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Abstract

Covariance matrix has recently received increasing at-

tention in computer vision by leveraging Riemannian geom-

etry of symmetric positive-definite (SPD) matrices. Orig-

inally proposed as a region descriptor, it has now been

used as a generic representation in various recognition

tasks. However, covariance matrix has shortcomings such

as being prone to be singular, limited capability in mod-

eling complicated feature relationship, and having a fixed

form of representation. This paper argues that more ap-

propriate SPD-matrix-based representations shall be ex-

plored to achieve better recognition. It proposes an open

framework to use the kernel matrix over feature dimen-

sions as a generic representation and discusses its proper-

ties and advantages. The proposed framework significantly

elevates covariance representation to the unlimited oppor-

tunities provided by this new representation. Experimen-

tal study shows that this representation consistently outper-

forms its covariance counterpart on various visual recogni-

tion tasks. In particular, it achieves significant improvement

on skeleton-based human action recognition, demonstrating

the state-of-the-art performance over both the covariance

and the existing non-covariance representations.

1. Introduction

Covariance matrix was proposed as a region descriptor

around ten years ago1 [22]. It can effectively fuse multiple

features and be efficiently calculated via integral images.

Also, it is partially invariant to rotation and scale changes

and robust against outliers. Due to these properties, region

covariance descriptor has shown promising performance in

object detection, recognition and tracking [22, 18, 23].

The past several years have seen an expansion of covari-

ance matrix in vision applications. In addition to a region

descriptor, it has now been used as a generic feature rep-

resentation and applied to various tasks including pedes-

trian detection [23], face recognition [15], action recog-

1As a basic statistical concept, covariance matrix has long been used in

all sorts of areas of computer vision, which is not the focus of this paper.

nition [30, 5, 10], image set classification [27], shape re-

trieval [20], etc. A driving force to this trend is the powerful

mathematical theory of Riemannian manifold of symmetric

positive-definite (SPD) matrices.

The transition from region descriptor to generic feature

representation brings forth new issues. Firstly, the dimen-

sions of covariance matrix become higher, while the num-

ber of samples available for covariance estimation becomes

smaller, as observed in human action recognition and image

set classification. This results in unreliable or even singular

covariance estimate, and the Riemannian metrics for SPD

matrix cannot be directly applied. Secondly, covariance ma-

trix only evaluates linear correlation of features. This might

bring the advantages of simplicity and efficiency, when it is

used as a region descriptor. Nevertheless, as a generic rep-

resentation, the capability of modeling nonlinear feature re-

lationship becomes essential. Last but not least, covariance

matrix has a single, fixed form. It cannot be conveniently

altered to model different feature relationships.

To address these issues, we propose to use kernel matrix

as a generic feature representation. Each of its entries eval-

uates a kernel function between a pair of feature dimensions

(rather than between a pair of samples, as we usually do in

kernel methods). As will be shown, for a large set of kernel

functions, the kernel matrix is guaranteed to be nonsingular,

even if samples are scarce, which ensures Riemannian met-

rics to be readily applicable. More importantly, kernel ma-

trix gives us unlimited opportunities to model nonlinear fea-

ture relationship in an efficient manner. Extracting different

relationship is just a matter of changing the kernel function.

In addition, this new representation can work well with co-

variance representation by providing complementary infor-

mation. Combining them together can effectively improve

recognition performance.

This paper first describes the background on covariance

matrix and then discusses its newly encountered issues. Af-

ter that, we propose kernel matrix as a generic feature repre-

sentation and elaborate its properties and advantages. Fol-

lowing that, a framework of combining different representa-

tions is presented. At last, we discuss computational issues

and the differences of our work from the existing ones. Ex-
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tensive experimental study is conducted on skeleton-based

human action recognition, image set classification, and the

classification tasks commonly applied with covariance ma-

trix. As shown, the proposed new representation consis-

tently achieves improved performance on these tasks. In

particular, it demonstrates the state-of-the-art performance

on skeleton-based human action recognition.

2. Background

Let x (x ∈ R
d) be a d-dimensional feature vector, and

Dd×n = [x1, · · · ,xn] denotes a data matrix. A sample-

based covariance matrix C is defined as

C =
1

n− 1

n
∑

i=1

(xi − µ)(xi − µ)⊤, (1)

where µ is the sample mean. In relation to feature represen-

tation, covariance matrix was initially proposed as a region

descriptor [22]. Given an image region, a feature vector, x,

is extracted from each pixel to describe its location, colour,

gradient, filter response, etc. With these feature vectors, co-

variance matrix is computed to characterize this region. As

a region descriptor, it has the following merits: being a nat-

ural manner to fuse different features; being robust against

illumination change and outliers; allowing two regions of

different sizes to be compared; having rotation invariance

when rotation-independent features are used; and fast com-

putation via integral images.

