
Understanding and Diagnosing Visual Tracking Systems

Naiyan Wang1 Jianping Shi2,3 Dit-Yan Yeung1 Jiaya Jia3

1 Hong Kong University of Science and Technology 2 Linkface Group Limited
3 Chinese University of Hong Kong

winsty@gmail.com jpshi@cse.cuhk.edu.hk dyyeung@cse.ust.hk leojia@cse.cuhk.edu.hk

Abstract

Several benchmark datasets for visual tracking research

have been created in recent years. Despite their usefulness,

whether they are sufficient for understanding and diagnos-

ing the strengths and weaknesses of different trackers re-

mains questionable. To address this issue, we propose a

framework by breaking a tracker down into five constituent

parts, namely, motion model, feature extractor, observation

model, model updater, and ensemble post-processor. We

then conduct ablative experiments on each component to

study how it affects the overall result. Surprisingly, our

findings are discrepant with some common beliefs in the

visual tracking research community. We find that the fea-

ture extractor plays the most important role in a tracker.

On the other hand, although the observation model is the

focus of many studies, we find that it often brings no signif-

icant improvement. Moreover, the motion model and model

updater contain many details that could affect the result.

Also, the ensemble post-processor can improve the result

substantially when the constituent trackers have high di-

versity. Based on our findings, we put together some very

elementary building blocks to give a basic tracker which

is competitive in performance to the state-of-the-art track-

ers. We believe our framework can provide a solid baseline

when conducting controlled experiments for visual tracking

research.

1. Introduction

Visual tracking is an essential building block of many ad-

vanced applications in the areas such as video surveillance

and human-computer interaction. In this paper, we focus on

the most general type of visual tracking problems, namely,

short-term single-object model-free tracking [18]. We con-

sider the most common setting for this problem: the tracker

is given a bounding box to indicate the object to be tracked.

The bounding box is either from human annotation or an au-

tomatic object detector. The tracker has no prior knowledge

of the object to be tracked such as category and shape. Then

in the following frames, the tracker needs to identify the ob-

ject as it moves around in the video. Numerous such track-

ers have been proposed over the past few decades, ranging

from the simple KLT tracker [20, 31] in the 1980s to the

recent deep learning trackers [34, 16] which are a lot more

complex.

Evaluating and comparing trackers has always been a

nontrivial task. For a long time, researchers usually reported

tracking results on a small number of videos based on

specific model parameters manually tuned for each video.

Since subjective bias [24] in the results can be caused by

selection of videos, this practice makes it infeasible to give

a fair comparison of different trackers. To address this fair-

ness concern, several relatively large benchmarks [39, 18]

and evaluation metrics [6] have been proposed recently.

With the aid of these benchmarks, we have witnessed sub-

stantial advances in recent years. However, we would like

to raise this question: Is simply evaluating these trackers on

the de facto benchmarks sufficient for understanding and

diagnosing their strengths and weaknesses?

We are afraid that the answer to the above question is

not affirmative, for the following reason. Modern trackers

are usually complicated systems made up of several sepa-

rate components. When a tracker is evaluated as a whole,

we cannot gain a detailed understanding of the effective-

ness of each component. For illustration, suppose tracker A

uses histograms of oriented gradients (HOG) [8] as features

and the support vector machine (SVM) as the observation

model, while tracker B uses raw pixels as features and logis-

tic regression as the observation model. If tracker A outper-

forms tracker B in a benchmark, can we conclude that SVM

is better than logistic regression for tracking? Obviously

drawing such a conclusion would be arbitrary since HOG

features have stronger representational power than raw pix-

els. This calls for a more carefully designed framework for

the evaluation and comparison of trackers.

We propose in this paper a new way to understand and

diagnose visual trackers. Note that our goal is not to cre-

ate a new benchmark. Instead, our analysis will still be

based on existing benchmarks. We first break a tracker

13101



down into its constituent parts, namely, motion model, fea-

ture extractor, observation model, model updater, and en-

semble post-processor. We note that most existing trackers

can be viewed this way. Based on this framework, we con-

duct an ablative analysis on a tracker to identify the con-

stituent part that is most crucial to the overall performance

of the tracker. Contrary to popular belief, it turns out that

the observation model (which is the focus of many papers

on visual tracking) does not play the most important role in

a tracker. Instead, we find that actually the feature extractor

affects the performance most. Moreover, the ensemble post-

processor is a simple yet effective way to achieve significant

performance boost, but it is comparatively less studied. Fur-

thermore, properly dealing with the details in motion model

and model updater is also the key to good performance. By

assembling the basic components properly, we can achieve

results comparable with the state of the art without resort-

ing to complicated techniques. We conclude this paper by

highlighting some limitations of our proposed approach as

well as some possible ways to address them in our future

work.

