂

⊤
D]⊤.

This suggests that we can store each data sample xm as

a set of extremely sparse binary codes {ûd,m}Dd=1 and its

feature map can be obtained by multiplying these binary

codes with a set of pre-computed anchor point feature maps

{Φ̂d}
D
d=1. In view of this, ANNFM is essentially a table-

look-up method in which the indication vectors ûd,m are

indices while Φ̂d are tables.

So far ANNFM simply assigns to a query scalar the fea-

ture map of its nearest neighbor in the anchors. As a variant

of ANNFM based on k-nearest neighbors assigment, the k-

ANNFM is defined as:

φk(xm) := [φk(x1,m)⊤, ..., φk(xD,m)⊤]⊤, (5)

in which the feature-wise mapping is given by

φk(xd,m) :=

k
∑

j=1

wjφ(Nj(xd,m)).

Here {Nj(xd,m)}kj=1 are the k-nearest neighbors of xd,m

in the anchor set X̂d and {wj}
k
j=1 are non-negative com-

bination weights, e.g., wj = 1/k, j = 1, ..., k. On one
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hand, k-ANNFM is expected to be more stable if the kernel

is approximately linear in a local manifold. On the other

hand, k-ANNFM is more storage demanding as there are k
nonzero elements in a k-nearest neighbors indication vec-

tor. Specially, when k = 1 and w1 = 1, k-ANNFM reduces

to the ANNFM.

3.5. Application to Nonlinear SVMs

Among others, an important application of feature maps

is for large-scale nonlinear SVMs learning. In Algorithm 1,

we summarize the working flow of ANNFM in the context

of nonlinear SVMs. Comparing to the existing additive fea-

ture maps, the advantages of ANNFM are highlighted in

below:

• It is a general framework for additive kernel feature

mapping with rather weak restriction (i.e., Mercer ker-

nels) imposed on the kernels.

• ANNFM is essentially a binary coding scheme and

thus only needs 1 bit per mapped feature for storage. In

contrast, most existing additive feature maps are dense

and may need 16 bits to store each mapped feature.

Algorithm 1: Additive Nearest Neighbor Feature

Maps for Nonlinear SVMs Learning.

Input : A set of D-dimensional data samples

X = {xm}Mm=1.

(S1) for Every feature index d do

(SS1) Construct an anchor set X̂d of size N using,

e.g., uniform partition or k-means-type partition;

(SS2) Compute the kernel matrix K̂d ∈ R
N×N

over X̂d × X̂d;

(SS3) Perform square-root decomposition

K̂d = Q̂⊤
d Q̂d by, e.g., SVD or Cholesky

decomposition;

(SS4) Define the anchor set feature maps as

Φ̂d := Q̂d;

end

(S2) Generate the ANNFM {φ(xm)}Mm=1 according

to (4) (or alternatively k-ANNFM {φk(xm)}Mm=1

according to (5));

(S3) Train linear SVMs using ANNFM (or

k-ANNFM) as input features;

(S4) Apply the same mapping strategy on testing data

and evaluate the trained linear classifier.

Output: Classification error on testing set.

4. Error Analysis of ANNFM

In this section we analyze the approximation quality of

ANNFM in (4). For each feature d, given a set of an-

chor points {x̂d,n}, we consider the following superposition

stochastic model to generate the observed features {xd,m}:

xd,m = N (xd,m) + δd,m, (6)

where δd,m is a zero-mean sub-Gaussian random vari-

able with parameter σ > 0 (i.e., E[exp{ηδd,m}] ≤
exp

{

σ2η2/2
}

, for all η ∈ R). For example, δd,m can be

zero-mean Gaussian variables and zero-mean bounded ran-

dom variables.

The following assumption on the kernel function K(·, ·)
is needed in our analysis.

Assumption 1. For any feature index d, the kernel compo-

nent Kd(·, ·) satisfies

△Kd(x, y; δx, δy) = O(δ2x + δ2y),

where △Kd(x, y; δx, δy) := Kd(x + δx, y + δy) −
Kd(x, y) +

∂Kd

∂x δx + ∂Kd

∂y δy . Also we assume that there

exists a constant L > 0 such that ‖∇Kd(x, y)‖ ≤ L, ∀d.