A (nonsingular) covariance matrix belongs to the set of

symmetric positive-definite (SPD) matrices, which forms a

connected Riemannian manifold [23]. This non-Euclidean

geometric property has been effectively considered in its

distance measures including the generalized-eigenvalue-

based metric [22], affine-invariant Riemannian metrics [16],

log-Euclidean distance [1], Stein divergence [19], etc.

We categorize the applications of covariance matrix to

visual recognition into two classes:

i) As a region descriptor. This dominates the initial ap-

plications. The superiority of region covariance descriptor

is firstly shown on object detection and texture classifica-

tion [22] and then on object tracking [18]. It is further ap-

plied to pedestrian detection [23], face recognition [15], and

shape retrieval [20]. Two characteristics can be observed on

these applications: 1) fast computation of region covariance

descriptors is highly essential, especially for the tasks like

object detection and tracking; 2) the dimensions of covari-

ance matrix are usually low (e.g., 5× 5 or 8× 8).

ii) As a general representation. This has recently been

seen in an increasing number of tasks. For human action

recognition, a representation Cov3DJ is proposed to model

a sequence of skeletal joint motions over time [10, 7]. In

image set classification [27], a feature vector is extracted

from every image in a given set and its covariance matrix is

then computed to represent this image set. A similar case is

observed in gesture recognition, where the covariance ma-

trix of frame-based features is used to represent a video se-

quence. Two new characteristics have been observed.

1) The wider range of applications poses a challenge on co-

variance matrix with respect to its effectiveness as a generic

representation. The requirement on extensively modeling

sophisticated feature relationships becomes evident. As a

result, new SPD-matrix-based representations with more

expressive power are highly desired.

2) Features are not pixel-based anymore and often have

higher dimensions. In an action recognition data set in the

experiment, the dimensions are as high as 120, while the

number of feature vectors per action instance only ranges

from 40 to 500, far from being enough to estimate a reliable

covariance matrix. A worse case is in image set classifica-

tion. The dimensions could be as high as 400 (when reshap-

ing a 20× 20 object image), while there are only 41 images

in a set [27]. This not only results in unreliable estimate but

also incurs the singularity of covariance matrix.

3. Proposed method

To keep brevity, we use “covariance representation” and

“kernel representation” as the short names of covariance-

matrix-based and kernel-matrix-based representations.

3.1. Issues of covariance representation

Under the above new characteristics, covariance matrix

as generic feature presentation has the following drawbacks.

Firstly, covariance matrix only describes linear correla-

tion of features. Recall that Dd×n = [x1, · · · ,xn] is a data

matrix. Let f⊤i (i = 1, · · · , d) be the ith row of D, standing

for the realization of the ith feature. After centering, it can

be written as f̄i = fi − µi1, where µi is the sample mean

while 1 is a column vector of “1”s. It is trivial to show that

the (i, j)th entry of covariance matrix C is

cij =

〈

f̄i√
n− 1

,
f̄j√
n− 1

〉

, (2)

where 〈·, ·〉 denotes an inner product. In other words, co-

variance matrix essentially implements a linear kernel func-

tion over scaled f̄i and f̄j . When fast computation of a re-

gion descriptor is necessary, such linearity brings concep-

tual simplicity and computational efficiency. Nevertheless,

from the perspective of generic representation, modeling

only linear relationship significantly constrains its expres-

sive power and in turn affects recognition performance. For

example, for action recognition, it is certainly not sufficient

to only consider the linear correlation of skeleton joints to

model and differentiate various action patterns [21].

Secondly, the rank of covariance matrix obeys the rule

that rank(C) ≤ min(d, n− 1). When C is used as a region
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descriptor, the number of feature vectors extracted from an

image region, n, is usually much larger than the dimensions,

d. This ensures C to be nonsingular and allows it to be re-

liably estimated. However, this situation has changed in re-

cent applications, and singularity could occur. In that case,

in order to utilize Riemannian metrics, a small scaled iden-

tity matrix has to be appended [27].

3.2. Kernel matrix as feature representation

We propose to use a kernel matrix, M, as a generic fea-

ture representation. The (i, j)th entry of M is defined as

kij = 〈φ(fi), φ(fj)〉 = κ(fi, fj), (3)

where φ(·) is an implicit nonlinear mapping and κ(·, ·) is the

induced kernel function. Covariance matrix corresponds to

a special case in which φ(fi) = (fi − µi1)/
√
n− 1. Note

that the mapping φ(·) is applied to each feature fi, rather

than to each sample xi as usually seen in kernel-based learn-

ing methods. The most significant advantage of using M

lies at that with it, we can have much more flexibility to

efficiently model the nonlinear relationship among features.

i) For example, we can evaluate the similarity of feature

distributions, by applying the Bhattacharyya kernel [11]

κ(fi, fj) =

∫

√

pi(z)
√

pj(z)dz, (4)

where pi(z) and pj(z) denote two univariate distributions

estimated from fi and fj . When the two distributions

are assumed to be Gaussian, denoted by N (µi, σi) and

N (µj , σj), this kernel has a closed form as

κ(fi, fj) =

√

2σiσj

σ2

i + σ2

j

exp

[

−1

4

(µi − µj)
2

σ2

i + σ2

j

]

. (5)

ii) We can also model the interaction among samples

with respect to a feature. Recall that fj is a column vec-

tor (x1j , x2j , · · · , xnj)
⊤, where xij is the jth feature of the

ith sample, xi. All the p-order “interaction” of samples can

be exhaustively generated by mapping fj (or f̄j) as follows

φ(fj) =

{
√

(

p!

r1!r2! · · · rn!

