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Abstract

There have been tremendous improvements for facial

landmark detection on general “in-the-wild” images. How-

ever, it is still challenging to detect the facial landmarks on

images with severe occlusion and images with large head

poses (e.g. profile face). In fact, the existing algorithms

usually can only handle one of them. In this work, we pro-

pose a unified robust cascade regression framework that can

handle both images with severe occlusion and images with

large head poses. Specifically, the method iteratively pre-

dicts the landmark occlusions and the landmark locations.

For occlusion estimation, instead of directly predicting the

binary occlusion vectors, we introduce a supervised regres-

sion method that gradually updates the landmark visibility

probabilities in each iteration to achieve robustness. In ad-

dition, we explicitly add occlusion pattern as a constraint to

improve the performance of occlusion prediction. For land-

mark detection, we combine the landmark visibility proba-

bilities, the local appearances, and the local shapes to it-

eratively update their positions. The experimental results

show that the proposed method is significantly better than

state-of-the-art works on images with severe occlusion and

images with large head poses. It is also comparable to other

methods on general “in-the-wild” images.

1. Introduction

Facial landmark detection refers to the localization of the

fiducial points on facial images. With the detected points,

human facial shape and appearance information can be uti-

lized for facial analysis. Recently, there are tremendous im-

provements of the facial landmark detection algorithms on

general “in-the-wild” images (Figure 1(a)). However, it is

still challenging to detect the facial landmarks on images

with severe occlusion and large head poses (e.g. pose > 60

degree, self-occlusion)(Figure 1(b)(c)).

(a) General “in-the-wild”images (b) occlusion (c) Profile face

Figure 1. Predicted landmark locations and occlusions (red dots in

(c) indicate occluded points) with the proposed method. Images

are from Helen [16], LFPW [2], COFW [4], and FERET [19] sets.

The existing algorithms usually can only handle either

images with occlusion [4][11][28][10][14] or images with

large head poses [27][30]. In addition, they treat them dif-

ferently. For example, pose dependent [30] or occlusion de-

pendent [4][28] models are trained to handle different cases.

However, if we regard the landmarks on the self-occluded

facial parts as occluded points, where the face itself is the

occluder, we can consider images with large head poses as

special cases of images with occlusion and treat them simi-

larly. Based on this intuition, we propose a novel method to

handle both images with severe occlusion and images with

large head poses.

The general framework of the proposed robust cascade

regression method is shown in Figure 2 and 3. First, we

initialize the landmark locations using the mean face shape

and assume all the points are visible in the first iteration.

Then, to achieve robustness, instead of directly predicting

the binary landmark occlusion vectors and landmark loca-

tions, we gradually update the landmark visibility proba-

bilities and locations iteratively in a coarse to fine man-

ner. When updating the visibility probability, we utilize

the appearance and shape information that depend on the

currently estimated landmark locations. In addition, we ex-

plicitly add occlusion pattern as a constraint. When updat-

ing the landmark locations, we consider the appearance and
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(a) Initialization (b) Iteration 1 (c) Iteration 2 (d) Last iteration (e) final output
Figure 2. Facial landmark detection and occlusion prediction in different iterations. First row: image with severe occlusion. Second row:

image with large head pose. In (a)-(d), the radius of point is inversely proportional to the landmark visibility probabilities and the point

is marked with red color if its visibility probability is smaller than a threshold. In (e), for images with large head pose, we only show the

visible points as the final output. (Better see in color)

shape information with weights that depend on the land-

mark visibility probabilities. The landmark locations and

visibility probabilities interact to reach convergence. We

highlight the major contributions of the proposed work:

• General framework: The proposed method is the first

algorithm that can handle both images with severe oc-

clusion and images with large head poses. It treats self-

occlusion in images with large head poses as a special

case of image occlusion.

• Occlusion prediction: Our occlusion prediction

method is different from the previous works [4][28].

