
Learning to Track: Online Multi-Object Tracking by Decision Making

Yu Xiang1,2, Alexandre Alahi1, and Silvio Savarese1

1Stanford University, 2University of Michigan at Ann Arbor

yuxiang@umich.edu, {alahi, ssilvio}@stanford.edu

Abstract

Online Multi-Object Tracking (MOT) has wide appli-

cations in time-critical video analysis scenarios, such as

robot navigation and autonomous driving. In tracking-

by-detection, a major challenge of online MOT is how to

robustly associate noisy object detections on a new video

frame with previously tracked objects. In this work, we

formulate the online MOT problem as decision making in

Markov Decision Processes (MDPs), where the lifetime of

an object is modeled with a MDP. Learning a similarity

function for data association is equivalent to learning a pol-

icy for the MDP, and the policy learning is approached in

a reinforcement learning fashion which benefits from both

advantages of offline-learning and online-learning for data

association. Moreover, our framework can naturally handle

the birth/death and appearance/disappearance of targets by

treating them as state transitions in the MDP while leverag-

ing existing online single object tracking methods. We con-

duct experiments on the MOT Benchmark [24] to verify the

effectiveness of our method.

1. Introduction

Tracking multiple objects in videos is an important prob-

lem in computer vision which has wide applications in var-

ious video analysis scenarios, such as visual surveillance,

sports analysis, robot navigation and autonomous driving.

In cases where objects in a specific category are to be

tracked, such as people or cars, a category detector can be

utilized to facilitate tracking. Recent progress on Multi-

Object Tracking (MOT) has focused on the tracking-by-

detection strategy, where object detections from a category

detector are linked to form trajectories of the targets. In or-

der to resolve ambiguities in associating object detections

and to overcome detection failures, most of these recent

works [7, 11, 27, 23] process video sequences in a batch

mode in which video frames from future time steps are also

utilized to solve the data association problem. However,

such non-causal systems are not suitable for online tracking

applications like robot navigation and autonomous driving.

Tracked Lost Tracked

Tracked Lost Tracked

Tracked TrackedTracked

MDP1

MDP2

MDP3

Figure 1. We formulate the online multi-object tracking problem as

decision making in a Markov Decision Process (MDP) framework.

For tracking-by-detection in the online mode, the ma-

jor challenge is how to associate noisy object detections

in the current video frame with previously tracked objects.

The basis for any data association algorithm is a similarity

function between object detections and targets. To handle

ambiguities in association, it is useful to combine different

cues in computing the similarity, such as appearance, mo-

tion, and location. Most previous works rely on heuristi-

cally selected parametric models for the similarity function

and tune these parameters by cross-validation, which is not

scalable to the number of features and does not necessarily

guarantee generalization power of the model.

Recently, there is a trend on learning to track that advo-

cates the concept of injecting learning capabilities to MOT

[38, 25, 22, 20, 4]. Based on their learning schemes, we

can categorize these methods into offline-learning methods

and online-learning methods. In offline-learning, learning

is performed before the actual tracking takes place. For in-

stance, [25, 20] use supervision from ground truth trajec-

tories offline to learn a similarity function between detec-

tions and tracklets for data association. As a result, offline-

learning is static: it cannot take into account the dynamic

status and the history of the target in data association, which

is important to resolve ambiguities, especially when it needs

to re-assign missed or occluded objects when they appear

again. In contrast, online-learning conducts learning during

tracking. A common strategy is to construct positive and

negative training examples according to the tracking results,

and then to train a similarity function for data association

14705



(e.g., [38, 22, 4]). Online-learning is able to utilize features

based on the status and the history of the target. However,

there are no ground truth annotations available for supervi-

sion. So the method is likely to learn from incorrect training

examples if there are errors in the tracking results, and these

errors can be accumulated and result in tracking drift.

In this work, we formulate the online multi-object track-

ing problem (MOT in the online mode) as decision making

in Markov Decision Processes (MDPs), where the lifetime

of an object is modeled with a MDP, and multiple MDPs

are assembled for multi-object tracking (Fig. 1). In our

framework, learning a similarity function for data associa-

tion is equivalent to learning a policy for the MDP. The pol-

icy learning is approached in a reinforcement learning fash-

ion which benefits from advantages of both offline-learning

and online-learning in data association. First, learning in

our method is conducted offline so as to utilize supervi-

sion from ground truth trajectories. Second, learning in our

method takes place while tracking objects in training se-

quences, so the MDP is able to make the decision based on

both the current status and the history of the target. Specif-

ically, given the ground truth trajectory of a target and an

initial similarity function, the MDP attempts to track the tar-

get and collects feedback from the ground truth. According

to the feedback, the MDP updates the similarity function to

improve tracking. The similarity function is updated only

when the MDP makes a mistake in data association, which

enables us to collect hard training examples to learn the sim-

ilarity function. Finally, training is finished when the MDP

can successfully track the target.

In addition to the advantages of our learning strategy,

our framework can naturally handle the birth/death and

appearance/disappearance of targets by treating them as

state transitions in the MDP. Our method also benefits

from the strengths of online single object tracking meth-

ods [3, 15, 16, 5], where we learn and update an appearance

model for a target online in order to handle object detec-

tion failures. We conduct experiments on the recently intro-

duced benchmark for multi-object tracking [24]. Our exten-

sive system analysis and comparison with the state-of-the-

art tracking methods on the MOT benchmark demonstrate

the superiority of our method.