2. Related Work

Significant advances in short-term single-object model-

free tracking research have been made over the past few

decades. It is impossible to review them all here due to

space limitations. For a comprehensive survey, readers are

referred to [28, 40].

Briefly speaking, there are two major categories of track-

ers: generative trackers and discriminative trackers. Gen-

erative trackers typically assume a generative process of

the appearance of the target and search for the most sim-

ilar candidate in the video. Some representative methods

are (robust) PCA [26, 33], sparse coding [23], and dictio-

nary learning [35]. On the other hand, discriminative track-

ers take a different approach. They usually train a classi-

fier to separate the target from the background. Thanks

to advances made by machine learning researchers, many

sophisticated techniques have been applied to visual track-

ing, including boosting [12, 13], multiple-instance learn-

ing [3], structured output SVM [14], Gaussian process re-

gression [11], and deep learning [36, 34, 16]. Recent bench-

marking studies show that the top-performing trackers are

usually discriminative trackers [9, 15] or hybrid ones [43]

mainly because purely generative trackers cannot handle

complicated background well, making it easy to drift away

from the target.

As for tracker evaluation, we have witnessed an explod-

ing trend in building datasets and the corresponding bench-

marks for visual tracking. A milestone is the recent con-

tribution made by a benchmark [39] which consists of 50

videos with full annotations. The authors also proposed a

novel performance metric which uses the area under curve

(AUC) of the overlap rate curve or the central pixel distance

curve for evaluation. Recently this benchmark has been ex-

tended to an even larger one [40]. Another representative

work is the Visual Object Tracking (VOT) challenge [18]

which has been held annually since 2013. The key differ-

ence with the benchmark above lies in the evaluation metric.

To characterize better the properties of short-term tracking,

evaluation is based on two independent metrics: accuracy

and robustness. While accuracy is measured in terms of the

overlap rate between the prediction and ground truth when

the tracker does not drift away, robustness is measured ac-

cording to the frequency of tracking failure which happens

when the overlap rate is zero. Whenever such failure occurs,

the tracker is reset to the correct bounding box to continue

tracking. Readers are referred to [6] for more details. Other

benchmark datasets include the Princeton tracking bench-

mark [29], NUS-PRO [19] and ALOV++ [28]. We tabulate

them in Table 1 for easy comparison.

Another related work is [24]. For fair evaluation of the

trackers, the authors first collected evaluation results from

the published papers and then removed the results of the

proposed method in each paper to reduce subjective bias,

because the authors tend to select videos or tune parameters

specifically to demonstrate the advantages of the proposed

tracker. On the other hand, the authors are usually fair to

the other trackers compared. They then used several rank

aggregation methods to rank the trackers. The results are

basically consistent with those run directly on the bench-

mark.

Dataset Year #Videos

VTB1.0 [39] 2013 50

PTB [29] 2013 100

ALOV++ [28] 2013 314

VOT2014 [18] 2014 25

VTB2.0 [40] 2015 100

NUS-PRO [19] 2015 365

Table 1. Summary of some visual tracking benchmark datasets.

3. Our Proposed Framework

We present our proposed framework in this section. As

mentioned above, we break a tracking system into multiple

constituent parts. Their functions are summarized below:

1. Motion Model: Based on the estimation from the pre-

vious frame, the motion model generates a set of can-

didate regions or bounding boxes which may contain

the target in the current frame.

2. Feature Extractor: The feature extractor represents

each candidate in the candidate set using some fea-

tures.

3102



Motion Model Feature Extractor Observation Model

...

Model Updater

Prediction B

Prediction A

Prediction C
Final PredictionEnsembleInput Frame

Figure 1. Pipeline of the proposed framework of a visual tracking system.

3. Observation Model: The observation model judges

whether a candidate is the target based on the features

extracted from the candidate.

4. Model Updater: The model updater controls the strat-

egy and frequency of updating the observation model.

It has to strike a balance between model adaptation and

drift.

5. Ensemble Post-processor: When a tracking sys-

tem consists of multiple trackers, the ensemble post-

processor takes the outputs of the constituent trackers

and uses the ensemble learning approach to combine

them into the final result.

A tracking system usually works by initializing the ob-

servation model with the given bounding box of the target in

the first frame. In each of the following frames, the motion

model first generates candidate regions or proposals for test-

ing based on the estimation from the previous frame. The

candidate regions or proposals are fed into the observation

model to compute their probability of being the target. The

one with the highest probability is then selected as the esti-

mation result of the current frame. Based on the output of

the observation model, the model updater decides whether

the observation model needs any update and, if needed, the

update frequency. Finally, if there are multiple trackers, the

bounding boxes returned by the trackers will be combined

by the ensemble post-processor to obtain a more accurate

estimate. This pipeline is illustrated in Fig. 1.