While they train several occlusion dependent models

(e.g. mouth is occluded), we handle them in one uni-

fied framework. In addition, we explicitly add occlu-

sion pattern as a constraint.

• Landmark localization: For facial landmark detec-

tion with occlusion, we treat points differently based

on their visibility probabilities. We explicitly add the

shape features for prediction. For images with large

head poses, since the landmark annotations are missing

on the self-occluded facial parts, we propose a learning

method to handle this issue. The facial shape pattern is

implicitly embedded in the model.

• Experimental results: The proposed method per-

forms well on general “in-the-wild” images, and it

is significantly better than the other state-of-the-art

works on images with severe occlusion and large head

poses.

• Database: We annotated some images with large head

poses from FERET database [19]. 1

The remaining part of the paper is organized as follows.

In section 2, we review the related work. In section 3, we

introduce the proposed method. In section 4, we discuss the

experiments and we conclude the paper in section 5.

1Landmark annotations can be downloaded: http://www.ecse.

rpi.edu/˜cvrl/wuy/FERET_annotation.rar

2. Related Work

Facial landmark detection algorithms can be classified

into three major categories, including the holistic meth-

ods, the constrained local methods and the regression based

methods. The proposed method follows the regression

framework, but it is specifically designed to handle occlu-

sion and large head poses.

The holistic methods build global appearance and shape

models during learning and fit testing image by estimating

the model parameters. The differences among the holistic

methods lie in the fitting procedure and they usually follow

either the least squares formulation [17][1] or the linear re-

gression formulation [6].

The constrained local methods [8] combine global face

shape model and local appearance model for facial land-

mark detection. This approach is usually superior to the

holistic methods, since it relies on more flexible local ap-

pearance model that is easier to learn. Typical constrained

local methods usually focus on the representations of the

face shapes [2][24] or the local appearances [22][7].

Recently, the regression based methods show more

promising performance than the holistic methods and the

constrained local methods. Unlike the methods in the other

two categories, the regression based methods do not explic-

itly build the global appearance or shape models. Instead,

they directly map the local facial appearance to the land-

mark locations. For example, the absolute coordinates of

the facial landmarks can be estimated directly from the fa-

cial appearance with the conditional regression forests [9]

or deep convolutional neural networks [23]. Different

from [9][23], most of the other regression based meth-

ods [26][20][5][15] start from an initial face shape, and they

gradually update the landmark locations based on the local

appearances. For those regression based methods, cascade

techniques are usually embedded in the framework to im-

prove both the robustness and accuracy. One limitation of
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Figure 3. Facial landmark detection in one iteration. (Better see in color)

the regression based methods is that they usually can only

be trained with fully supervised data. Therefore, they can-

not learn one unified model to handle both frontal face and

profile face with missing landmark location annotations. In

this work, we improve the method to solve this issue.

Despite the fact that facial landmark detection accuracy

has been dramatically improved on general “in-the-wild”

images, facial landmark detection remains challenging for

facial images with severe occlusion or large head poses.

There are only a few algorithms focusing on those challeng-

ing cases. For example, for images with severe occlusion,

occlusion dependent models are built based on the partial

appearances from pre-defined non-occluded facial parts for

landmark detection and occlusion estimation in [4] and [28].

During testing, the detection results from all occlusion de-

pendent models are merged together with weights depend-

ing on the landmark occlusion prediction results. In [11], a

probabilistic graphical model is built to infer the landmark

occlusions and locations jointly. For images with large head

poses, there are even fewer works [30][27]. In [30], several

models are built to handle facial landmark detection with

different pre-defined discrete head poses. The detection re-

sult with the highest score is outputted as the final result.

In [27], 3D model is used to handle images with large head

poses. Different from the previous works, we propose a

general framework to handle both cases and we do not build

pose dependent or occlusion dependent models.