For example, Assumption 1 is valid when Kd(·, ·) is

strongly smooth and strongly convex, i.e., there exist

ρ+ > 0 and ρ− > 0 such that 0.5ρ−[(δa)
2 + (δb)

2] ≤
△Kd(a, b; δa, δb) ≤ 0.5ρ+[(δa)

2 + (δb)
2].

In the analysis to follow, in order to remove the

scaling effect of summation, we alternatively consider

a re-scaled variant the additive kernel K̄(x,y) =
1
D

∑D
d=1 Kd(xd, yd). Consequently, we define the element-

wise feature map as φ̄(xd,m) = 1√
D
φ(xd,m). The follow-

ing theorem establishes the expectation and concentration

bounds on the approximation error of ANNFM.

Theorem 1. Given a feature index d. Assume that the an-

chor set X̂d is an ǫ-cover of Xd and Assumption 1 holds.

(a) The expectation of approximation error is bounded by

E
[

K̄(xm,xm′)− φ̄(xm)⊤φ̄(xm′)
]

≤ O(ǫ2).

(b) Moreover, assume that δd,m are independent sub-

Gaussian random variables with parameters σ. Then

for any η ∈ (0, 1) and ε = 2Lσ
√

ln(2/η)
D , with proba-

bility at least 1− η we have
∣

∣K̄(xm,xm′)− φ̄(xm)⊤φ̄(xm′)
∣

∣ ≤ ε+O(ǫ2).

A proof of this theorem is provided in Appendix A. The

main message conveyed by the part(a) of this theorem is

that if X̂d is an ǫ-cover of Xd, then under the stochastic

model (6) the expectation of approximation error of AN-

NFM is bounded by O(ǫ2). The part(b) further establishes

that for any ε > 0, if D is sufficiently large, then with over-

whelming probability the approximation error of ANNFM

is bounded by ε+O(ǫ2). Figure 2 visualizes the kernel ma-

trices of four popular additive kernels and their correspond-

ing approximated ones by ANNFM. These visualization re-

sults confirm our theoretical prediction that ANNFM is an

accurate approximation to the original nonlinear kernel.
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Figure 2. Heatmaps of four additive kernels, Khellinger′s, Kχ2 ,

Kmin, KJS , over the interval [0, 1]. The first row shows the exact

kernels, the second row shows the approximated kernels by AN-

NFM when the number of anchor points N is 100.

5. Experiments

To evaluate the performance of ANNFM, we conduct

experiments on three benchmarks: MNIST, Caltech-101

and DaimlerChrysler pedestrian. We compare ANNFM, in

terms of training time and testing accuracy, with the cor-

responding exact kernels, the approximate feature maps by

Vedaldi and Zisserman (VZ) [27], the sign-stable random

projections by Li et al. [18], and the feature maps by Maji

and Berg (MB) [19]. Parameters from these methods were

tuned explicitly following their papers. For the feature maps

based methods, we use Liblinear [9] to train the resultant

linear SVMs, whilst for those baselines using exact kernels

we use Libsvm [7] to train kernel SVMs. On MNIST, we

conventionally use the low level image features for training.

On Caltech-101 and DamilerChrysler datasets, we extract

some improved dense SIFT descriptors as image features.

Implementation Details: There are three popular addi-

tive kernels involved in our experiments: χ2 kernel, Jensen-

Shannon (JS) kernel, and Intersection kernel. Since all these

kernels are evaluated on histograms, we mainly resort to

the strategy of uniform partition as defined in (2) to con-

struct the covering set. However, in order to evaluate the

k-means-type partition (3), we also report the experimental

results with the two strategy on MNIST dataset. We evalu-

ate both ANNFM and 2-ANNFM in our experiments. The

off-line results indicate that 2-ANNFM works favorably to

k-ANNFM with k ≥ 3.

Recall that when the anchor set kernel matrix K̂d ≻ 0,

the aforementioned feature maps φ(x̂d,n) in § 3.3 will have

dimensionality r = N which could be high for large N . To

avoid such an undesirable high-dimensional expansion, in

the following experiments we propose to only preserve the

r′ elements of φ(x̂d,n) corresponding to the top r′ eigen-

vectors of K̂d that preserve an overwhelming portion, e.g.,

99%, of the total spectral energy. Our numerical experience

indicates that such a simple trick can substantially speed up

the processing in many cases without sacrificing accuracy.