4. Validation Setup

In this section, we will first introduce our experimen-

tal settings which include the dataset and the evaluation

metric. A basic model will then be used as the starting

point for illustration. This is followed by findings in each

component, leading to gradual improvement of our model.

The source codes for the validation are provided in http:

//winsty.net/tracker_diagnose.html.

4.1. Settings

Due to space limitations, we cannot provide in the pa-

per the detailed parameter settings for each component. In-

stead, we leave them to the supplemental material. We

determine the parameters of each component using five

videos outside the benchmark and then fix the parameters

afterwards throughout the evaluation unless specified oth-

erwise. For this paper, we use the most common dataset,

VTB1.0 [39], as our benchmark. However, the evaluation

approach demonstrated in this paper can be readily applied

to other benchmarks as well.

Following the convention of [39], we use two metrics

for evaluation. The first one is the AUC of the overlap rate

curve. In each frame, the performance of a tracker can be

measured by the overlap rate between the ground-truth and

predicted bounding boxes, where the overlap rate is defined

as the area of intersection of the two bounding boxes over

the area of their union. With a given threshold for the over-

lap rate, we can calculate the success rate of the tracker

over all the video frames. By varying the threshold from

0 gradually to 1, it will yield a curve which varies from

its maximum success rate to success rate 0 accordingly. A

larger AUC of this curve indicates a higher accuracy of the

tracker. The second metric is the precision at threshold 20

for the central pixel error curve. The curve is generated

in a way similar to that for the overlap rate. The central

pixel error is defined as the distance between the centers

of the two bounding boxes in pixels. This metric is use-

ful for the cases that the scale of the object changes but the

tracker does not support scale variation, since using only the

scale of the first frame will definitely give a low overlap rate

which will make the results indistinguishable.

4.2. Basic Model

We need a basic model to start our analysis. As a start-

ing point, we use a very simple one which adopts the par-

ticle filter framework as the motion model, raw pixels of

grayscale images as features, and logistic regression as the

observation model. For the model updater, we use a simple

rule that if the highest score among the candidates tested is

below a threshold, the model will be updated. Moreover,

we only consider a single tracker in this basic model and

hence no ensemble post-processor will be used. Details of

all these components will be provided in the next section.

For illustration, we show in Fig. 2 the performance of this

basic model along with some popular trackers. We can see

that even this very simple model can obtain moderate re-

sults when compared to some competitive methods in [39].

3103

http://winsty.net/tracker_diagnose.html
http://winsty.net/tracker_diagnose.html


0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

IVT [0.358]
MIL [0.359]
L1T [0.380]
Basic Model [0.392]
Struck [0.474]
SCM [0.499]
ASLA [0.434]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE

 

 

IVT [0.499]
MIL [0.475]
L1T [0.485]
Basic Model [0.527]
Struck [0.656]
SCM [0.649]
ASLA [0.532]

Figure 2. One Pass Evaluation (OPE) plots on VTB1.0 [39]. The

performance score for each tracker is shown in the legend. For the

success plots of overlap rate, the score is the AUC value. While

for precision plots of central pixel error, the score is the precision

at threshold 20.

5. Validation and Analysis

We now conduct an ablative analysis to see how each

component of a tracker affects its final tracking perfor-

mance. We present our analysis of different components

in the order of their importance and necessity.

5.1. Feature Extractor

The feature extractor converts the raw image data into

some (usually) more informative representation. Five fea-

ture representations are commonly used for object detection

and tracking:

1. Raw Grayscale: It simply resizes the image into a

fixed size, converts it to grayscale, and then uses the

pixel values as features.

2. Raw Color: It is the same as raw grayscale features

except that the image is represented in the CIE Lab

color space instead of grayscale.

3. Haar-like Features: We consider the simplest form,

rectangular Haar-like features, which was first intro-

duced in 2001 [32].

4. HOG: It is a good shape detector widely used for ob-

ject detection. It was first proposed in 2005 [8].

5. HOG + Raw Color: This feature representation sim-

ply concatenates the HOG and raw color features.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

Raw Grayscale [0.392]
Raw Color [0.396]
Haar−like Features [0.398]
HOG [0.484]
HOG + Raw Color [0.534]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE

 

 

Raw Grayscale [0.527]
Raw Color [0.558]
Haar−like Features [0.539]
HOG [0.661]
HOG + Raw Color [0.740]

Figure 3. Results of different feature representations.