)

xr1
1jx

r2
2j · · ·xrn

nj

}

, ∀r1, · · · , rn;

(6)

where
∑n

i=1
ri = p and ri ≥ 0. Introducing these features

could be beneficial. For example, for skeleton-based action

recognition, they consider all the p-order interactions of a

given feature over the n frames of an action instance. This

mapping induces a simple homogeneous polynomial kernel

κ(fi, fj) = 〈φ(fi), φ(fj)〉 = (〈fi, fj〉)p, where p is the de-

gree of this kernel [2]. Therefore, with the proposed kernel

representation, the relationship between a pair of high-order

sample interactions can be conveniently evaluated.

iii) In practice, applying a kernel representation could

be even easier, when we do not know beforehand (or are

not particularly interested in) what kind of nonlinear re-

lationship shall be modeled. In this case, any general-

purpose kernel, such as the Gaussian RBF kernel κ(fi, fj) =
exp(−β‖fi−fj‖2), can be employed. Also, once it becomes

necessary, users are free to design new, specific kernels to

serve their goals. Such flexibility is clearly an advantage

brought by using a kernel matrix as feature representation.

In relation to the singularity issue, kernel matrix is also

a better choice than covariance matrix. When d ≥ n is

true, covariance matrix is bound to be singular. In contrast,

the situation is more favorable for kernel matrix. A direct

application of Micchelli’s Theorem (1986) [9] gives the fol-

lowing result for our case.

Theorem 1. Let f1, f2, · · · , fd be a set of different n-

dimensional vectors. The matrix Md×d computed with a

RBF kernel κ(fi, fj) = exp(−β‖fi− fj‖2) is guaranteed to

be nonsingular, no matter what values d and n are.

According to Micchelli’s Theorem, the inverse multiquadric

kernel κ(fi, fj) = (‖fi − fj‖2 + β2)−1/2 also satisfies the

above theorem. Actually, as pointed out in [4], in addition

to these two kernels, there are a large set of various kernels

holding this nice property, including radial kernels, transla-

tion invariant kernels, multiscale kernels, power series ker-

nels, etc. The presence of these kernels provides us great

freedom to choose the most appropriate one for a kernel

representation. Lastly, in case we cannot be sure about the

nonsingularity for a kernel matrix, we can always analyze it

with the definition of positive definiteness and/or append a

regularizer to this matrix as a preemptive measure.

3.3. Combining different feature representations

Kernel- and covariance-representations extract different

feature relationships, and can therefore be combined. Let D
denote a set of m training samples for classification. Let’s

assume that there are q representations in total, and the ith
training sample is represented by Mi1,Mi2, · · · ,Miq . The

class label of the ith training sample is denoted by yi. Two

combination ways are proposed as follows.

One way directly combines the q representations by

weight w = (w1, · · · , wq)
⊤, called “early fusion” in this

work. This gives a combined representation as

Mi(w) =

q
∑

j=1

wjMij . (7)

Applying a kernel function k(Mi(w),Mj(w))2, we can
obtain another kernel matrix computed over the whole train-
ing set D, denoted by G(w). Viewing the weight w as the

2Note that two different kernels are involved: κ(fi, fj) is used to

compute the proposed kernel representation M for each training sample;

k(Mi,Mj) is used to compute the kernel between two training samples,

as what we usually do in kernel-based learning methods.
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parameter of the kernel k, we can learn its optimal value by
following the kernel parameter tuning approach commonly
used in SVMs [3], that is, minimizing the “inverse of the
margin”. This leads to the following optimization,

min
w∈Rq

{

max
α∈Rm

[

α
⊤
1−

1

2
(α⊙ y)⊤

(

G(w) +
I

C

)

(α⊙ y)

]}

(8)

s.t. w
⊤
1 = 1; w ≥ 0; α

⊤
y = 0; α ≥ 0,

where α consists of m multipliers in SVMs; y is a vector

of y1, · · · , ym (binary classification with yi = ±1 is as-

sumed); and “⊙” denotes component-wise multiplication.

Note that an ℓ2-norm soft-margin SVM is used, where C is

its regularization parameter and I is an identity matrix. This

optimization problem can be solved by alternately optimiz-

ing α and w, and the details can be found in [3].