χ2 JS inters.

feat. dm. acc.

(%)

time

(s)

acc.

(%)

time

(s)

acc.

(%)

time

(s)

exact - 94.18 661 93.98 925 94.05 897

VZ
3 93.86 6.5 93.67 6.4 93.96 6.9

5 93.83 10.3 93.67 9.6 93.92 9.9

MB
10 - - - - 91.39 8.4

20 - - - - 91.42 16.9

Li
1k 93.86 7.5 - - - -

2k 93.83 13.9 - - - -

AN.

30 93.26 2.7 93.14 2.8 93.52 16.1

40 93.84 2.6 93.67 2.6 94.05 18.5

50 93.98 2.6 93.66 2.5 94.01 19.6

2-AN.

30 93.53 4.1 93.27 4.3 93.75 24.8

40 94.06 4.0 93.81 4.0 94.11 27.2

50 94.12 4.0 93.79 3.9 94.06 30.7

Table 1. Performance of the considered methods on MNIST. The

average classification accuracy (%) and training time (s) are re-

ported. The table compares the exact additive kernels (i.e., χ2,

Intersection, and JS) and the approximations to them: VZ [27],

MB [19], and Li [18]. We preserve 95% of the total spectral en-

ergy when decomposing the kernel matrix K̂. As a baseline, the

accuracy of linear kernel is 87.2% with training time about 1s.

χ2 JS inters.

dm. acc.(%) time(s) acc.(%) time(s) acc.(%) time(s)

30 92.90 2.8 92.87 2.7 92.99 14.4

40 92.92 3.0 92.94 2.8 93.33 16.7

Table 2. Performance of the proposed method on MNIST when

using k-means-type partition to construct anchor sets. As the strat-

egy of uniform partition is more appropriate for bounded features,

the performance using k-means-type partition is inferior to those

using uniform partition. Thus, in the following experiments, we

only resort to the latter to construct our anchor sets.

We replicate the experiment 5 times with different ran-

dom split of training and testing images to obtain reliable

results. The mean of the per-class recognition rates were

recorded for each run. We then report overall recogni-

tion rate as the average recognition rate of all the classes.

To save space, we abbreviate ANNFM to “AN.” and 2-

ANNFM to “2-AN.” in all the tables.

5.1. MNIST

The MNIST handwritten digits dataset [15] contains im-

ages of figures 0-9, with 60,000 training and testing exam-

ples in 780 dimensions. For each of the 10 classes, 10000

images are used for training and 10000 for testing. We di-

rectly use the intensity as image features. Reported time of

the approximation methods includes time for feature map-

ping and training classifier. Detailed comparison results are

listed in Table 1 in which the second column gives the di-

mensionality parameters used in the considered methods.

As shown in Table 1, all the feature mapping methods
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can achieve satisfactory results except for MB [20] which is

designed for piecewise const or piecewise linear features. It

can be observed that ANNFM and 2-ANNFM take only a

fraction time of the corresponding exact kernel for training.

Also it is substantially faster than VZ [27] and Li [18]. It is

noted, however, that we didn’t gain much speedup with the

Intersection kernel (see the last two columns) as the eigen-

values of K̂inter are observed to be uniformly distributed.

Intuitively, the denser the anchor points are, the more accu-

rate ANNFM will be for kernel linearization. In practice,

we observed that satisfactory performance can be acquired

when the anchor sets are of size N = 30 ∼ 50. Con-

cerning the storage size of feature maps, ANNFM needs

∼0.7M (N = 30) to store the training samples, while that

size of VZ is ∼6.7M (dm. = 3).

5.2. Caltech­101

The Caltech-101 dataset [10] contains from 31 to 800

images per category. Most images are medium resolution,

i.e., about 300× 300 pixels. For each of the 101 classes, 30

images are used for training and at most 20 images for test-

ing as some categories have fewer than 50 images. We opti-

mize all the parameters by 5-fold cross validation. Features

are extracted by an improved dense SIFT descriptor [26].