We compare the performance of these feature represen-

tations in Fig. 3. Note that the performance gaps between

features can be quite large. For example, the best scheme

(HOG + raw color) outperforms the basic model (raw

grayscale) by more than 20%. In fact, the best result is even

beyond the best performance reported in [39]. Although

there exist even more powerful features such as those ex-

tracted by the convolutional neural network (CNN) and they

indeed can yield state-of-the-art performance [34, 16], naı̈ve

application of this approach will incur high computational

cost which is highly undesirable for tracking applications.

For efficiency consideration, some special designs as in [34]

are needed. Another interesting direction is to exploit the

color information. Some recent methods [10, 25] demon-

strated notable performance with carefully designed color

features. Not only are these features lightweight, but they

are also suitable for deformable objects. We believe that

finding good features for object tracking is still a research

direction that is worth pursuing.

Our Findings: The feature extractor is the most impor-

tant component of a tracker. Using proper features can dra-

matically improve the tracking performance. Developing a

good and effective feature representation for tracking is still

an open problem.

5.2. Observation Model

The observation model returns the confidence of a given

candidate being the target, so it is usually believed to be the

key component of a tracker. Since the top-performing track-

ers in recent benchmarking studies are exclusively discrim-

inative trackers, we do not include generative observation

models in our analysis. We consider the following observa-

tion models:

1. Logistic Regression: Logistic regression with l2 regu-

larization is used. Online update is achieved by simply

using gradient descent.

2. Ridge Regression: Least squares regression with l2

regularization is used. The targets for positive exam-

ples are set to one while those for negative examples

are set to zero. Online update is achieved by aggregat-

ing sufficient statistics, a scheme originated from [21]

for online dictionary learning.

3. SVM: Standard SVM with hinge loss and l2 regular-

ization is used. The online update method is from [38].

4. Structured Output SVM (SO-SVM): The optimiza-

tion target of the structured output SVM is the over-

lap rate instead of the class label. This method is

from [14].

We test these four classifiers using two feature representa-

tions, a weak one (raw grayscale) and a strong one (HOG

3104



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

Logistic Regression [0.392]
Ridge Regression [0.331]
SVM [0.389]
SO−SVM [0.448]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE

 

 

Logistic Regression [0.527]
Ridge Regression [0.458]
SVM [0.548]
SO−SVM [0.611]

Figure 4. Results of different observation models with weak fea-

tures.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

Logistic Regression [0.534]
Ridge Regression [0.500]
SVM [0.476]
SO−SVM [0.521]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE

 

 

Logistic Regression [0.740]
Ridge Regression [0.710]
SVM [0.673]
SO−SVM [0.723]

Figure 5. Results of different motion models with strong features.

+ raw color). The results are shown in Fig. 4 and Fig. 5,

respectively.

When weak features are used, a powerful classifier such

as SO-SVM can indeed improve the performance of the ba-

sic model by about 10%. However, when strong features are

used, surprisingly the results are reversed. Logistic regres-

sion becomes the best-performing observation model. Sim-

ilar observation was also reported in [15]: when raw pixels

are used as features, a kernelized classifier beats a simple

linear one by a large margin; however, when HOG features

are used, the performance gap reduces to almost zero. We

believe that our finding is by no means just coincidence.

Our Findings: Different observation models indeed af-

fect the performance when the features are weak. However,

the performance gaps diminish when the features are strong

enough. Consequently, satisfactory results can be obtained

even using simple classifiers from textbooks.

5.3. Motion Model

In each frame, based on the estimation from the previ-

ous frame, the motion model generates a set of candidates

for the target. We consider three commonly used motion

models:

1. Particle Filter: Particle filter is a sequential Bayesian

estimation approach which recursively infers the hid-

den state of the target. For a complete tutorial, we refer

the readers to [2] for details.

2. Sliding Window: The sliding window approach is an

exhaustive search scheme which simply considers all

possible candidates within a square neighborhood.

3. Radius Sliding Window: It is a simple modification

of the previous approach which considers a circular re-

gion instead. It was first considered in [14].

The key differences between the particle filter and sliding

window approaches lie in the following two aspects. First,

the particle filter approach can maintain a probabilistic esti-

mation for each frame. Thus when several candidates have

high probability of being the target, they will all be kept for

the next frames. As a result, it can help to recover from

tracker failure. In contrast, the sliding window approach

only chooses the candidate with the highest probability and

prune all others. Second, the particle filter framework can

easily incorporate changes in scale, aspect ratio, and even

rotation and skewness. Due to the high computational cost

induced by exhaustive search, however, the sliding window

approach can hardly pursue it. Results of the comparison

are shown in Fig. 6.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

Particle Filter [0.534]
Sliding Window [0.517]
Radius Sliding Window [0.518]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE

 

 

Particle Filter [0.740]
Sliding Window [0.720]
Radius Sliding Window [0.726]

Figure 6. Results of different motion models.