The other way fuses the q representations by multiple

kernel learning (MKL), called “late fusion” in this work. A

kernel function k is applied to each representation, result-

ing q kernel matrices G1,G2, · · · ,Gq . With weight w, the

combined kernel matrix on the whole training set D is

G′(w) =

q
∑

j=1

wjGj ; s.t. w
⊤1 = 1; w ≥ 0. (9)

Replacing G(w) in Eq (8) with G′(w) and solving the re-

sulting optimization problem will give rise to the optimal

weight. This problem can be solved by the off-the-shelf

MKL packages such as SimpleMKL.

3.4. Differences from existing work

Improving the effectiveness of covariance representation

has been studied in the literature. Existing work in this as-

pect can generally be categorized into three approaches.

The first approach improves the quality of visual fea-

tures. For example, considering that Gabor features could

extract more important information, they are used to re-

place the first- and second-order gradients at each pixel to

compute covariance matrix in face recognition [15]. The

second approach reduces the interference from the back-

ground within an image region. In object tracking [28],

pixels are weighted in computing covariance matrix, and

the farther a pixel is from the center of a region, the lower

is its weight. The third approach, which may be most re-

lated to ours, considers to model high-order statistics of

features [14, 7]. It maps x1, · · · ,xn (Eq (1)) to a fea-

ture space by a kernel function. This results in a poten-

tially infinite-dimensional covariance matrix (defined in the

kernel-induced feature space) as feature representation. Be-

cause these covariance matrices cannot be explicitly com-

puted, a special measure has to be derived to evaluate their

similarity. The computational complexity of this measure

for a pair of covariance matrices is O(n3) due to the need

of eigen-decomposition [7]. This becomes computationally

expensive when n is large.

Evidently, our approach is different from all the above

three ones. Ours is orthogonal to the first approach since it

can work with any feature set. Also, in contrast to the first

and second ones, we use a kernel matrix rather than a co-

variance matrix as feature representation. Compared with

the third approach, we apply the kernel mapping to each

feature f1, · · · , fd, instead of each sample x1, · · · ,xn. The

resulting representation still maintains the same dimensions

(d × d) as the original covariance representation, and does

not need any special measures to be designed. Moreover,

as will be demonstrated, our approach consistently achieves

better recognition performance than the third one. Also, it

runs as efficiently as the original covariance representation,

and could be much faster than the third approach in [14, 7].

In addition, note that our approach aims to utilize a kernel

matrix to represent an individual feature set. This is dif-

ferent from existing work developing a kernel function to

measure the similarity of two feature sets [17].

3.5. Computational issues

Without loss of generality, we use the commonly used

RBF kernel as an example. Given n d-dimensional vec-

tors, x1, · · · ,xn (Eq (1)), computing all the entries ‖fi −
fj‖2 (i, j = 1, · · · , d) has the complexity of O(nd2), same

as computing a covariance matrix. Certainly, RBF kernel

has an exp(·) operation and needs a bit more time. In ad-

dition, although the case of region descriptor is not our fo-

cus, we show that the proposed kernel representation could

still be quickly computed via integral images. Noting that

‖fi − fj‖2 = f⊤i fi − 2f⊤i fj + f⊤j fj , we can precompute

d2 integral images for the inner product of any two feature

dimensions. It then becomes trivial to compute ‖fi − fj‖2
for any rectangular regions by following [22]. This result is

also valid for the polynomial kernel which computes f⊤i fj .

Generally, the availability of more samples makes ker-

nel evaluation more reliable. Take the Bhattacharyya ker-

nel (Eq (4)) as an example. More samples make the esti-

mates µ and σ converge towards their true values. This in

turn helps the kernel evaluation to converge towards its true

value. Certainly, in practice we are constrained by the num-

ber of available training samples. Also, recall that the pro-

posed kernel matrix has a fixed size (d× d), independent of

the number of samples (n) in a set. Due to this, the kernel-

based representations obtained from two different-sized sets

can be directly compared. At the same time, considering

that n affects the lengths of fi and fj , we scale them accord-

ingly to reduce the impact of n. For example, we divide

‖fi − fj‖ by the average pairwise Euclidean distance over a

training set, when the RBF kernel is used.

4. Experimental result

The proposed kernel representation (Ker-RP in short) is

compared with covariance representation (Cov-RP) on three
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types of recognition tasks. The first two are human action

recognition and image set classification, which use covari-

ance as generic feature representation. The third one in-

cludes the tasks of face, texture, and object recognition tra-

ditionally used when covariance acts as a region descriptor.

All the three kernels in Section 3.2 are involved. In spe-

cific, the representations generated by the Gaussian radial

basis function kernel (RBF in short) and the polynomial ker-

nel (POL) are compared with covariance representation to

verify their advantages. The representation generated by the

Bhattacharyya kernel (BHA) will be combined with covari-

ance representation to demonstrate the benefit of combining

two complementary representations.

A nonlinear SVM classifier is used in all experiments.