3. Approach

3.1. The general framework

The goal of the facial landmark detection algorithm is

to find out the mapping from image I to landmark loca-

tions x ∈ ℜ2Dl , where Dl is the number of facial land-

marks. To handle images with occlusion and large head

poses, we introduce the landmark visibility probability vari-

able p ∈ [0, 1]Dl . For one specific image with binary land-

mark occlusion vector c ∈ {0, 1}Dl , pd measures the prob-

ability that a landmark is visible (cd = 1).

The general framework of the proposed robust cascade

regression method is shown in Figure 2, 3 and Algorithm 1.

With the initial landmark locations and the assumption that

all the landmarks are visible at the beginning, the algorithm

Algorithm 1: The general framework

Initialize the landmark locations x0 using the mean face;

Assume all the landmarks are visible p0 = 1

for t=1, 2, ..., T or convergence do
Update the landmark visibility probabilities given the

images, the current landmark locations, and the

occlusion pattern Loss(.).

ft : I, x
t−1

, Loss(.) → ∆p
t

p
t = p

t−1 + ∆p
t

Update the landmark locations given the images, the

current landmark locations, and the landmark visibility

probabilities.

gt : I, x
t−1

, p
t → ∆x

t

x
t = x

t−1 + ∆x
t

end

Output the estimated landmark locations xT and the binary

occlusion vector based on the predicted visibility

probabilities pT .

updates the visibility probabilities and the landmark loca-

tions across iterations to achieve convergence. When updat-

ing the visibility probabilities, we introduce a constrained

supervised regression model, denoted as ft, to predict the

landmark visibility probability update ∆pt based on the im-

age, the current landmark locations xt−1 and the occlusion

pattern embedded in a loss function Loss(.). When updat-

ing the landmark locations, we use a regression function gt

that predicts the landmark location update ∆xt based on the

image, the current landmark locations xt−1, and the visibil-

ity probabilities pt. In the following, we discuss each part

in details.

3.2. Update the landmark visibility probability

The landmark visibility probability and landmark occlu-

sion are difficult to predict. First, there are large variations

of the facial appearance on the occluded facial parts, since

the occlusion could be caused by arbitrary objects. Second,

due to the poor landmark detection results in the first few

iterations, direct occlusion prediction is infeasible. Thus, a

better choice is to update the landmark visibility probabili-

ties by accumulating information through iterations. Third,

due to the occlusion consistency among nearby points, there
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exists certain occlusion pattern, which should be embedded

in the model as a constraint. However, since any part of

the face could be occluded by arbitrary objects, there are a

large number of possible patterns and the occlusion patterns

could be complex. Thus, it’s not appropriate to pre-define

the possible occlusion pattern (e.g. mouth is occluded) as

the existing works [4][28], and more effective model should

be used. Fourth, it’s not enough to learn the occlusion pat-

tern from limited training images with exhaustive human

annotations. In fact, the occlusion pattern can be learned

from synthetic data. Last but not the least, the regression

function should depend on both the local appearances and

the current shapes for joint prediction. Based on those intu-

itions, we propose to update the landmark visibility proba-

bilities based on the appearance and shape information from

all points and use the learned explicit occlusion pattern as a

constraint.

3.2.1 Landmark visibility prediction model

Landmark visibility prediction depends on the local appear-

ance, the current shape, and the occlusion pattern. To en-

code the appearance information, we use SIFT features of

the local patches centered at the current landmark locations,

denoted as φ(I, xt−1) ∈ ℜDlDf (Df =128 is the dimension

of features). To encode the shape information, we calculate

the differences of x, y coordinates for pairwise landmarks

to get the shape features denoted as ϕ(xt−1) ∈ ℜDl(Dl−1),

which provide the scale, pose, and non-ridge information of

the current face. By combining the appearance and shape

information, we can generate a concatenated feature vector

denoted as Ψ(I, xt−1) = [φ(I, xt−1);ϕ(xt−1)]. To encode

the occlusion pattern, we learn a loss function Loss(c) for

occlusion vector c (there are 2Dl ). The loss function penal-

izes the infrequent and infeasible occlusion label configu-

rations (e.g. every other point is occluded). Then, we can

update the landmark visibility probabilities pt for the next

iteration:

minimize
∆pt

‖∆p
t − T

tΨ(I, x
t−1)‖2

2 + λEpt [Loss(c)]

subject to p
t = p

t−1 + ∆p
t

0 ≤ p
t ≤ 1

(1)