We note that the three motion models show no signifi-

cant difference on the benchmark. Although particle filter

has the two advantages mentioned above, they do not trans-

late into performance gain in the evaluation. Nevertheless,

we should note that this observation is valid only when per-

forming object tracking under normal scenarios. In case

there is severe camera shake such as in egocentric videos,

more sophisticated motion models specially designed for a

purpose are definitely worth trying.

A closer look at the subcategory results of the benchmark

in Fig. 7 reveals some interesting observations. Not surpris-

ingly, particle filter is much better than the sliding window

approach when scale variation exists, but it is much worse

for the fast motion sub-category. So, can we perform well

in both subcategories simultaneously?

To answer this question, we first examine the role of the

translation parameters in a particle filter: They control the

search region of the tracker. When the search region is too

small, the tracker is likely to lose the target when it is in

fast motion. On the other hand, having a large search re-

gion will make the tracker prone to drift due to distractors

in the background. We have noticed an improper practice

in setting the parameters, which is often to use the number

of pixels as unit. However, different videos may have very

different resolution. Using an absolute number of pixels to

set the parameters will actually result in different search re-

3105



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE − fast motion (17)

 

 

Particle Filter [0.458]
Sliding Window [0.536]
Radius Sliding Window [0.528]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE − fast motion (17)

 

 

Particle Filter [0.623]
Sliding Window [0.715]
Radius Sliding Window [0.707]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE − scale variation (28)

 

 

Particle Filter [0.555]
Sliding Window [0.433]
Radius Sliding Window [0.442]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

Pr
ec

is
io

n
Precision plots of OPE − scale variation (28)

 

 

Particle Filter [0.786]
Sliding Window [0.646]
Radius Sliding Window [0.674]

Figure 7. Results of different motion models with fast motion and

scale variation.

gions. A simple solution is to scale the parameters by the

video resolution which, equivalently, resizes the video to

some fixed scale. We adopt the latter approach and report

the results in Fig. 8.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

Without Resize [0.534]
With Resize [0.557]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE

 

 

Without Resize [0.740]
With Resize [0.769]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

Without Resize [0.534]
With Resize [0.557]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE − fast motion (17)

 

 

Without Resize [0.623]
With Resize [0.733]

Figure 8. Results comparing the settings with and without resizing

the input video to a fixed size.

We find that even such a simple normalization step

can improve the performance significantly especially when

there exists fast motion. By applying this simple normal-

ization step, particle filter could handle both scale variation

and fast motion well. This experiment thus validates our

hypothesis that the parameters of the motion model should

be adaptive to video resolution.

Our Findings: When compared to the feature extractor

and observation model components, in general the motion

model only has minor effects on the performance. However,

under scale variation and fast motion, setting the parame-

ters properly is still crucial to obtaining good performance.

Furthermore, for some specific scenarios such as egocentric

video, it is beneficial to design the motion model carefully.

Due to its ability to adapt to scale changes which are not

uncommon in practice, we will still take the particle filter

approach with resized input as the default motion model in

the sequel.

5.4. Model Updater

The model updater determines both the strategy and fre-

quency of model update. Since the update of each obser-

vation model is different, the model updater often specifies

when model update should be done and its frequency. As

under our tracking setting there is only one reliable exam-

ple, the tracker must maintain a tradeoff between adapting

to new but possibly noisy examples collected during track-

ing and preventing the tracker from drifting to the back-

ground.

When the model needs update, we first collect some pos-

itive examples whose centers are within 5 pixels from the

target and some negative examples within 100 pixels but

with overlap rate less than 0.3. We consider two model up-

date methods:

1. The first method is to update the model whenever the

confidence of the target falls below a threshold. Doing

so ensures that the target always has high confidence.

This is the default updater used in our basic model.

2. The second method is to update the model whenever

the difference between the confidence of the target and

that of the background examples is below a thresh-

old. This strategy simply maintains a sufficiently large

margin between the positive and negative examples in-

stead of forcing the target to have high confidence. It is

potentially helpful when the target is occluded or dis-

appears. This method was proposed and evaluated in

[30].

We show the results of these two methods in Fig. 9 and

Fig. 10.

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

threshold

Su
cc

es
s 

ra
te

(a) AUC of overlap rate

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

threshold

Pr
ec
is
io
n

(b) Precision@20 for central pixel

error curve

Figure 9. Results of varying the threshold for the first model up-

date method.