In particularly, we perform an over-segmentation operator

on the image firstly, and then apply a saliency detection

method [1] to estimate the importance of each segmented

region. To keep the same sampling number of local fea-

tures, dense features along the boundary of the important

salient region with dense sampling are extracted as well as

inside the region with random sampling according to its area

and importance. Figure 3 shows an example of this fea-

ture extraction method. In the Caltech-101 dataset, features

are extracted every six pixels with SIFT patches at 16×16

pixels; these are quantized in a 2048 visual words dictio-

nary learned using k-means. Each image is described by

a 43,008-dimensional histogram of visual words with 1×1,

2×2 and 4×4 spatial pyramid.

Table 3 lists accumulated training times and accuracies

of various methods on Caltech-101. The advantage of the

proposed method is obvious on this dataset, with com-

petitive accuracies, we can respectively achieve about ×4
speedup with ANNFM and more than ×2 speedup with 2-

ANNFM over VZ, and ×10 speedup over the exact ker-

nels. In the meantime, ANNFM and 2-ANNFM outper-

form the method of Li et al. [18] by a large margin in both

accuracy and running time. Concerning the performance

on Intersection kernel, our proposed methods are compa-

rable to MB and VZ in accuracy but inferior in speed. To

compare the storage size of feature maps, ANNFM needs

13M (N = 30), VZ needs 369M (dm. = 3) and MB needs

399M (dm. = 10) to store the training set.

Figure 3. Left panel shows example of non-uniform spatial sam-

pling. Right panel shows example of non-uniform spatial sam-

pling + saliency detection. Sampling from the salient boundary

are shown in yellow and sampling inside the region are in green.

χ2 JS inters.

feat. dm. acc.

(%)

time

(s)

acc.

(%)

time

(s)

acc.

(%)

time

(s)

exact - 87.45 11068 86.62 13773 85.62 9748

VZ
3 86.53 1238.3 86.17 1240.1 86.12 1220.1

5 87.03 1957.0 86.29 1933.3 87.17 1957.5

MB
10 - - - - 86.29 402.7

20 - - - - 86.28 794.57

Li

40k 84.93 716.5 - - - -

60k 85.64 1090.4 - - - -

80k 85.87 1893.5 - - - -

AN.
20 86.52 311.1 86.58 313.9 86.35 1665.9

30 87.0 294.4 86.88 317.5 86.41 2880.1

2-AN.
20 86.68 486.4 86.72 521.7 86.5 2579.1

30 87.09 443.9 87.0 473.4 86.62 4176.8

Table 3. Performance of the considered methods on Caltech-101.

As a baseline, the accuracy of linear kernel is 76.28% and its train-

ing time about 200s.

5.3. DaimlerChrysler Pedestrian

This dataset is created by Munder and Gavrila [21], and

is split into five disjoint sets, three for training and two for

testing. Each training set has 5,000 positive and negative

examples each, while each test set has 4,900 positive and

negative examples each. The task is to discriminate 18×36
gray-scale image patches portraying a pedestrian (positive

samples) or clutter (negative samples). Each classifier is

trained using two out of three training sets at a time and

one of the test sets. We use the same improved dense SIFT

features as used in Caltech-101.

As shown in Table 4, ANNFM, 2-ANNFM and the VZ

perform comparably to the exact kernels in testing accu-

racy. ANNFM is the fastest one among all the considered

methods when χ2 and JS kernels are used. Again, it is ob-

served that both ANNFM and 2-ANNFM are slightly infe-

rior to VZ on the Intersection kernel. This is partially due

to the fact that the eigenvalues of K̂inter are uniformly dis-

tributed. It is observable that even using the one nearest
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χ2 JS inters.

feat. dm. acc.

(%)

time

(s)

acc.

(%)

time

(s)

acc.