The log-Euclidean kernel, a commonly used kernel function

on SPD matrices3, is employed for the SVM. To ensure fair

comparison, all algorithmic parameters, including the regu-

larization parameter in SVM, β in the log-Euclidean kernel,

and the parameters in the RBF and POL kernels are tuned

by multi-fold cross-validation on the training set only.

4.1. Comparison on human action recognition

Four benchmark data sets are used, including MSR-

Action3D, MSR-DailyActivity3D, MSRC-12, and

HDM05. For all of them, we only use the skeleton

data while the other data (e.g., depth maps or RGB videos)

are not included. The data set information is in Table 1.

Table 1. Feature dimensions of four action recognition data sets.

Data set #Dim. #frames Features

(d) per instance (n)

MSR-Action3D 120 40 ∼ 60 Velocity

MSR-DailyActivity3D 120 125 ∼ 500 Velocity

MSRC-12 60 50 ∼ 300 Coordinates

HDM05 93 30 ∼ 700 Coordinates

For MSR-Action3D and MSR-DailyActivity3D, we use

velocity as the frame features [31] by calculating the coordi-

nate differences of 3D skeleton joints between a frame and

its two (before and after) neighboring frames. Each frame

feature vector has 120 (2 × 3 × 20 joints) dimensions. For

MSRC-12 and HDM05, the 3D coordinates of each joint are

used as the frame features. As seen in Table 1, for each data

set, the number of frames per instance, n, could be smaller

than (d+1), which causes singularity when computing a co-

variance matrix. In this case, we append a small regularizer

λI (e.g., λ = 10−7) to the matrix as in the literature [27].

To facilitate comparison with the state-of-the-art meth-

ods, the training and test sets of these data sets are par-

titioned by following the literature. For MSR-Action3D,

3The log-Euclidean kernel function is defined as k(X,Y) =
exp

(

−β‖ log(X)− log(Y)‖2
F

)

, where X and Y are two SPD matri-

ces and log(·) denotes the matrix logarithm.

MSR-DailyActivity3D and MSRC-12, the cross-subject

test setting [12] is used, in which the odd-indexed subjects

are used for training and the even-indexed ones are for test.

For HDM05, we used the instances of two subjects for train-

ing and those from the remaining three subjects for test [6].

4.1.1 Result on MSR-Action3D data set

MSR-Action3D contains 20 actions performed by ten sub-

jects. Each action is done two or three times by each

subject. The number of frames in each action instance is

40 ∼ 60, which is smaller than the feature dimensions, 120.

The classification accuracy is compared in Table 2.

The upper portion of this table quotes the state-of-the-art

results in the last two years, while the lower portion lists the

results of the methods implemented by this work. Cov-RP is

the method using covariance representation. Cov-JH-SVM

is the method in [7] which uses an infinite-dimensional co-

variance matrix in a kernel-induced feature space as rep-

resentation. Ker-RP-POL and Ker-RP-RBF are the pro-

posed methods, in which polynomial and RBF kernels are

used to compute the kernel representation. As seen, Cov-

RP performs poorly when compared with the quoted state-

of-the-art methods. Its performance is probably affected

by the insufficient number of frames for covariance ma-

trix estimation. Cov-JH-SVM well improves over Cov-

RP. However, it is still inferior to the quoted state-of-the-art

ones. In contrast, the proposed methods significantly out-

perform Cov-RP, obtaining an improvement over 20 per-

centage points. Also, both methods outperform Cov-JH-

SVM by a large margin, and even win these state-of-the-

art methods which use complex feature representation (e.g.,

sparse coding [29]) or multiple forms of data such as depth

maps and skeleton [32]. This result is significant and en-

couraging, indicating the efficacy of the kernel representa-

tion. With it, classification accuracy on this action data set

is boosted from 94.3% [32] further to 96.9%.

Table 2. Comparison on MSR-Action3D data set.
Methods in comparison Accuracy

Pose Set [25] 90.0
Hierarchy of Cov3DJs [10] 90.5
Moving Pose [31] 91.7
Lie Group [24] 92.5
SNV [29] 93.1
Spatiotemp. Features Fusing [32] 94.3

Cov-RP [22] 74.0
Cov-JH-SVM [7] 80.4
Ker-RP-POL (proposed) 96.2
Ker-RP-RBF (proposed) 96.9

4.1.2 Result on MSR-DailyActivity3D data set

MSR-DailyActivity3D is a challenging data set, because

the extracted skeletons are noisy and most activities involve

4574



human-object interactions such as drink, eat, read book, etc.

Table 3 shows the comparison result. As previous, some

state-of-the-art results are quoted in the upper portion, fol-

lowed by the results of the methods implemented by this

work. On this data set, Cov-RP becomes better and close to

the state-of-the-art ones. However, Cov-JH-SVM does not

improve over Cov-RP but shows a degraded performance.