Varying the threshold can indeed affect the results by

more than 10%. The best results for both methods are very

3106



0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

threshold

Su
cc

es
s 

ra
te

(a) AUC of overlap rate

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

threshold

Pr
ec
is
io
n

(b) Precision@20 for central pixel

error curve

Figure 10. Results of varying the threshold for the second model

update method.

similar, although the second method seems to give satisfac-

tory results over a broader range of parameters.

Most research effort in this area focuses on generative

trackers. In [22], Matthews et al. first empirically compared

the effect of different template update strategies. Following

this work, Ross et al. proposed to use incremental PCA [26]

for template update, Wang et al. showed the importance of

sparsity and robustness [35] for this problem, and Xing et

al. proposed to maintain three dictionaries of different lifes-

pans [41]. However, the model updater is less studied in

discriminative trackers. Santner et al. first noticed this is-

sue, and then proposed a simple yet effective method [27] to

balance the stability and plasticity by combining the results

of template matching, random forest and optical flow. Re-

cently, Zhang et al. proposed a more principled method for

model update in [42]. It uses entropy minimization to iden-

tify reliable model update and discard the incorrect ones.

Our Findings: Although implementation of the model up-

dater is often treated as engineering tricks in papers espe-

cially for discriminative trackers, their impact on perfor-

mance is usually very significant and hence is worth study-

ing. Unfortunately, very few work focuses on this compo-

nent.

5.5. Ensemble Post­processor

From the analysis above, we can see that the result of

a single tracker can sometimes be very unstable in that the

performance can vary a lot even under small perturbation

of the parameters. The purpose of taking the ensemble ap-

proach is to overcome this limitation. We regard the ensem-

ble as a post-processing component which treats the con-

stituent trackers as blackboxes and takes only the bounding

boxes returned by them as input. This rationale is quite dif-

ferent from ensemble tracking [12, 13] which uses boosting

to build a better observation model. Our ensemble includes

six trackers, with four of them corresponding to four differ-

ent observation models in our framework and the other two

are DSST [9] and TGPR [11]. We choose these two track-

ers because they are among the best-performing trackers,

and their techniques are complementary to ours. We show

the performance of individual trackers in Fig. 11. Their re-

sults are very competitive. For the ensemble, we consider

two recent methods:

1. The first one is from [4]. This paper first proposed

a loss function for bounding box majority voting and

then extended it to incorporate tracker weights, trajec-

tory continuity and removal of bad trackers. We adopt

two methods from the paper: the basic model and on-

line trajectory optimization.

2. The second one is from [37]. The authors formulated

the ensemble learning problem as a structured crowd-

sourcing problem which treats the reliability of each

tracker as a hidden variable to be inferred. Then they

proposed a factorial hidden Markov model that con-

siders the temporal smoothness between frames. We

adopt the basic model called ensemble based tracking

(EBT) without self-correction.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

Logistic Regression [0.557]
Ridge Regression [0.518]
SVM [0.495]
SO−SVM [0.553]
DSST [0.557]
TGPR [0.529]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE

 

 

Logistic Regression [0.769]
Ridge Regression [0.717]
SVM [0.676]
SO−SVM [0.762]
DSST [0.747]
TGPR [0.766]

Figure 11. Results of individual trackers used in ensemble.

Since the four trackers from our framework are all using the

same features and motion model, their diversity is some-

what limited. A main reason of including the last two track-

ers into the ensemble is to increase the diversity of the track-

ers, because diversity often plays an important role in in-

creasing the effectiveness of an ensemble. To investigate

how diversity can affect the ensemble performance, we re-

port two sets of results: with and without DSST and TGPR.

Their results are shown in Fig. 12 and Fig. 13, respectively.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

Basic [0.583]
Online Tratrectory Optimization [0.580]
EBT [0.567]
DSST [0.557]
TGPR [0.529]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE

 

 

Basic [0.797]
Online Tratrectory Optimization [0.798]
EBT [0.774]
DSST [0.747]
TGPR [0.766]

Figure 12. Results of ensemble when the individual trackers are

of low diversity (the four different observation models from our

framework). Basic and Online Trajectory Optimization methods

are from [4] and EBT is from [37].

3107



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

Su
cc

es
s 

ra
te

Success plots of OPE

 

 

Basic [0.618]
Online Tratrectory Optimization [0.608]
EBT [0.603]
DSST [0.557]
TGPR [0.529]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

Pr
ec

is
io

n

Precision plots of OPE

 

 

Basic [0.836]
Online Tratrectory Optimization [0.826]
EBT [0.812]
DSST [0.747]
TGPR [0.766]

Figure 13. Results of ensemble when the individual trackers are of

high diversity (all the six trackers). Basic and Online Trajectory

Optimization methods are from [4] and EBT is from [37].