(%)

time

(s)

exact - 92.29 527 92.21 1687 92.63 463

VZ
3 92.70 12.4 92.79 12.9 92.78 11.9

5 92.75 20.4 92.79 18.6 92.77 21.4

MB
10 - - - - 91.41 49.0

20 - - - - 91.67 94.7

Li
6k 88.55 110.1 - - - -

12k 92.86 206.1 - - - -

AN.
30 92.07 2.9 92.16 3.2 92.45 25.6

50 92.69 6.9 92.24 8.5 92.37 34.5

2-AN.
30 92.24 4.2 92.35 4.6 92.75 42.6

50 92.83 10.5 92.48 13.2 92.59 51.3

Table 4. Performance of the considered methods on Daimler-

Chrysler Pedestrian. We preserve 99% of the total spectral energy.

neighbor anchor point, ANNFM still outperforms MB and

Li’s feature maps in most cases. Concerning the storage ef-

ficiency, we again observe that ANNFM (21M, N = 50) is

more storage efficient than VZ (41MB, dm. = 3) and MB

(43M, dm. = 10).

6. Conclusion

In this paper, we presented ANNFM as a nearest neigh-

bor search based feature mapping approach for additive ker-

nels linearization. ANNFM is a general framework appli-

cable to any additive kernels whose components are Mercer

kernels. Theoretical analysis showed that the approxima-

tion error bound of ANNFM is controlled by the covering

quality of the constructed anchor points. The obtained fea-

ture maps can be compactly stored by a group of nearest

neighbor indication vectors (which are sparse) along with

the anchor feature maps. Extensive experiments on real-

world datasets confirmed that ANNFM is superior or com-

parable to the state-of-the-art feature mapping methods in

accuracy and efficiency. We have also proposed and in-

vestigated k-ANNFM as a variant of ANNFM based on

k-nearest neighbor search. Empirical results demonstrated

that 2-ANNFM gains slight improvement over ANNFM in

accuracy, while the former is slower and more storage de-

manding than the latter. To conclude, ANNFM is a com-

putationally efficient and theoretically sound framework for

additive kernel linearization.
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A. Proof of Theorem 1

Proof. Part(a): From the definition of NNAMF in (4) we

have that

φ̄(xm)⊤φ̄(xm′)

=
1

D

D
∑

d=1

φ(N (xd,m))⊤φ(N (xd,m′))

=
1

D

D
∑

d=1

Kd(N (xd,m),N (xd,m′))

=
1

D

D
∑

d=1

Kd(xd,m − δd,m, xd,m′ − δd,m′)

=
1

D

D
∑

d=1

Kd(xd,m, xd,m′) +
∂Kd

∂x
|xd,m

δd,m

+
∂Kd

∂y
|xd,m′

δd,m′ +△Kd(xd,m, xd,m′ ;−δd,m,−δd,m′)

= K̄(xm,xm′) +
1

D

D
∑

d=1

∂Kd

∂x
|xd,m

δd,m

+
∂Kd

∂y
|xd,m′

δd,m′ +△Kd(xd,m, xd,m′ ;−δd,m, δd,m′)

= K̄(xm,xm′) +
1

D

D
∑

d=1

∂Kd

∂x
|xd,m

δd,m

+
∂Kd

∂y
|xd,m′

δd,m′ +O(δ2d,m + δ2d,m′). (7)

where the second “=” follows from the fact that

φ(N (xd,m)) is an exact feature map and the fourth “=”

follows from the definition of △Kd in Assumption 1. Since

X̂d is an ǫ-cover of Xd, it holds that E[δ2d,m] ≤ ǫ2 for all

d. Recall E[δd,m] = 0. By taking expectation operation on

both sides of the preceding equality and with proper rear-

rangement we get

E
[

K̄(xm,xm′)− φ̄(xm)⊤φ̄(xm′)
]

= O

(

1

D

D
∑

d=1

δ2d,m + δ2d,m′

)

≤ O(ǫ2).

This proves the part (a) of the theorem.

Part(b): Let us denote δ̃d,m = ∂Kd

∂x |xd,m
δd,m appeared

in (7). Since δd,m are sub-Gaussian variables with param-

eter σ and ‖∇Kd‖ ≤ L, the terms δ̃d,m are also indepen-

dent sub-Gaussian with parameter Lσ. It can be verified by

Chernoff bound that

P

(∣

∣

∣

∣

∣

1

D

D
∑

d=1

δ̃(d,m) + δ̃(d,m′)

∣

∣

∣

∣

∣

> ε

)

≤ 2 exp

{

−
Dε2

4L2σ2

}

.