2. Related Work

Multi-Object Tracking. Recent research in MOT has

focused on the tracking-by-detection principal, where the

main challenge is the data association problem in linking

object detections. Majority of the batch methods ([43, 25,

31, 7, 36, 11, 27]) formulates MOT as a global optimiza-

tion problem in a graph-based representation, while online

methods solve the data association problem either proba-

bilistically [33, 19, 32] or determinatively (e.g., Hungarian

algorithm [29] in [20, 4] or greedy association [10]). A core

component in any data association algorithm is a similarity

function between objects. Both batch methods [25, 22] and

online methods [38, 20, 4] have explored the idea of learn-

ing to track, where the goal is to learn a similarity function

for data association from training data. Our main contribu-

tion in this work is a novel reinforcement learning algorithm

for data association in online MOT.

Online Single Object Tracking. In single object track-

ing, the state-of-the-art trackers [3, 15, 16, 5, 41, 39, 34, 40]

focus on how to learn a strong appearance model of the tar-

get online and use it for tracking. It is non-trivial to apply

these trackers to MOT since they are not able to handle the

entering/exiting of objects from the scene. The initial loca-

tion of the target needs to be specified before the tracking

starts, and they assume that the target exists in the whole

video sequence. Additionally, online single object trackers

are likely to drift if the appearance of the target changes

significantly. Another contribution of our work is that by

modeling the lifetime of an object with a MDP, we are able

to take the advantages of existing online single object track-

ers to facilitate MOT, while overcoming their limitations by

using object detection as additional cues.

MDP in Vision. Markov decision processes [6] have

been applied to different computer vision tasks, such as fea-

ture selection for recognition [35, 17], human activity fore-

casting [21], video game playing [28] and human-machine

collaboration [37]. MDP is suitable for dynamic environ-

ments where an agent needs to perform certain tasks by

making decisions and executing actions sequentially. In

our framework, we consider a single object tracker to be

an agent in MDP, whose task is to track the target. Then we

learn a good policy for the MDP with reinforcement learn-

ing, and employ multiple MDPs to track multiple targets.

3. Online Multi-Object Tracking Framework

In Sec. 3.1 and Sec. 3.2, we introduce our Markov deci-

sion process formulation in modeling the lifetime of a single

target in object tracking, then we present our method using

multiple MDPs for online multi-object tracking in Sec. 3.3.

3.1. Markov Decision Process

In our framework, the lifetime of a target is modeled with

a Markov Decision Process (MDP). The MDP consists of

the tuple (S,A, T (·), R(·)):

• The target state s ∈ S encodes the status of the target.

• The action a ∈ A which can be performed to a target.

• The state transition function T : S ×A 7→ S describes

the effect of each action in each state.

• The real-valued reward function R : S × A 7→ R de-

fines the immediate reward received after executing ac-

tion a to state s.

4706



Tracked

LostActive

Inactive

object 

detection

a
1

a
2

a
3

a
4

a
5

a
6

a
7

Figure 2. The target MDP in our framework.

States. We partition the state space in the target MDP

into four subspaces, i.e., S = SActive ∪ STracked ∪ SLost ∪
SInactive, where each subspace contains infinity number of

states which encode the information of the target depend-

ing on the feature representation, such as appearance, lo-

cation, size and history of the target. Fig. 2 illustrates the

transitions between the four subspaces. “Active” is the ini-

tial state for any target. Whenever an object is detected by

the object detector, it enters an “Active” state. An active

target can transition to “Tracked” or ”Inactive”. Ideally,

a true positive from object detector should transition to a

“Tracked” state, while a false alarm should enter an “Inac-

tive” state. A tracked target can keep tracked, or transition

to “Lost” if the target is lost due to some reason, such as

occlusion, or disappearance from the field of view of the

camera. Likewise, a lost target can stay as lost, or go back

to “Tracked” if it appears again, or transition to “Inactive”

if it has been lost for a sufficiently long time. Finally, “In-

active” is the terminal state for any target, i.e., an inactive

target stays as inactive forever.

Actions and Transition Function. Seven possible tran-

sitions are designed between the states of a target, which

correspond to seven actions in our target MDP. Fig. 2 il-

lustrate these transitions and actions. In the MDP, all the

actions are deterministic, i.e., given the current state and an

action, we specify a new state for the target. For example,

executing action a4 on a tracked target would transfer the

target into a lost state, i.e., T (sTracked, a4) = sLost.

Reward Function. In our MDP, the reward function is

not given but needs to be learned from training data, i.e., an

inverse reinforcement learning problem [30], where we use

ground truth trajectories of the targets as supervision.

3.2. Policy

In MDP, a policy π is a mapping from the state space S
to the action space A, i.e., π : S 7→ A. Given the current

state of the target, a policy determines which action to take.

Equivalently, the decision making in MDP is performed by

following a policy. The goal of policy learning is to find

a policy which maximizes the total rewards obtained. In

this section, we first describe our policies designed for the

Active subspace and the Tracked subspace, then we present

a novel reinforcement learning algorithm to learn a good

policy for data association in the Lost subspace.

3.2.1 Policy in an Active State

In an Active state s, the MDP makes the decision between

transferring an object detection into a tracked or inactive tar-

get to deal with noisy detections. This decision making can

be considered to be a preprocessing step before tracking.

Strategies such as non-maximum suppression or threshold-

ing detection scores are usually used. In our implementa-

tion, we train a binary Support Vector Machine (SVM) [8]

offline to classify a detection into tracked or inactive using

a normalized 5D feature vector φActive(s), i.e., 2D coordi-

nates, width, height and score of the detection, where train-

ing examples are collected from training video sequences.