We can see that diversity in the ensemble helps to achieve

good results. Both ensemble methods can significantly im-

prove the results when the trackers have high diversity.

Even when the diversity is low, the ensemble does not im-

pair the performance but still slightly outperforms the best

single tracker.

Our Findings: The ensemble post-processor can improve

the performance substantially especially when the trackers

have high diversity. This component is universal and effec-

tive yet it is least explored.

6. Limitations of Current Framework

The primary goal of this work is to gain a deeper under-

standing into the different components of a visual tracking

system, rather than trying to include all existing trackers

into our framework. Thus, inevitably, some excellent track-

ers are not represented in the current framework. We list

and discuss some of them here.

First, in some methods, several components are tightly

coupled. For example, in the classical mean-shift

tracker [7], the observation model must be paired with a

probabilistic map as output; in some part-based methods,

such as [1, 17], the observation model must be designed in

such a way to take the part information into consideration;

and in the latest deep learning trackers [36, 34], the feature

extractor and observation model are combined into a unified

deep learning framework for end-to-end learning.

Second, while accuracy is an important factor in visual

tracking systems, it is certainly not the only one. Speed is

another important factor to consider in practice. Since our

framework is designed to be as universal and generic as pos-

sible to accommodate more, though not all, algorithms, we

have not put much effort on optimizing the speed on pur-

pose. Our best combination runs about 10fps in MATLAB.

There exist some recent attempts that focus on developing

fast tracking models. For example, fast Fourier transform

(FFT) [5] and circular matrices [15, 9] are used to accelerate

dense (kernelized) ridge regression. In their work, the mo-

tion model and observation model are coupled. Although

we could approximate their methods in our framework us-

ing sliding windows and ridge regression, such implemen-

tation would be much slower than that in the original paper.

7. Conclusion and Future Work

“God is in the details.”

— Ludwig Mies van der Rohe

In this paper, we have analyzed and identified some im-

portant factors for a good visual tracking system. We show

that if we design each component carefully, even some very

elementary building blocks from textbooks can result in a

tracker that is as competitive as state-of-the-art trackers. By

breaking a visual tracking system down into its constituent

parts and analyzing each of them carefully, we have arrived

at some interesting conclusions. First, the feature extrac-

tor is the most important part of a tracker. Second, the

observation model is not that important if the features are

good enough. Third, the model updater can affect the re-

sult significantly, but currently there are not many princi-

pled ways for realizing this component. Lastly, the ensem-

ble post-processor is quite universal and effective. Besides,

we demonstrate that paying attention to some details of the

motion model and model updater can significantly improve

the performance.

Our work enlightens several interesting directions to pur-

sue, including the development of lightweight and effective

feature representations, principled ways of model update,

and advanced ensemble methods. It is our hope that, be-

sides the observation model which has been the focus of

many studies, other equally important components in track-

ing systems will attract more research attention as a conse-

quence of our findings.

Acknowledgement

This research has been partially supported by Faculty

Research Award Z0400-D granted to Dit-Yan Yeung.

References

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-

based tracking using the integral histogram. In CVPR, pages

798–805, 2006. 8

[2] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A

tutorial on particle filters for online nonlinear/non-Gaussian

Bayesian tracking. IEEE Transactions on Signal Processing,

50(2):174–188, 2002. 5

[3] B. Babenko, M. Yang, and S. Belongie. Robust object

tracking with online multiple instance learning. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

33(8):1619–1632, 2011. 2

[4] C. Bailer, A. Pagani, and D. Stricker. A superior tracking ap-

proach: Building a strong tracker through fusion. In ECCV,

pages 170–185. 2014. 7, 8

3108



[5] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.

Visual object tracking using adaptive correlation filters. In

CVPR, pages 2544–2550, 2010. 8

[6] L. Čehovin, A. Leonardis, and M. Kristan. Visual object

tracking performance measures revisited. arXiv preprint

arXiv:1502.05803, 2015. 1, 2

[7] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking

of non-rigid objects using mean shift. In CVPR, pages 142–

149, 2000. 8

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, pages 886–893, 2005. 1, 4

[9] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Ac-

curate scale estimation for robust visual tracking. In BMVC,

2014. 2, 7, 8

[10] M. Danelljan, F. S. Khan, M. Felsberg, and J. v. d. Weijer.