Ept [Loss(c)] =

2Dl∑

k=1

Loss(ck)P (ck; p
t) (2)

P (c; p) =

Dl∏

d=1

pd
cd(1 − pd)1−cd (3)

In the first term of the objective function, we use linear

regression function with parameter T t to predict the land-

mark visibility probability update ∆pt from the appearance

and shape features Ψ(I, xt−1), and we want to minimize the

standard least squares error. In the second term, we want to

minimize the expected loss of the occlusion vector, where

the expectation is taken over the visibility probabilities pt

we want to infer for the next iteration. The basic idea is

to minimize the discrepancy between the predicted binary

occlusion vector and the prior occlusion pattern encoded in

Loss(c). The expectation is denoted as Ept [Loss(c)] and it

is detailed in Equation 2 and 3. λ is the hyper-parameters.

In the following, we first explain model learning, and then

discuss model inference.

3.2.2 Learning the landmark visibility prediction

model

Model learning refers to the estimation of the linear regres-

sion parameter T t for each iteration and the loss function

Loss(.), which should be learned before the cascade train-

ing.

We use the Autoencoder model [3] (Figure 4 (a)) to learn

the loss function Loss(.) that captures the prior occlusion

pattern based on the landmark occlusion labels of the train-

ing data and the synthetic data. We generate the synthetic

landmark occlusion labels by sampling different numbers

of occluders (up to 4 rectangles with random sizes and lo-

cations) in the face region and superimposing them onto the

mean face (see Figure 4 (b) for one example). Then, based

on all the feasible landmark occlusion label ci from the real

training data and the synthetic data, we learn the Autoen-

coder model with parameters θ = {W1, b1, W2, b2} that

can minimize the reconstruction errors:

θ
∗ = arg min

∑

i

‖ci − σ(W2σ(W1ci + b1) + b2)‖
2
2, (4)

where σ(.) is the sigmoid function. The model is pre-

trained with Restricted Boltzmann Machine model and fine-

tuned jointly [13]. After model learning, the loss func-

tion is defined as the reconstruction errors Loss(c; θ) =
‖c−σ(W2σ(W1c+b1)+b2)‖

2
2. Figure 4 (c) shows the dis-

tributions of reconstruction errors of the feasible occlusion

labels for Auto-encoder training, and random binary data,

consisting of both feasible and infeasible occlusion vectors.

The reconstruction error apparently can penalize the ran-

dom infeasible occlusion vectors.

For the estimation of linear regression function with pa-

rameter T t in each iteration, we use standard least squares

formulation. Specifically, given the training image, the cur-

rently estimated landmark locations xt−1
i , we can calculate

the appearance and shape features Ψ(Ii, xt−1). By subtract-

ing the currently estimated landmark visibility probabilities

pt−1
i from the ground truth probabilities p∗

i , we can get the

landmark visibility probability update ∆pt
i. Then, T t could

be estimated by the standard least-squares formulation with

closed form solution.

T
t∗ = arg min

T t

∑

i

‖∆p
t
i − T

tΨ(Ii, x
t−1
i )‖2

2 (5)
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(b) (c)
Figure 4. (a) Learning the occlusion patterns with Autoencoder.

(b) Generate the synthetic occlusion labels. Green points: mean

face shape. Gray areas: randomly generated occluders. (c) The

distributions of reconstruction errors. Training data: feasible oc-

clusion labels for Auto-encoder training. Random data: randomly

generated binary data consisting of both feasible and infeasible

occlusion vectors (e.g. every other point is occluded).