This is equivalent to learning the reward function in Active:

RActive(s, a) = y(a)
(

w
T
ActiveφActive(s) + bActive

)

, (1)

where (wActive, bActive) defines the hyperplane in SVM,

y(a) = +1 if action a = a1, and y(a) = −1 if a = a2 in

Fig. 2. Note that a false alarm from object detector can still

be miss-classified and transfered to a tracked state, which

will be handled by the MDP in the tracked and lost states.

3.2.2 Policy in a Tracked State

In a Tracked state, the MDP needs to decide whether to keep

tracking the target or to transfer it into a lost state. As long

as the target is not occluded and is in the camera’s field of

view, we should keep tracking it. Otherwise, it should be

marked as lost. This decision making is related to the goal

of single object tracking in the literature [3, 15, 16, 5]. In-

spired by these works, we build an appearance model for

the target online and use it to track the target. If the appear-

ance model is able to successfully track the target in the

next video frame, the MDP leaves the target in a tracked

state. Otherwise, the target is transferred to a lost state.

Our framework is general to utilize different approaches in

building the appearance model. We describe our implemen-

tation based on the TLD tracker [16] in this work.

Template Representation. The appearance of the target

is simply represented by a template that is an image patch of

the target in a video frame. Whenever an object detection is

transferred to a tracked target, we initialize the target tem-

plate with the detection bounding box. Fig. 3(a) illustrates a

template for a pedestrian. When the target is being tracked,

the MDP collects its templates in the tracked frames to rep-

resent the history of the target, which will be used in the lost

state for decision making.

4707



(a) target template (b) stable prediction (c) unstable prediction

Frame 50 Frame 51 Frame 57Frame 50 Frame 51 Frame 57Frame 50

Figure 3. The appearance of the target is represented by a template in a video frame (a). We compute optical flow from densely sampled

points inside the target template to a new frame. The quality of the flow is used as a cue to make the decision: (b) an example of stable

prediction; (c) an example of unstable prediction due to partial occlusion, where we show both the cropped frames and the origin frames.

The yellow box is the predicted location of the target.

Template Tracking. In order to use the target tem-

plate for tracking, we compute an optical flow from densely

and uniformly sampled points inside the template to a new

video frame. Specifically, given a point u = (ux, uy) on

the target template I , we find its corresponding location

v = u+d = (ux+dx, uy+dy) in the new frame J using the

iterative Lucas-Kanade method with pyramids [9], where

d = (dx, dy) is the optical flow at u. After computing the

optical flow of all the sampled points, we use the Forward-

Backward (FB) error defined in [16] to measure how stable

the predict is. Given the prediction v of point u on the tar-

get template, we can compute the backward flow of point v

to the target template and obtain a new prediction u
′. If the

optical flow is stable, u and u
′ should be close to each other.

So FB error of a point is defined as the Euclidean distance

between the original point and the forward-backward pre-

diction: e(u) = ‖u− u
′‖2, and the stability of the tracking

is measured using the median of the FB errors of all sam-

pled points: emedFB = median({e(ui)}
n
i=1), where n is the

number of points. If emedFB is larger than some threshold,

the tracking is considered to be unstable. Moreover, after

filtering out unstable matches whose FB error is larger than

the threshold, we can predict a bounding box for the target

using the remaining matches, which is treated as the new

location of the target. Fig. 3 (b) and (c) illustrate the optical

flow in a stable case and an unstable case respectively. As

we can see, the quality of the optical flow is an important

cue to decide whether to keep tracking the target or not.

However, it is risky to make the decision based on optical

flow only. Because the tracked target can be a false alarm

from the object detector (see Sec. 3.2.1), whose appearance

may not change, such as a detection on the background of

the scene. In this case, the optical flow tracker will keep

tracking the false alarm. To handle this case, we resort to

the object detector. The intuition is that a false alarm can-

not be consistently detected. If a tracked target does not en-

counter object detections for a while, it is likely to be a false

alarm. So we examine the history of the target, and com-

pute the bounding box overlap o(tk,Dk) between the target

tk in k frames before and the corresponding detections Dk.

Then we compute the mean bounding box overlap for the

past K tracked frames omean = mean
(

{o(tk,Dk)}
K
k=1

)

as

another metric to make the decision. Finally, we define the

reward function in a tracked state s with feature representa-

tion φTracked(s) = (emedFB, omean) as

RTracked(s, a) =

{

y(a), if emedFB < e0 and omean > o0

− y(a), otherwise,

(2)

where e0 and o0 are specified thresholds, y(a) = +1 if ac-

tion a = a3, and y(a) = −1 if a = a4 in Fig. 2. So the

MDP keeps the target in a tracked state if emedFB is smaller

but omean is larger than certain thresholds respectively. Oth-

erwise, the target is transfered to a lost state.

Template Updating. The appearance model of the tar-

get needs to be updated in order to accommodate the ap-

pearance change. Online tracking methods [3, 15, 16, 5]

update the appearance model whenever the tracker tracks

the target. As a result, they are likely to accumulate track-

ing errors during the update, and drift from the target. In

our MDP, we adopt a “lazy” updating rule and resort to the

object detector in preventing tracking drift. Specifically, the

template used in tracking remains unchanged if it is able to

track the target. Whenever the template fails to track the tar-

get due to appearance change, the MDP transfers the target

into a lost state. The “tracking” template is replaced by the

associated detection when the target transitions from lost to

tracked (Sec. 3.2.3). Meanwhile, we store K templates as

the history of the target being tracked. The “tracking” tem-

plate is one of the K templates, but may not be the latest

one due to our “lazy” updating rule. These K templates are

used for data association in lost states. So we do not accu-

mulate tracking errors, but reply on the data association to

handle the appearance change and continue the tracking.