Adaptive color attributes for real-time visual tracking. In

CVPR, pages 1090–1097, 2014. 4

[11] J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning

based visual tracking with Gaussian processes regression. In

ECCV, pages 188–203. 2014. 2, 7

[12] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking

via on-line boosting. In BMVC, pages 47–56, 2006. 2, 7

[13] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised

on-line boosting for robust tracking. In ECCV, pages 234–

247, 2008. 2, 7

[14] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output

tracking with kernels. In ICCV, pages 263–270, 2011. 2, 4,

5

[15] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. arXiv

preprint arXiv:1404.7584, 2014. 2, 5, 8

[16] S. Hong, T. You, S. Kwak, and B. Han. Online tracking

by learning discriminative saliency map with convolutional

neural network. arXiv preprint arXiv:1502.06796, 2015. 1,

2, 4

[17] X. Jia, H. Lu, and M. Yang. Visual tracking via adaptive

structural local sparse appearance model. In CVPR, pages

1822–1829, 2012. 8

[18] M. Kristan and et al. . The visual object tracking VOT2014

challenge results. In ECCV Workshop, 2014. 1, 2

[19] A. Li, M. Lin, Y. Wu, M.-H. Yang, and S. Yan. NUS-PRO:

A new visual tracking challenge. To Appear in IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 2015.

2

[20] B. D. Lucas and T. Kanade. An iterative image registra-

tion technique with an application to stereo vision. In IJCAI,

pages 674–679, 1981. 1

[21] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learn-

ing for matrix factorization and sparse coding. Journal of

Machine Learning Research, 11(1):19–60, 2010. 4

[22] I. Matthews, T. Ishikawa, and S. Baker. The template up-

date problem. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26(6):810–815, 2004. 7

[23] X. Mei and H. Ling. Robust visual tracking using l1 mini-

mization. In ICCV, pages 1436–1443, 2009. 2

[24] Y. Pang and H. Ling. Finding the best from the second bests-

inhibiting subjective bias in evaluation of visual tracking al-

gorithms. In ICCV, pages 2784–2791, 2013. 1, 2

[25] H. Possegger, T. Mauthner, and H. Bischof. In defense of

color-based model-free tracking. In CVPR, 2015. 4

[26] D. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning

for robust visual tracking. International Journal of Computer

Vision, 77(1):125–141, 2008. 2, 7

[27] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof.

PROST: Parallel robust online simple tracking. In CVPR,

pages 723–730, 2010. 7

[28] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. De-

hghan, and M. Shah. Visual tracking: An experimental sur-

vey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(7), 2014. 2

[29] S. Song and J. Xiao. Tracking revisited using RGBD camera:

Baseline and benchmark. In ICCV, pages 233–240, 2013. 2

[30] J. Supancic and D. Ramanan. Self-paced learning for long-

term tracking. In CVPR, pages 2379–2386, 2013. 6

[31] C. Tomasi and T. Kanade. Detection and tracking of point

features. Technical Report CMU-CS-91-132, School of

Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991.

1

[32] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, pages 511–518, 2001.

4

[33] D. Wang, H. Lu, and M.-H. Yang. Least soft-threshold

squares tracking. In CVPR, pages 2371–2378, 2013. 2

[34] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung. Transferring rich

feature hierarchies for robust visual tracking. arXiv preprint

arXiv:1501.04587, 2015. 1, 2, 4, 8

[35] N. Wang, J. Wang, and D.-Y. Yeung. Online robust non-

negative dictionary learning for visual tracking. In ICCV,

pages 657–664, 2013. 2, 7

[36] N. Wang and D.-Y. Yeung. Learning a deep compact image

representation for visual tracking. In NIPS, pages 809–817,

2013. 2, 8

[37] N. Wang and D.-Y. Yeung. Ensemble-based tracking: Aggre-

gating crowdsourced structured time series data. In ICML,

pages 1107–1115, 2014. 7, 8

[38] Z. Wang and S. Vucetic. Online training on a budget of

support vector machines using twin prototypes. Statistical

Analysis and Data Mining: The ASA Data Science Journal,

3(3):149–169, 2010. 4

[39] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A

benchmark. In CVPR, 2013. 1, 2, 3, 4

[40] Y. Wu, J. Lim, and M.-H. Yang. Object tracking bench-

mark. To Appear in IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2015. 2

[41] J. Xing, J. Gao, B. Li, W. Hu, and S. Yan. Robust object

tracking with online multi-lifespan dictionary learning. In

ICCV, pages 665–672, 2013. 7

[42] J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust tracking

via multiple experts using entropy minimization. In ECCV,

pages 188–203. 2014. 7

[43] W. Zhong, H. Lu, and M.-H. Yang. Robust object track-

ing via sparsity-based collaborative model. In CVPR, pages

1838–1845, 2012. 2

3109