3.2.3 Inference with the landmark visibility prediction

model

In inference, with Equation 1, we need to estimate ∆pt

given the appearance and shape features Ψ(I, xt−1), the cur-

rently estimated visibility probabilities pt−1, model param-

eter T t, and the loss function Loss(.). The inference is

non-trivial, since the calculation of the expectation (Equa-

tion 2) would sum over 2Dl possible occlusion vectors

which would be intractable if the number of landmarks Dl

is large. To tackle this problem, we use Monte Carlo ap-

proximation and calculate the second term over the samples

(K=5000 in our experiments).

Ept [Loss(c)] ≈
const

K

K∑

k=1

Loss(c̃k)P t(c̃k), (6)

where c̃k is sampled by assuming all vectors are equally

likely, and const = 2Dl .

To solve the optimization problem in Equation 1 with the

approximation in Equation 6, we use gradient descent algo-

rithm. If we denote the gradient of the objective function

w.r.t. ∆pt as δ, then:

δ = 2(∆p
t − T

tΨ(I, x
t−1)) + λ

const

K

K∑

k=1

Loss(c̃k)
∂P t(c̃k)

∂∆pt
,

(7)
Given the gradient δ, ∆pt can be updated by moving along

the descent direction, with the constraint that pt = pt−1 +
∆pt is in the range [0, 1]Dl .

3.3. Update the landmark locations

Given the predicted landmark visibility probabilities, we

need to update the landmark locations. There are a few

issues and difficulties for landmark localization on images

with occlusion and large head poses. First, the points should

not be treated equally. For points with low visibility proba-

bilities, the local appearances would be less useful and reli-

able, since the appearance of the occluder has limited infor-

mation about the landmark locations. Second, for the detec-

tion of the occluded landmarks, the shape features and the

shape constraint from other landmarks are more important

than its local appearance. Third, due to the self-occlusion

issue on images with large head poses, the location anno-

tations for landmarks on the occluded facial parts are not

available.

Based on the intuitions illustrated above, we modify the

regression based method for landmark detection. Specifi-

cally, we predict the location update vector ∆xt with linear

regression function as bellow:

∆x
t = R

t[
√

pt ◦ Ψ(I, x
t−1)] (8)

Here, “◦” denotes the block-wise product between the

square of the landmark visibility probabilities and the ap-

pearance features from corresponding point (we keep the

shape features unchanged). In this case, the prediction will

rely more on appearance features from points with high vis-

ibility probabilities, while treat the shape features equally.

Since all points are estimated together starting from the

mean face, the shape constraint is automatically embedded

in learning. Thus, the algorithm may detect the occluded

points based on the shape constraint. During detection, we

could only output the landmark locations with high visibil-

ity probabilities (> 0.6) (second row of Figure 2 (e)).

In model training, we need to estimate the parameter

Rt in each iteration with missing landmark location an-

notations (e.g. no landmark annotations on self-occluded

facial parts). To tackle this incomplete annotation issue,

for each training image, we introduce the binary variable

w ∈ {0, 1}Dl to indicate whether the location annotation of

a specific landmark is available (wk = 1) or not (wk = 0).

Then, combining wi, the location update ∆xt
i (subtracting

the current landmark locations xt−1
i from the ground truth

x∗i ), the currently estimated visibility probability pt
i, and the

concatenated appearance and shape features Ψ(Ii, xt−1
i ),

parameter learning can be formulated as a weighted least

squares problem with closed form solution.

R
t = arg min

Rt

∑

i

‖∆x
t
i−R

t[
√

pt
i ◦Ψ(Ii, x

t−1
i )]‖2

diag(wi), (9)

where diag(wi) ∈ ℜ2Dl×2Dl is a diagonal matrix and the

corresponding elements (for x,y coordinates) are 0 if the

landmark location annotation is missing. Therefore, param-

eter learning for the corresponding rows of Rt will not de-

pend on the specific data with missing landmark annotation.

3.4. Discussion

Differences with Supervised Descent method

(SDM) [26]: 1) SDM learns the descent direction for facial
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landmark detection. It is not designed to handle occlusions.