The two proposed methods once again demonstrate signif-

icant improvement over all the other methods. In specific,

Ker-RP-POL yields the highest accuracy 96.9%. It wins

the best state-of-the-art method (SNV [29]) by more than

ten percentage points. Ker-RP-RBF also achieves an excel-

lent result of 96.3%, close to Ker-RP-POL and outperforms

the other ones by a large margin. Note that in these state-

of-the-art methods, depth map is used to extract features

in [13, 29], and local occupancy patterns are used in [26]

to process human-object interaction cases. We compute the

kernel representation using the skeleton data only. In ad-

dition, for this data set, the number of frames in each ac-

tion instance is generally larger than the feature dimensions,

making covariance estimation free of the singularity issue.

Nevertheless, the result shows that the proposed kernel rep-

resentation still has an advantage over covariance represen-

tation in this case. We attribute this advantage to its capa-

bility in modeling nonlinear feature relationship.

Table 3. Comparison on MSR-DailyActivity3D data set.
Methods in comparison Accuracy

Moving Pose [31] 73.8
Local HON4D [13] 80.0
Actionlet Ensemble [26] 86.0
SNV [29] 86.3

Cov-RP [22] 85.0
Cov-JH-SVM [7] 75.0
Ker-RP-POL (proposed) 96.9

Ker-RP-RBF (proposed) 96.3

4.1.3 Result on HDM05 data set

HDM05 consists of around 1500 instances from over 100
motion classes. Most classes have 10 to 50 realizations of

five actors named “bd”, “bk”, “dg”, “mm” and “tr”. We use

two subjects “bd” and “mm” for training and the remaining

three for test [6]. To compare with the literature, we con-

duct two experiments. Firstly, we use 14 classes4 of this

data set, and the result is in the left column of Table 4. Cov-

RP shows quite competitive performance and outperforms

the quoted methods. However, Cov-JH-SVM shows a de-

graded performance again. Ker-RP-RBF and Ker-RP-POL

are still significantly better than Cov-RP, Cov-JH-SVM,

4They are ‘clap above head’, ‘deposit floor’, ‘elbow to knee’, ‘grab

high’, ‘hop both legs’, ‘jog’, ‘kick forward’, ‘lie down floor’, ‘rotate both

arms backward’, ‘sit down chair’, ‘sneak’, ‘squat’, ‘stand up lie’ and

‘throw basketball’.

and the other methods. The highest classification accu-

racy 96.8% is obtained by Ker-RP-RBF. Note that all the

quoted methods use covariance-based representation, but

sparse coding or dimensionality reduction is additionally

applied to improve the performance. To further verify their

effectiveness, we conduct comparison on all the classes. As

shown in the right column of Table 4, although the signif-

icant increase on the number of action classes reduces the

overall classification accuracy, the proposed methods still

outperform the other ones in comparison.

Table 4. Comparison on HDM05 data set (Two experiments).
14 classes All classes

Methods in comparison Accuracy Accuracy

CDL [27] 79.8 Not reported

RSR [8] 76.1 Not reported

RSR-ML [6] 81.9 40.0

Cov-RP [22] 91.5 58.9
Cov-JH-SVM [7] 82.5 -

Ker-RP-POL (proposed) 93.6 64.3
Ker-RP-RBF (proposed) 96.8 66.2

⋆The result of Cov-JH-SVM [7] is not obtained in 35 hours.

4.1.4 Result on MSRC-12 data set

MSRC-12 is a large data set, containing the performance

of 12 gestures by 30 subjects. As shown in Table 5, Ker-

RP-RBF again obtains the best classification result, outper-

forming Cov-RP and the other methods including Cov-JH-

SVM. Ker-RP-POL’s performance is a bit lower than that

of Ker-RP-RBF. This may indicate that the RBF kernel fits

better the action data in this data set. Nevertheless, Ker-RP-

POL is still higher than Cov-RP and Cov-JH-SVM. Note

that the method in [10] uses a hierarchy of multiple covari-

ance matrices to capture the temporal order of motion. For

each instance, the covariance matrix at the top level is com-

puted over the whole sequence, while those at the lower

levels are computed over a series of sub-sequences in or-

der. We believe that our methods can be further improved if

working in that manner.

Table 5. Comparison on MSRC-12 data set.
Methods in comparison Accuracy

Hierarchy of Cov3DJs [10] 91.7

Cov-RP [22] 89.2

Cov-JH-SVM [7] 89.2

Ker-RP-POL (proposed) 90.5
Ker-RP-RBF (proposed) 92.3

4.2. Result on image set classification

An image set is a collection of images belonging to the

same class but with variation, for example, images of the

same object under different views. It is the image set, rather

than an individual image, that will be classified. Covariance

matrix has been used to model an image set [27]. Now we
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compare it with the proposed kernel representation. Three

data sets used by [27] are tested, including ETH80, CMU

MoBo, and YouTube Celebrities. ETH80 has eight cate-

gories, with ten objects per category. For each object, there

are 41 images showing different views. CMU MoBo has 96
video sequences of 24 subjects. YouTube Celebrities con-

sists of 1910 video clips from 47 subjects. These data sets

are preprocessed by [27] as follows. For YouTube and CMU

MoBo, face images of each subject are collected by face de-

tectors and resized to 20 × 20 pixels. Pixel intensities are

used as features, leading to a 400-dimensional vector per

image. The object images in ETH80 are also resized to

20 × 20 and pixel intensities are used as features. These

data sets are downloaded from [27].