3.2.3 Policy in a Lost State

In a Lost state, the MDP needs to decide whether to keep

the target as lost, transition it to a tracked state, or mark it

as inactive. We simply mark a lost target as inactive and

terminate the tracking if the target has been lost for more

than TLost frames. The challenging case is to make the deci-

sion between tracking the target and keeping it as lost. We

treat it as a data association problem: in order to transfer a

4708



lost target into a tracked state, the target needs to be asso-

ciated with one of the detections from the object detector,

otherwise, the target is kept as lost.

Data Association. Let t denote a lost target, and d

be an object detection. Our goal is to predict the label

y ∈ {+1,−1} of the pair (t, d) indicating that the target

is linked (y = +1) or not linked (y = −1) to the detection.

We perform the binary classification using a real-valued lin-

ear function f(t, d) = w
Tφ(t, d) + b, where (w, b) are the

parameters that control the function, and φ(t, d) is the fea-

ture vector which captures the similarity between the target

and the detection. The decision rule is given by y = +1 if

f(t, d) ≥ 0, otherwise y = −1. Consequently, the reward

function for data association in a lost state s with feature

representation φLost(s) = {φ(t, dk)}
M
k=1 is defined as

RLost(s, a) = y(a)
(

M
max
k=1

(

w
Tφ(t, dk) + b

)

)

, (3)

where y(a) = +1 if action a = a6, y(a) = −1 if a = a5
in Fig. 2, and k indexes M potential detections for associa-

tion. The task of policy learning in the lost state reduces to

learning the parameters (w, b) in the decision function.

Reinforcement Learning. We train the binary classifier

with reinforcement learning in our MDP. Let V = {vi}
N
i=1

denote a set of video sequences for training, where N is the

number of sequences. Suppose there are Ni ground truth

targets Ti = {tij}
Ni

j=1 in video vi. Our goal is training the

MDP to successfully track all these targets. We start train-

ing with an initial weights (w0, b0) and an empty training

set S0 = ∅ for the binary classifier. Note that whenever

the weights of the binary classifier are specified, we have a

complete policy for the MDP which takes the action max-

imizing the reward in a given state. So the training algo-

rithm loops over all the videos and all the targets, follows

the current policy of the MDP to track the targets. The bi-

nary classifier or the policy is updated only when the MDP

makes a mistake in data association. In this case, the MDP

takes a different action as indicated by the ground truth tra-

jectory. Suppose the MDP is tracking the jth target tij in

video vi, and on the lth frame of the video, the MDP is

in a lost state. Let’s consider two types of mistakes that

can happen. i) The MDP associates the target tlij to an ob-

ject detection dk which is wrong according to the ground

truth, i.e., the target is incorrectly associated to a detection.

Then φ(tlij , dk) is added to the training set S of the binary

classifier as a negative example. ii) The MDP decides to

not associate the target to any detection, but the target is

visible and correctly detected by a detection dk according

to the ground truth, i.e., the MDP missed the correct as-

sociation. Then φ(tlij , dk) is added to the training set as

a positive example. After the training set has been aug-

mented, we update the binary classifier by re-training it on

the new training set. Specifically, given the current train-

ing set S = {(φ(tk, dk), yk)}
M
k=1, we solve the following

soft-margin optimization problem to obtain a max-margin

classifier for data association:

min
w,b,ξ

1

2
‖w‖2 + C

M
∑

k=1

ξk

s.t. yk
(

w
Tφ(tk, dk) + b

)

≥ 1− ξk, ξk ≥ 0, ∀k, (4)

where ξk, k = 1, . . . ,M are the slack variables, and C is

a regularization parameter. Once the classifier has been up-

dated, we obtain a new policy which is used in the next iter-

ation of the training process. We keep iterating and updat-

ing the policy until all the targets are successfully tracked.

Algorithm 1 summarizes the policy learning algorithm.

input : Video sequences V = {vi}
N
i=1

, ground truth trajectories

Ti = {tij}
Ni
j=1

and object detectionDi = {dij}
N′

i
j=1

for video

vi, i = 1, . . . , N
output: Binary classifier (w, b) for data association

1 Initialization: w ← w0, b← b0, S ← ∅
2 repeat

3 foreach video vi in V do

4 foreach target tij in vi do

5 Initialize the MDP in Active ;

6 l← index of the 1st frame tij correctly detected ;

7 Transfer the MDP to Tracked, and initial the target template ;

8 while l ≤ index of last frame of tij do

9 Follow the current policy and choose an action a ;

10 Compute the action agt indicated by the ground truth ;

11 if Current state is Lost and a 6= agt then

12 Decide the label yk of the pair (tlij , dk) ;

13 S ← S ∪ {(φ(tlij , dk), yk)} ;

14 (w, b)← solution of Eq. (4) on S ;

15 break ;

16 else

17 Execute action a ;

18 l← l + 1 ;

19 end

20 end

21 if l > index of last frame of tij then

22 Mark target tij as successfully tracked;

23 end

24 end

25 end

26 until all targets are successfully tracked;