2) SDM cannot handle images with large head pose with

severe self-occlusion.2 3) The derivation in [26] shows

that the regression function should change according to the

current shape, while SDM fix it as constant. In the proposed

method, our shape features compensate this limitation.

Differences with Robust Cascade Pose Regression

method (RCPR) [4]: 1) RCPR builds several occlusion

dependent models which only draw features from 1/9 of the

facial region, assuming the region is not occluded. Based

on the limited information from 1/9 of the facial region,

it’s difficult for RCPR to predict the landmark locations and

their occlusions on the other 8/9 facial region. In addition,

the pre-defined 9 models can not effectively cover all possi-

ble occlusion cases. On the contrary, the proposed method

trains one unified model, which is more flexible and robust.

It draws features from the whole regions and considers them

with different weights, which is more effective. 2) RCPR

cannot handle images with large head poses. 3) There is no

explicit occlusion pattern in RCPR.

Differences with Face detection, Pose estimation,

Landmark Localization algorithm (FPLL) [30]: 1)

FPLL follows the Constrained Local Method. It builds sev-

eral pose dependent models and chooses the detection result

with the highest score from all models. It would lead to poor

result if the model is chose incorrectly. On the contrary, we

propose a unified model that automatically solve the prob-

lem. 2) FPLL can not handle images with severe occlusion.

4. Experimental results

In this section, we evaluate the proposed method on im-

ages with severe occlusion, images with large head poses,

and general “in-the-wild” images.

4.1. Implementation details

Databases: We use three kinds of databases. The first

kind of databases contain general “in-the-wild” images col-

lected from the internet with near-frontal head poses (less

than 60 degree) and limited occlusion (about 2%). They

are the Labeled Face Parts in the Wild (LFPW) database [2]

with 29 points and the Helen database [16] with 194 points.

For LFPW database, due to the invalid URLs, we only col-

lected 608 images for training and 152 images for testing

from the internet. For Helen database, following the pre-

vious works [16][20], we use 2000 images for training and

use the remaining 330 images for testing. The second kind

of database contains “in-the-wild” images with severe oc-

clusion (about 25%). Here, we use the Caltech Occluded

Faces in the Wild (COFW) database [4]. There are 1345

images for training and 507 images for testing. The anno-

tations include the landmark locations and the binary oc-

2Global SDM [25] solves this issue to some extent.

clusion labels for 29 points. The third kind of database

contains images with large head poses (e.g. profile face,

head pose larger than 60 degrees). Most of the facial im-

ages comes from the MultiPIE database [12] and the Facial

Recognition Technology (FERET) database [19]. The an-

notations of 39 visible points on MultiPIE are provided by

the database and [30]. We annotated 11 points on profile im-

ages from FERET. Sample images from different databases

can be found in Figure 8.

Evaluation criteria: Following the previous works,

we calculate the error as the distance between detected

landmarks and the ground truth landmarks normalized by

the inter-ocular distance. For the third kind of database

with profile images, we normalized the error by half of

the distance between the outer eye corner and mouth cor-

ner. Throughout the paper, we calculate the average error

across all available annotated landmarks from the testing

databases.

Model parameters: When calculating the SIFT fea-

tures, the radius of the local image patch is about 0.14 of the

face size. There are 4 cascade iterations for the model. To

augment the training images, following the previous works,

we perturb the scale, rotation angle, and position of the ini-

tial face shape for parameter learning. The hyper-parameter

λ in Equation 1 is 0.001. We use Autoencoder with one

hidden layer and we set 20 and 25 hidden nodes for experi-

ments in section 4.2 and 4.3, respectively.

4.2. Images with severe occlusion

In this section, we show the performance of the algo-

rithms on the challenging COFW database with severe oc-

clusion (about 25%). For fair comparison, following the

previous work [4], the algorithm is trained with training set

from COFW and tested on the testing set. For the proposed

method, we implemented three versions and they are de-

noted as ours baseline (no shape features as discussed in

section 3.2.1, no occlusion pattern constraint as defined in

the second term of Equation 1), ours ShapeFea (with shape

features, no occlusion pattern), and ours Full (with shape

features and occlusion pattern).