The second claim in the theorem is then obtained by solving

the inequality η = 2 exp
{

− Dε2

4L2σ2

}

.
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M. Martı́nez-Ramón, A. Guerrero-Curieses, and A. J.

Caamaño. Spectrally adapted mercer kernels for support

vector nonuniform interpolation. Signal Processing, 94:421–

433, 2014.

[12] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-

egory dataset. 2007.

[13] E. G. Hohenstein and C. D. Sherrill. Density fitting

and cholesky decomposition approximations in symmetry-

adapted perturbation theory: Implementation and application

to probe the nature of π-π interactions in linear acenes. The

Journal of Chemical Physics, 132(18):184111, 2010.

[14] P.-S. Huang, L. Deng, M. Hasegawa-Johnson, and X. He.

Random features for kernel deep convex network. In Acous-

tics, Speech and Signal Processing (ICASSP), 2013 IEEE In-

ternational Conference on, pages 3143–3147. IEEE, 2013.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[16] F. Li, C. Ionescu, and C. Sminchisescu. Random fourier ap-

proximations for skewed multiplicative histogram kernels. In

Pattern Recognition, pages 262–271. Springer, 2010.

[17] F. Li, G. Lebanon, and C. Sminchisescu. Chebyshev approx-

imations to the histogram χ 2 kernel. In Computer Vision

and Pattern Recognition (CVPR), 2012 IEEE Conference on,

pages 2424–2431. IEEE, 2012.

[18] P. Li, G. Samorodnitsky, and J. Hopcroft. Sign stable projec-

tions, sign cauchy projections and chi-square kernels. arXiv

preprint arXiv:1308.1009, 2013.

[19] S. Maji and A. C. Berg. Max-margin additive classifiers for

detection. In Computer Vision, 2009 IEEE 12th International

Conference on, pages 40–47. IEEE, 2009.

[20] S. Maji, A. C. Berg, and J. Malik. Efficient classification for

additive kernel svms. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 35(1):66–77, 2013.

[21] S. Munder and D. M. Gavrila. An experimental study on

pedestrian classification. Pattern Analysis and Machine In-

telligence, IEEE Transactions on, 28(11):1863–1868, 2006.

[22] F. Perronnin, J. Sánchez, and Y. Liu. Large-scale image cate-

gorization with explicit data embedding. In Computer Vision

and Pattern Recognition (CVPR), 2010 IEEE Conference on,

pages 2297–2304. IEEE, 2010.

[23] A. Rahimi and B. Recht. Random features for large-scale

kernel machines. In Advances in neural information pro-

cessing systems, pages 1177–1184, 2007.

[24] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pe-

gasos: Primal estimated sub-gradient solver for svm. Math-

ematical programming, 127(1):3–30, 2011.

[25] V. Vapnik. Estimation of dependencies based on empirical

data. Springer Verlag, 1982.

[26] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable

library of computer vision algorithms. In Proceedings of the

international conference on Multimedia, pages 1469–1472.

ACM, 2010.

[27] A. Vedaldi and A. Zisserman. Efficient additive kernels via

explicit feature maps. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 34(3):480–492, 2012.

[28] C. Williams and M. Seeger. Using the nyström method to

speed up kernel machines. In Advances in Neural Informa-

tion Processing Systems 13. Citeseer, 2001.

[29] J. Yang, V. Sindhwani, H. Avron, and M. Mahoney. Quasi-

monte carlo feature maps for shift-invariant kernels. In Pro-

ceedings of The 31st International Conference on Machine

Learning, pages 485–493, 2014.

[30] J. Yang, V. Sindhwani, Q. Fan, H. Avron, and M. W. Ma-

honey. Random laplace feature maps for semigroup kernels

on histograms.

[31] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra-

mid matching using sparse coding for image classification.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 1794–1801. IEEE, 2009.

[32] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou.

Nyström method vs random fourier features: A theoretical

and empirical comparison. In Advances in neural informa-

tion processing systems, pages 476–484, 2012.

2874