Algorithm 1: Reinforcement learning of the binary

classifier for data association

Feature Representation. One advantage of our rein-

forcement learning algorithm is that it is general and enables

us to design and utilize features which are based on the sta-

tus and the history of the target. We describe our design of

the feature vector φ(t, d) which encodes the similarity be-

tween a target t and a detection d. First of all, the history of

the target is represented by K templates in the past K video

frames when the target is being tracked before it transfers to

the lost state. Second, given the object detection d, we com-

pute optical flow from each template to the detection in the

same way as described in Sec. 3.2.2 but constrain the desti-

nation of the optical flow inside a neighborhood around the

bounding box of the detection. Then we measure the quality

of the optical flow in different aspects and use these metrics

4709



Type Notation Feature Description

FB error φ1, · · · , φ5

Mean of the median forward-backward errors

from the entire, left half, right half, upper half

and lower half of the templates in optical flow

NCC

φ6

Mean of the median Normalized Correlation

Coefficients (NCC) between image patches

around the matched points in optical flow

φ7

Mean of the NCC between image patches

of the detection and the predicted bounding

boxes from optical flow

Height ratio

φ8

Mean of the ratios in bounding box height be-

tween the detection and the predicted bound-

ing boxes from optical flow

φ9

Ratio in bounding box height between the tar-

get and the detection

Overlap φ10

Mean of the bounding box overlaps between

the detection and the predicted bounding

boxes from optical flow

Score φ11 Normalized detection score

Distance φ12

Euclidean distance between the centers of the

target and the detection after motion predic-

tion of the target with a linear velocity model

Table 1. Our feature representation for data association.

as features. Finally, we add features based on the similarity

between the bounding boxes of the target and the detection.

Table 1 summaries our feature representation.

3.3. Multi­Object Tracking with MDPs

After learning the policy/reward of the MDP, we apply it

to the multi-object tracking problem. We dedicate a MDP

for each object, and the MDP follows the learned policy to

track the object. Given a new input video frame, targets

in tracked states are processed first to determine whether

they should stay as tracked or transfer to lost states. Then

we compute pairwise similarity between lost targets and ob-

ject detections which are not covered by the tracked targets,

where non-maximum suppression based on bounding box

overlap is employed to suppress covered detections, and the

similarity score is computed by the binary classifier for data

association. After that, the similarity scores are used in the

Hungarian algorithm [29] to obtain the assignment between

detections and lost targets. According to the assignment,

lost targets which are linked to some object detections are

transferred to tracked states. Otherwise, they stay as lost.

Finally, we initialize a MDP for each object detection which

is not covered by any tracked target. Algorithm 2 describes

our multi-object tracking algorithm using MDPs in detail.

Note that, tracked targets have higher priority than lost tar-

gets in tracking, and detections covered by tracked targets

are suppressed to reduce ambiguities in data association.

4. Experiments

Datasets. We test our tracking framework on the re-

cently introduced Multiple Object Tracking Benchmark

[24] for people tracking. The MOT Benchmark collects

widely used video sequences in the MOT community and

some new challenging sequences. These sequences are di-

vided into a training set and a test set each with 11 se-

quences. Since the annotations of the test set are not re-

input : A video sequence v and object detectionD = {dk}
N
k=1

for v,

binary classifier (w, b) for data association

output: Trajectories of targets T = {ti}
M
i=1

in the video

1 Initialization: T ← ∅ ;

2 foreach video frame l in v do

// process targets in tracked states

3 foreach tracked target ti in T do

4 Follow the policy, move the MDP of ti to the next state ;

5 end

// process targets in lost states

6 foreach lost target ti in T do

7 foreach detection dk not covered by any tracked target do

8 Compute f(ti, dk) = w
Tφ(ti, dk) + b ;

9 end

10 end

11 Data association with Hungarian algorithm for the lost targets ;

12 foreach lost target ti in T do

13 Follow the assignment, move the MDP of ti to the next state ;

14 end

// initialize new targets

15 foreach detection dk not covered by any tracked target in T do

16 Initialize a MDP for a new target t with detection dk ;

17 if action a1 is taken following the policy then

18 Transfer t to the tracked state ;

19 T ← T ∪ {t} ;

20 else

21 Transfer t to the inactive state ;

22 end

23 end

24 end

Algorithm 2: Multi-Object Tracking with MDPs

leased, we separate a validation set of 6 sequences from the

11 training sequences to conduct analysis about our frame-

work. The training and testing splitting for validation and

testing is shown in Table 2. Except for AVG-TownCentre

in the test set, for each of the other test sequences, there are

training sequences which are captured in similar scenario

indicated by the naming of the sequences. This property

enables us to learn meaningful characteristics from training

sequences and use them for testing . The MOT benchmark

also provides object detections from the ACF detector [13].

By using the same object detection, we can make a fair com-

parison between different tracking methods.

Evaluation Metrics. We use multiple metrics to eval-

uate the multiple object tracking performance as suggested

by the MOT Benchmark. These include Multiple Object

Tracking Accuracy (MOTA) [18], Multiple Object Tracking

Precision (MOTP) [18], Mostly Track targets (MT, percent-

age of ground truth objects who trajectories are covered by

the tracking output for at least 80%), Mostly Lost targets

(ML, percentage of ground truth objects who trajectories

are covered by the tracking output less than 20%), the total

number of False Positives (FP), the total number of False

Negatives (FN), the total number of ID Switches (IDS), the

total number of times a trajectory is Fragmented (Frag), and

the number of frameworks processed in one second (Hz).