Facial landmark detection: The experimental results

are shown in Table 1 and Figure 8 (a). The proposed method

is close to human performance and it is significantly bet-

ter than all the other state-of-the-art works, including the

Cascaded Regression Copse (CRC) [10], the Occlusion Co-

herence (OC) [11], SDM [26], RCPR [4], Explicit Shape

Regression (ESR) [5], and FPLL algorithm [30]. Note that

for the algorithms that can perform well on general “in-the-

wild” databases, such as SDM [26] and ESR [5], there are

significant performance drops on the COFW database with

severe occlusion. In addition, the proposed method is sig-

nificantly better than SDM that ignores the occlusion pat-

tern and shape features. Comparing three versions of the
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proposed method, we see that the shape features, and occlu-

sion pattern are important for good performance.

Table 1. Comparison of facial landmark detection errors and oc-

clusion prediction results on COFW database (29 points) [4]. The

reported results from the original papers are marked with “*”.

algorithm
Landmark detection error Occlusion prediction

visible points all points precision/recall%

Human - 5.6 [4] -

CRC [10] - 7.30* -

OC [11] - 7.46* 80.8/37.0%*

SDM [26] 6.69 7.70 -

RCPR [4] - 8.50* 80/40%*

ESR [5] - 11.20 -

FPLL [30] - 14.40 -

ours baseline 5.68 6.54 80/43.78%

ours ShapeFea 5.22 5.96 80/46.07%

ours Full 5.18 5.93 80/49.11%

Occlusion prediction: The occlusion prediction results

are shown in Table 1 and Figure 8 (a). Following the pre-

vious work [4], we fix the precision to be about 80%, and

compare the recall values. As can be seen, the proposed

method is much better than OC [11] and RCPR [4], which

are the state-of-the-art works.

Performance across iterations: In Figure 5, we show

the landmark detection errors and the recall values (fixing

precision as 0.8, following [4]) based on the estimated oc-

clusion probabilities across all four iterations using the pro-

posed method (ours Full). As can be seen, both the land-

mark detection and the occlusion prediction results improve

over iterations and they converge quickly.

(a) (b)
Figure 5. Performance of the proposed method across iterations

on COFW database. (a) Landmark detection errors. (b) Occlusion

prediction accuracy (recall values at precision=0.8).

4.3. Images with large head poses

In this section, we evaluate the full model of the pro-

posed method and compare it to other algorithms on chal-

lenging images with large head poses (larger than 60 de-

grees). To the best of our knowledge, the FPLL algo-

rithm [30] and Pose-free algorithm [27] are the only two

methods that can perform facial landmark detection on im-

ages with large head poses, due to the self-occlusion issue.

However, exact fair comparison to them is infeasible, since

they are trained on the combinations of different subsets of

MultiPie databases [12] and other databases. To ensure rel-

atively fair comparison, we use the software provided by

the authors for FPLL and pose-free algorithm, and we train

the proposed method with similar procedure. For training,

we use the MultiPie database with 14 poses, the training set

from Helen and LFPW databases with 51 landmarks. We

test all the algorithms on profile faces from FERET database

(244 right profile face, 221 left profile face).

The experimental results are shown in Figure 6, 7 and

8 (b). In Figure 6, we plot the cumulative error distribu-

tion curves. In Figure 7, for different algorithms, we show

the images with the largest fitting errors. As can be seen,

the proposed method is significantly better than the FPLL

algorithm [30] and Pose-free algorithm [27] on the profile

faces. The Pose-free algorithm could result in large facial

landmark detection error if the estimated pose is wrong (e.g.

Figure 7(a)). Among all the 465 testing images, our algo-

rithm only fail to predict the correct landmark occlusions on

one image (last image in Figure 8(b)).
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Figure 6. Cumulative error distribution curves on profile faces.