Training and test sets are created as follows. For CMU

MoBo, all face images detected from the same video se-

quence form an image set. One image set is randomly se-

lected from each subject for training, and the remaining im-

age sets are for test. For YouTube, three image sets are ran-

domly chosen from each subject for training, and another

six sets are randomly chosen for test. In ETH80, the ten ob-

jects in a category are randomly halved into training and test

sets. For each object, the 41 images of different views form

an image set. The kernel- and covariance-representations

are used to represent each image set. In total, 100 training

and test pairs are created for each data set.

Following [27], we use Partial Least Squares (PLS) for

classification and the code is downloaded from that work5.

Table 6 reports the average results. Ker-RP-RBF achieves

the best classification performance on ETH80, outperform-

ing Cov-RP by 3.2 percentage points and Cov-JH-SVM

by 3.5 percentage points. On CMU MoBo, it still signif-

icantly improves over Cov-RP and is comparable to Cov-

JH-SVM. On YouTube, Ker-RP-RBF performs slightly

worse than Cov-RP by 0.8 percentage point but clearly out-

performs Cov-JH-SVM. Also, Ker-RP-POL performs bet-

ter than Cov-RP on ETH80 by 2.1 percentage points, while

worse on the other two data sets. This result reflects the

importance of choosing an appropriate kernel function for

the kernel representation. Also, compared with all the other

methods, the RBF-kernel representation shows overall best

classification performance over the three data sets.

Table 6. Comparison on three image set classification data sets.
CMU

Methods ETH80 MoBo YouTube

Cov-RP (CDL [27]) 92.7 83.9 61.2

Cov-JH-SVM [7] 92.4 88.9 54.4
Ker-RP-POL (proposed) 94.8 75.3 57.3
Ker-RP-RBF (proposed) 95.9 88.4 60.4

5The work [27] also investigates Linear Discriminant Analysis. How-

ever, PLS always outperforms LDA as shown in that work.

4.3. Result on object classification

We further investigate the effectiveness of the proposed

kernel representation on the tasks traditionally applied with

covariance matrix as a region descriptor. For them, the fea-

ture dimensions are usually lower and a larger number of

feature vectors are available for covariance estimation. We

use three data sets, including Brodatz for texture classifi-

cation, FERET for face recognition, and ETH80 for object

categorization. Brodatz contains 112 textured images. Fol-

lowing the literature [8], each image is partitioned into 64
non-overlapping sub-images. All sub-images from the same

image form one texture class, and these sub-images are clas-

sified. For FERET, we use the “b” subset of 198 subjects.

Each has 10 images with various poses and illumination

conditions. ETH80 was used for image set classification in

Section 4.2, but here each image is considered as a training

or test sample and classified.

For all three data sets, every image/sub-image is scaled

to a uniform size of 64 × 64 and a 43-dimensional feature

vector is extracted at each pixel, including its intensity, x
and y coordinates, and a set of Gabor features (8 orien-

tations and 5 scales). For each experiment, we randomly

halve the data set into training and test subsets. This is

repeated 20 times to obtain average classification perfor-

mance. As seen in Table 7, Ker-RP-RBF again outperforms

Cov-RP, by 3.7 and 4.4 percentage points on Brodatz and

FERET. This indicates the effectiveness of the proposed

kernel representation even when it acts as a region descrip-

tor. Note that Cov-JH-SVM is not included because it be-

comes time-consuming when the number of feature vectors,

n, is large. As reported in Table 9, we cannot obtain its re-

sult even after 35 hours.

In addition, since the number of feature vectors (4096
per image) is now adequately larger than feature dimensions

(43), we can compare the sensitivity of the two representa-

tions against the number of feature vectors. Brodatz data

set and the RBF kernel are used. In Figure 1, the x-axis

is the ratio of the number of feature vectors used to com-

pute the kernel- or covariance-representations. The y-axis

is the classification accuracy corresponding to the resulting

representation. As shown, Ker-RP-RBF consistently out-

performs Cov-RP, although both of them degrade with the

decreasing ratio. In particular, the margin between them be-

comes even larger when the ratio is lower than 1/75 (about

55 feature vectors), indicating the more significant advan-

tage of Ker-RP-RBF when feature vectors are scarce. This

suggests that modeling nonlinear feature relationship en-

hances the expressive power of SPD-matrix-based represen-

tation and benefits classification, especially in the case of a

small number of feature vectors available.
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Table 7. Comparison on object classification data sets.
Brodatz FERET ETH80

Methods (texture) (face) (object)

Cov-RP [22] 81.2 81.0 94.0
Ker-RP-POL (proposed) 77.9 82.4 93.8
Ker-RP-RBF (proposed) 84.9 85.4 94.8

⋆The result of Cov-JH-SVM [7] is not obtained in 35 hours.
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Figure 1. Comparison of the sensitivity (in terms of classifica-

tion accuracy) of the kernel- and covariance-representation with

respect to the number of feature vectors used to compute them.