4.1. Analysis on Validation Set

Impact of the History. We first investigate the effect

of the number of templates used in a lost state for data as-

4710



Training Testing

Validation on MOT Benchmark

TUD-Stadtmitte TUD-Campus

ETH-Bahnhof ETH-Sunnyday, ETH-Pedcross2

ADL-Rundle-6 ADL-Rundle-8, Venice-2

KITTI-13 KITTI-17

Testing on MOT Benchmark

TUD-Stadtmitte, TUD-Campus TUD-Crossing

PETS09-S2L1 PETS09-S2L2, AVG-TownCentre

ETH-Bahnhof, ETH-Sunnyday,

ETH-Pedcross2

ETH-Jelmoli, ETH-Linthescher,

ETH-Crossing

ADL-Rundle-6, ADL-Rundle-8 ADL-Rundle-1, ADL-Rundle-3

KITTI-13, KITTI-17 KITTI-16, KITTI-19

Venice-2 Venice-1

Table 2. Training and Testing sequences for validation and testing

on the MOT Benchmark.

K MOTA MOTP MT ML FP FN IDS Frag

1 24.7 73.2 10.3 55.1 3,597 13,651 147 303

2 25.7 73.5 9.8 53.4 3,548 13,485 121 349

3 23.0 73.6 8.5 56.0 3,727 13,907 134 325

4 26.3 73.9 9.8 53.8 3,191 13,726 91 300

5 26.7 73.7 12.0 53.0 3,386 13,415 111 331

6 19.5 73.7 5.6 68.8 3,393 14,920 269 321

7 26.1 73.6 10.7 55.6 3,092 13,838 132 306

8 25.8 73.8 10.7 55.6 3,221 13,785 122 305

9 26.7 73.6 12.0 51.7 3,290 13,491 133 328

10 26.6 73.8 9.8 55.1 2,691 14,130 123 276

11 25.3 73.5 12.0 52.1 3,672 13,436 136 317

12 24.8 73.4 11.5 55.6 3,637 13,585 139 321

Table 3. Tracking performance in terms of the number of templates

on the validation set.

1 2 3 4 5 6
0

5

10

15

20

25

30

Tracker

M
O

T
A

Framework Analysis

Full Model

Disable a3 in tracked

Disable a6 in lost

Disable FB error

Disable NCC

Disable height ratio

Disable distance

Figure 4. Analysis of our framework on the validation set by dis-

abling different components.

sociation (Sec. 3.2.3). Intuitively, the more templates we

use, the longer history of the target is captured. Table 3

shows the tracking performance in terms of the number of

templates on the validation set, where we accumulate the

statistics across all the 6 testing sequences for evaluation.

From the table, we observe two peaks for the tracking per-

formance. One is around using 5 templates, and the other

is around using 9 templates, which demonstrates that us-

ing multiple templates to capture the history of the object is

helpful. With 9 templates, we see significant improvements

in terms of mostly tracked (MT) and mostly lost (ML). This

indicates that the tracker is able to generate long tracks to

cover the target, which in turn reflects that the data associa-

tion is more effective.

Contribution of Different Components. We investi-

gate the contribution of different components in our frame-

56.0

44.8

47.9

53.2

49.0

46.8

43.4

48.2

47.5

42.1

14.0

13.3

11.5

13.9

11.5

20.0

22.6

26.1

20.9

22.1

30.8

30.8

29.8

32.1

29.4

60.8

60.3

57.8

59.9

61.2

Testing Sequences

T
ra

in
in

g
 S

e
q
u
e
n
c
e
s

MOTA

TUD−Campus

ETH−Sunnyday

ETH−Pedcross2

ADL−Rundle−8

Venice−2
KITTI−17

TUD−Stadtmitte

ETH−Sunnyday

ADL−Rundle−6

KITTI−13

PETS09−S2L1

Figure 5. Tracking performance in MOTA with different pairs of

training and testing sequences.

work by disabling a component at one time and then ex-

amining the performance drop in terms of MOTA on the

validation set (Fig. 4). 1) We disable action a3 in tracked

states (Fig. 2). Then the template tracking is disabled and a

tracked target directly transfers to a lost state. We do not see

significant performance drop in this case, since the frame-

work can still rely on data association in lost states to con-

tinue tracking. Template tracking is helpful when the detec-

tor misses the target. 2) We disable action a6 in lost states

(Fig. 2), i.e., data association for lost targets is disabled. In

this case, we see a significant loss in performance in Fig. 4.

Especially, ID switches are more than 3 times compared to

the full model. Data association is a crucial component in

our framework. 3-6) Finally, we investigate the contribution

of different features used in data association (Table 1). Fig.

4 shows the performance drop by disabling FB error in op-

tical flow (φ1, · · · , φ5), Normalized Correlation Coefficient

(NCC, φ6 and φ7), ratio between the heights of bounding

box (φ8 and φ9), and distance between the target and the

detection (φ12) respectively. As we can see, the four types

of features all contribute, and distance is relatively more im-

portant than other features. In addition, we do not see per-

formance drop by disabling bounding box overlap (φ10) and

detection score (φ11) on the validation set.

Cross-domain Tracking. In order to test the general-

ization power of our method, we also conduct experiments

by testing the trained tracker in different scenarios. The re-

sults are presented in Fig. 5. First, we can see from the

table that performing training and testing in similar scenar-

ios is beneficial. For example, the tracker trained on ADL-

Rundle-6 achieves the best performance on ADL-Rundle-8.