(a) (b) (c)
Figure 7. For different methods, we show the images with the

worst fitting results. (a) Pose-free [27], (b) FPLL [30], (c) pro-

posed method.

4.4. General “in-the-wild" images

Finally, we evaluate the proposed method on general

and less challenging “in-the-wild” images and compare it

to more state-of-the-art works. Note that, most of the al-

gorithms that perform well on general “in-the-wild” im-

ages do not work well on challenging images with severe
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(a) COFW database (b) Profile faces from FERET database

(c) Helen database (d) LFPW database
Figure 8. Facial landmark detection results with the proposed method on four databases. (a) COFW [4] database with severe occlusion.

Red points: the proposed method predicts them as occluded landmarks. (b) Profile faces from FERET database [19]. We show all points

that the algorithm predicted as visible points. (c)(d) General “in-the-wild” Helen [16] and LFPW [2] database. (Better see in color)

occlusion or large head poses. Following the previous

works [16][20][26], for each database, we use the training

set to learn the model and test it on the testing set.

The experimental results on Helen and LFPW databases

are shown in Table 2 and Figure 8 (c)(d). The re-

sults on Helen database show that the performance of the

proposed method is better than the other state-of-the-art

works, including the fast version of Local Binary Feature

(LBF) method [20], SDM [26], RCPR [4], ESR [5], the

CompASM [16], and the Extended Active Shape Model

(STASM) [18]. For the experiments on LFPW database,

the training and testing data varies from method to method.

We only can get access to half of the training data com-

paring to the data used in the original Consensus of ex-

emplars (COE) [2]. However, the performance of the pro-

posed method is still comparable to the other methods. We

also tested the proposed method on the most challenging

ibug set [21] with 135 images. Our method achieves the

detection error of 11.52, which is better than the state-of-

the-art works [20][26][5], among which the best algorithm

achieves error of 11.98.

The speed of the proposed method is comparable to other

state-of-the-art works. For the model without the explicit

occlusion pattern, the proposed algorithm can achieves 15

frames per second running on a single core machine with

matlab implementation. With the occlusion pattern, the full

model of the proposed algorithm achieves 2 frames per sec-

ond. This is comparable to some state-of-the-art methods

(e.g. [26][4]), but slower than the others (e.g. [20]). But,

again, those fast algorithms may not work well on images

with severe occlusion or large head poses.

5. Conclusion

In this work, we propose a general facial landmark detec-

tion algorithm to handle images with severe occlusion and

Table 2. Comparison of facial landmark detection errors on Helen

database [16] (194 points) and LFPW database (29 points) [2].

The reported results from the original papers are marked with “*”.

algorithm Helen LFPW

LBF [20] 5.41* (fast 5.80*) 3.35*(fast 3.35*)

SDM [26] 5.82 3.47*

RCPR [4] 6.50* 3.50*

ESR [5] 5.70* 3.5*

EGM [29] - 3.98*

COE [2] - 3.99*

OC [11] - 5.07*

CompASM [16] 9.10* -

STASM [18] 11.1 -

FPLL [30] - 10.91

ours 5.49 3.93

(less data)

images with large head poses. We iteratively update the

landmark visibility probabilities and landmark locations.

For occlusion prediction, we train one unified model to han-

del different kinds of occlusion and we explicitly add the

prior occlusion pattern as the constraint. For landmark de-

tection, we treat points differently and rely more on the

information from points with high visibility probabilities.

The experimental results show that the proposed method is

significantly better than the other state-of-the-art works on

images with severe occlusion and images with large head

poses. It is also comparable to other methods on general

and less challenging “in-the-wild” images.

In the future, we would further improve the algorithm in

two directions. First, we would extend the detection algo-

rithm for realtime tracking. Second, we would improve the

algorithm so that it can handle more challenging cases in

real world conditions (e.g. significant illumination change,

low resolution, etc.).
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