4.4. Combining different representations

We combine Cov-RP and Ker-RP-BHA. The BHA de-

notes the Bhattacharyya kernel in Eq (5). It evaluates the

similarity of the distributions of different features, but loses

the information on the co-occurrences of features from the

same feature vector. On the other hand, such information is

preserved in covariance representation via the inner prod-

uct (Eq (2)), although it only models the linear relation-

ship. Due to their complementariness, we combine the two

representations to show the benefit. MSR-Action3D and

MSR-DailyActivity3D are used. The result is in Table 8.

Two combination ways, early fusion and later fusion, are

tested. As seen, both Cov-RP and Ker-RP-BHA show less

promising performance on the two data sets (Ker-RP-BHA

is still slightly better than Cov-RP). However, once com-

bined, they obtain significant improvement. With early fu-

sion, the improvements are more than 15 and 10 percent-

age points on the two data sets. Early fusion performs bet-

ter than later fusion. In addition, we tried combining Cov-

RP and Ker-RP-RBF and observed that the performance re-

mains same as the latter. This may be because Ker-RP-RBF

has been expressive enough and Cov-RP does not provide

much complementary information. Nevertheless, we are

confident that Ker-RP-RBF will be outperformed by com-

bining well-designed and complementary representations.

Table 8. The result of combining complementary representations.
MSR-A-3D MSR-DA-3D

Cov-RP 74.0 85.0
Ker-RP-BHA 75.8 85.6
Cov-RP + Ker-RP-BHA 91.2 96.2

(early fusion, proposed)

Cov-RP + Ker-RP-BHA 82.1 87.0
(late fusion)

4.5. Computation time

Table 9 compares the computation time of Cov-RP, Cov-

JH-SVM, and Ker-RP-RBF on all the data sets. A desktop

computer with 3.6 GHz CPU and 32GB memory is used.

Recall that Cov-JH-SVM does not have an explicit repre-

sentation. To make fair comparison, we compare the time

for computing the whole kernel matrix G (defined after Eq

(7)) for a pair of training and test sets, which is needed

by SVM classification. The value in brackets shows the

time for computing the covariance or kernel representation.

As seen, our kernel representation only slightly increases

computation time (e.g., from 0.1 to 0.2 second), which is

insignificant compared to the total time for computing G.

However, Cov-JH-SVM incurs much higher computational

load, except on ETH80 which has a small number of sam-

ples, 41. In addition, on four data sets, we cannot obtain the

matrix G by Cov-JH-SVM for a single pair of training and

test sets even after 35 hours (and therefore the respective

classification performance is not provided). This shows the

computational efficiency of our kernel representation.

Table 9. Comparison of the time for computing the whole kernel

matrix G used for SVM classifier training and test. The value in

brackets is the time used to compute the covariance or the pro-

posed kernel representation. (Unit: second)
Data set Cov-RP Cov-JH-SVM [7] Ker-RP-RBF

(Proposed)

MSR-A-3D 61.4 (0.1) 349 65.9 (0.2)

MSR-DA-3D 20.6 (0.2) 6.4×103 22.5 (0.3)

MSRC-12 1.3×103 (0.6) 3.3×104 1.3×103 (1.2)

HDM05(14) 11.4 (0.1) 1.8×103 15.6 (0.2)

HDM05 884.6 (0.9) > 35 hours 1037(1.6)

ETH80 28.0 (0.1) 6.5 27.9 (0.2)

CMU MoBo 21.6 (0.2) 74.0 20.4 (0.3)

YouTube 549 .0 (0.7) 898 546.9 (1.3)

Brodatz 1.4×103 (6.5) > 35 hours 1.4×103 (22.1)

FERET 109.6 (1.8) > 35 hours 110.7 (5.5)

ETH80 299.8 (2.9) > 35 hours 302.3 (9.1)

5. Conclusion

To address the new issues encountered by covariance

representation, we propose to use kernel matrix as a generic

feature representation. This new representation models

more sophisticated feature relationship, is more robust

against sample scarcity, and maintains computational effi-

ciency. The significant improvement achieved by this rep-

resentation is verified on a variety of tasks. The future work

will gain more insight on the learned representations, for

example, by visualizing them, and analyze the sensitivity

of this representation to the number of samples in depth.

Also, with the verified performance, several research issues

on this new representation are worth exploring, including

automatically choosing and designing appropriate kernels,

its unsupervised learning methods, and the applications to

more visual tasks.
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