Second, trackers trained on the five training sequences per-

form reasonably well on all the test sequences. In some

cases, cross-domain testing even improves the results. For

instance, on the test sequence KITTI-17, the tracker trained

on PETS09-S2L1 achieves better performance than the one

trained on KITTI-13. Recall that our features used in data

4711



Tracker Tracking Mode Learning Mode MOTA MOTP MT ML FP FN IDS Frag Hz

DP NMS [36] Batch N/A 14.5 70.8 6.0% 40.8% 13,171 34,814 4,537 3,090 444.8

TC ODAL [4] Online Online 15.1 70.5 3.2% 55.8% 12,970 38,538 637 1,716 1.7

TBD [14] Batch Offline 15.9 70.9 6.4% 47.9% 14,943 34,777 1,939 1,963 0.7

SMOT [12] Batch N/A 18.2 71.2 2.8% 54.8% 8,780 40,310 1,148 2,132 2.7

RMOT [42] Online N/A 18.6 69.6 5.3% 53.3% 12,473 36,835 684 1,282 7.9

CEM [27] Batch N/A 19.3 70.7 8.5% 46.5% 14,180 34,591 813 1,023 1.1

SegTrack [26] Batch Offline 22.5 71.7 5.8% 63.9% 7,890 39,020 697 737 0.2

MotiCon [23] Batch Offline 23.1 70.9 4.7% 52.0% 10,404 35,844 1,018 1,061 1.4

MDP OFL (Ours) Online Offline 30.1 71.6 10.4% 41.3% 8,789 33,479 690 1,301 0.8

MDP REL (Ours) Online Online 30.3 71.3 13.0% 38.4% 9,717 32,422 680 1,500 1.1

Table 4. Tracking performance on the test set of the MOT Benchmark. More comparisons are available at [2].

TUD-Crossing #31 PETS09-S2L2 #111

AVG-TownCentre #52

ETH-Jelmoli #82 ETH-Linthescher #51 ETH-Crossing #97

ADL-Rundle-1 #232 ADL-Rundle-3 #183 Venice-1 #235 KITTI-16 #90, KITTI-19 #281

PETS09-S2L2 #68

Figure 6. Tracking results on the test sequences in the MOT benchmark.

association are similarity metrics between targets and de-

tections, which are not designed for specific scenarios. As a

result, our method learns the similarity function which can

be generalized across different sequences.

4.2. Evaluation on Test Set

After the analysis on the validation set, we perform train-

ing with all the training sequences, and test the trained

trackers on the test set according to Table 2, where we use

10 templates in data association. We submitted our results

to the MOT Benchmark website [2] for evaluation. Table 4

shows our tracking performance on the test set, where we

compare our tracker (MDP REinforcement Learning, MDP

REL) with the state-of-the-art methods tested on the MOT

benchmark. As we can see from the table, our tracker im-

proves 7% in MOTA compared with the second best pub-

lished tracker, and achieves the best performance in terms of

mostly tracked and mostly lost targets even though it works

in the online mode. The superior performance demonstrates

the advantages of our learning to track strategy with MDPs.

Fig. 6 shows sampled tracking results on the 11 sequences

in the test set (see [1] for the technical report with evaluation

on individual test sequences and the tracking videos).

We also evaluated a variation of our tracking method

(MDP OFfline Learning, MDP OFL), where we construct

training examples to learn the similarity function offline as

in the traditional way. In order to use the same features as in

MDP REL, we link true positive detections to form trajec-

tory of the target using the ground truth annotations. Pos-

itive (Negative) examples are pairs of target and detection

that should (not) be linked between adjacent video frames.

We collect 45,005 examples to learn 6 similarity functions

according to Table 2, and use them in our MDP frame-

work for testing. As we can see in Table 4, MDP OFL

also achieves very competitive performance compared to

other methods, which verifies the robustness of our tracking

framework. More importantly, MDP REL achieves better

performance than offline training by using 1,397 training

examples only in our experiments. With 3% of the train-

ing data as in offline learning but achieving similar or even

better performance, we demonstrate the benefit of our rein-

forcement learning algorithm for multiple object tracking.

5. Conclusion

We have proposed a novel online multi-object tracking

framework based on Markov decision processes, where the

lifetime of an object is modeled with a MDP with four sub-

spaces of states (Active, Tracked, Lost and Inactive). The

state transitions in the MDP naturally handle the birth/death

and appearance/disappearance of objects in tracking. A

similarity function for data association is learned as part of

the MDP policy with reinforcement learning. Our frame-

work is general to be integrated with different techniques in

object detection, single object tracking and data association

by using them for MDP policy learning. We have tested our

implementation of the tracking framework on the challeng-

ing MOT Benchmark, which outperforms the state-of-the-

art methods tested on the benchmark by notable margins.

Acknowledgments. We acknowledge the support of

DARPA UPSIDE grant A13-0895-S002. We thank David

Held and Christopher B. Choy for helpful discussions.

4712



References

[1] MDP Tracking. http://cvgl.stanford.edu/projects/

MDP_tracking. 8

[2] Multiple object tracking benchmark. http://motchallenge.

net. 8

[3] B. Babenko, M.-H. Yang, and S. Belongie. Robust object tracking

with online multiple instance learning. TPAMI, 33(8):1619–1632,

2011. 2, 3, 4

[4] S.-H. Bae and K.-J. Yoon. Robust online multi-object tracking based

on tracklet confidence and online discriminative appearance learning.

In CVPR, pages 1218–1225, 2014. 1, 2, 8

[5] C. Bao, Y. Wu, H. Ling, and H. Ji. Real time robust l1 tracker using

accelerated proximal gradient approach. In CVPR, pages 1830–1837,

2012. 2, 3, 4

[6] R. Bellman. A markovian decision process. Journal of Mathematics

and Mechanics, 6(5):679–684, 1957. 2

[7] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object track-

ing using k-shortest paths optimization. TPAMI, 33(9):1806–1819,

2011. 1, 2

[8] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the fifth annual

workshop on Computational learning theory, pages 144–152, 1992.

3

[9] J.-Y. Bouguet. Pyramidal implementation of the affine lucas kanade

feature tracker description of the algorithm. Intel Corporation, 5:1–

10, 2001. 4

[10] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and

L. Van Gool. Online multiperson tracking-by-detection from a sin-

gle, uncalibrated camera. TPAMI, 33(9):1820–1833, 2011. 2

[11] A. A. Butt and R. T. Collins. Multi-target tracking by lagrangian

relaxation to min-cost network flow. In CVPR, pages 1846–1853,

2013. 1, 2

[12] C. Dicle, O. I. Camps, and M. Sznaier. The way they move: Tracking

multiple targets with similar appearance. In ICCV, pages 2304–2311,

2013. 8

[13] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids

for object detection. TPAMI, 36(8):1532–1545, 2014. 6

[14] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3d traffic

scene understanding from movable platforms. TPAMI, 36(5):1012–

1025, 2014. 8

[15] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output tracking

with kernels. In ICCV, pages 263–270, 2011. 2, 3, 4

[16] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection.

TPAMI, 34(7):1409–1422, 2012. 2, 3, 4

[17] S. Karayev, M. Fritz, and T. Darrell. Anytime recognition of objects

and scenes. In CVPR, pages 572–579, 2014. 2

[18] B. Keni and S. Rainer. Evaluating multiple object tracking perfor-

mance: the clear mot metrics. EURASIP Journal on Image and Video

Processing, 2008:1:1–1:10, 2008. 6

[19] Z. Khan, T. Balch, and F. Dellaert. Mcmc-based particle filter-

ing for tracking a variable number of interacting targets. TPAMI,

27(11):1805–1819, 2005. 2

[20] S. Kim, S. Kwak, J. Feyereisl, and B. Han. Online multi-target track-

ing by large margin structured learning. In ACCV, pages 98–111.

2012. 1, 2

[21] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert. Activity

forecasting. In ECCV, pages 201–214. 2012. 2

[22] C.-H. Kuo, C. Huang, and R. Nevatia. Multi-target tracking by on-

line learned discriminative appearance models. In CVPR, pages 685–

692, 2010. 1, 2

[23] L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and

S. Savarese. Learning an image-based motion context for multiple

people tracking. In CVPR, pages 3542–3549, 2014. 1, 8

[24] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler.

MOTChallenge 2015: Towards a Benchmark for Multi-Target Track-

ing. arXiv:1504.01942 [cs], 2015. 1, 2, 6

[25] Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hybrid-

boosted multi-target tracker for crowded scene. In CVPR, pages

2953–2960, 2009. 1, 2

[26] A. Milan, L. Leal-Taixé, K. Schindler, and I. Reid. Joint tracking and

segmentation of multiple targets. In CVPR, pages 5397–5406, 2015.

8

[27] A. Milan, S. Roth, and K. Schindler. Continuous energy minimiza-

tion for multitarget tracking. TPAMI, 36(1):58–72, 2014. 1, 2, 8

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, and M. Riedmiller. Playing atari with deep reinforce-

ment learning. arXiv preprint arXiv:1312.5602, 2013. 2

[29] J. Munkres. Algorithms for the assignment and transportation prob-

lems. Journal of the Society for Industrial & Applied Mathematics,

5(1):32–38, 1957. 2, 6

[30] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement

learning. In ICML, pages 663–670, 2000. 3

[31] J. C. Niebles, B. Han, and L. Fei-Fei. Efficient extraction of human

motion volumes by tracking. In CVPR, pages 655–662, 2010. 2

[32] S. Oh, S. Russell, and S. Sastry. Markov chain monte carlo data as-

sociation for multi-target tracking. IEEE Transactions on Automatic

Control, 54(3):481–497, 2009. 2

[33] K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G. Lowe.

A boosted particle filter: Multitarget detection and tracking. In

ECCV, pages 28–39. 2004. 2

[34] S. Oron, A. Bar-Hillel, and S. Avidan. Extended lucas kanade track-

ing. In ECCV, pages 142–156, 2014. 2

[35] L. Paletta, G. Fritz, and C. Seifert. Q-learning of sequential attention

for visual object recognition from informative local descriptors. In

ICML, pages 649–656, 2005. 2

[36] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-optimal

greedy algorithms for tracking a variable number of objects. In

CVPR, pages 1201–1208, 2011. 2, 8

[37] O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both worlds:

human-machine collaboration for object annotation. In CVPR, pages

2121–2131, 2015. 2

[38] X. Song, J. Cui, H. Zha, and H. Zhao. Vision-based multiple interact-

ing targets tracking via on-line supervised learning. In ECCV, pages

642–655. 2008. 1, 2

[39] J. S. Supancic III and D. Ramanan. Self-paced learning for long-term

tracking. In CVPR, pages 2379–2386, 2013. 2

[40] Y. Xiang, C. Song, R. Mottaghi, and S. Savarese. Monocular multi-

view object tracking with 3d aspect parts. In ECCV, pages 220–235.

2014. 2

[41] R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. van den Hengel. Part-based

visual tracking with online latent structural learning. In CVPR, pages

2363–2370, 2013. 2

[42] J. H. Yoon, M.-H. Yang, J. Lim, and K.-J. Yoon. Bayesian multi-

object tracking using motion context from multiple objects. In

WACV, pages 33–40, 2015. 8

[43] L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-

object tracking using network flows. In CVPR, pages 1–8, 2008. 2

4713

http://cvgl.stanford.edu/projects/MDP_tracking
http://cvgl.stanford.edu/projects/MDP_tracking
http://motchallenge.net
http://motchallenge.net

