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Abstract

Egocentric videos are a valuable source of information

as a daily log of our lives. However, large fraction of ego-

centric video content is typically irrelevant and boring to

re-watch. It is an agonizing task, for example, to manually

search for the moment when your daughter first met Mickey

Mouse from hours-long egocentric videos taken at Disney-

land. Although many summarization methods have been

successfully proposed to create concise representations of

videos, in practice, the value of the subshots to users may

change according to their immediate preference/mood; thus

summaries with fixed criteria may not fully satisfy users’

various search intents. To address this, we propose a sto-

ryline representation that expresses an egocentric video as

a set of jointly inferred, through MRF inference, story el-

ements comprising of actors, locations, supporting objects

and events, depicted on a timeline. We construct such a sto-

ryline with very limited annotation data (a list of map loca-

tions and weak knowledge of what events may be possible at

each location), by bootstrapping the process with data ob-

tained through focused Web image and video searches. Our

representation promotes story-based search with queries in

the form of AND-OR graphs, which span any subset of story

elements and their spatio-temporal composition. We show

effectiveness of our approach on a set of unconstrained

YouTube egocentric videos of visits to Disneyland.

1. Introduction

The recent emergence of lightweight and wearable ego-

centric cameras allows collection of vast volumes of data

that visualize our experiences and social interactions [8].

The point-of-view data are potentially valuable as they

have been shown to be useful in estimating gaze [25] or

eye contact [44], and simplifying recognition of activities

[7, 18, 27] and object-person interactions [9, 27, 31]. De-

spite its appeal, however, the challenge with egocentric data

is that it consists of long and unstructured content, most

of which is boring for the users. Hence, recently, there has

been a large focus on efficient summarization techniques for

Figure 1. Motivation for storyline representation of egocentric

videos. (a) An input video. (b) Storyline representation with four

story elements (i.e. actors, events, locations, objects) on a time-

line. (c) Story-based video search for a query represented by an

AND-OR graph that combines any subsets of story elements.

egocentric videos [20, 23]. However, such methods may be

required to make user- and intent-agnostic decisions about

importance of objects [20] (through pre-trained detectors)

or events in videos [3] and select either keyframes or sub-

shots that maximize the perceived utility and diversity.

In this paper, our objective is somewhat different; we

aim at developing an approach for representing a given ego-

centric video using a storyline representation, as is exem-

plified with trip to Disneyland in Fig.1. Inspired by story

research in psychology and AI [37], we extract four story

elements: {Actors, Location, Supporting objects, Events}
on a timeline. We infer these story elements jointly, using

an MRF formulation, based on weakly-supervised online

data (as opposed to annotations, e.g. [20]), and automat-

ically account for the co-occurrences between the various

story elements such as watching wild animals (supporting
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object) while taking a boat ride (event) in Jungle Cruise

(location) in Disneyland. The core application of the sto-

ryline representation is the focused semantic story-based

video search and retrieval that cannot be achieved by con-

ventional keywords, content, or objects-based searches (See

Fig.1(c)). We define spatio-temporal queries using simple

AND-OR graphs [41] that combine any subsets of story el-

ements (e.g. At what attractions did we meet princesses

Tiana? Show me our walk to the castle? What did we do

after eating lunch?) Compared to summarization, we pro-

vide user-specific and intent-centric approach for retrieving

desired content from the unstructured videos using seman-

tically structured queries.

Although our approach is general enough to work for

any domain with sufficient amount of online data and ego-

centric videos (e.g. city tours or museum tours), here we

focus on visiting Disneyland in particular. Any theme park

and/or traveler destination, including Disneyland, is an ap-

pealing domain for a few key reasons: (1) people are more

willing to instrument themselves with egocentric cameras

when they embark on special experiences with their family

and friends; and (2) storyline representation can play a cen-

tral role in such settings for the purpose of personalization,

recommendation, and video search. Theme parks provide

different sets of attractions and entertainment, only parts

of which individual visitors can experience in a single day.

Through story-based queries, users can preview attractions

or paths that are taken by other families with similar de-

mographics and interests. For example, story-based queries

of the following form can be informative for new visitors:

To what attraction do families with 4 year-old boys most

frequently go to after visiting a castle? In summary, our

storyline representation potentially enables a variety of ap-

plications, including virtual exploration, path planning, and

travel recommendations among many others.

1.1. Related work

We discuss representative previous works from two lines

of research that are closely related to our work. We then

discuss the relation of some components of our framework

to recent works in computer vision.

Storyline Representation. Storylines have been used as

an important concept to summarize video clips, or allow

users to intuitively explore or edit them. The stories are

implemented in different forms, for example, annotated

schematic storyboards [12], cartoon pictures with word bal-

loons [42], and AND-OR graphs of human actions [13].

Our work differs in two key ways. First, we deal with a

set of unstructured egocentric videos that are contributed by

general users. Most previous works use structured domains

including movies [4], TV series [40], or sports broadcasts

[13]. Second, our storyline visualizes temporal changes of

interactions between a rich set of story elements.

The work of [23] is similar to ours in that it also ad-

dresses the story-based summary from user-centric videos.

However, the final output of [23] is chains of coherent video

subshots that are largely based on low-level image features

and object detection results. In contrast, we jointly infer

and visualize four high-level story elements. The work of

[40] creates StoryGraphs that visualize the storyline of TV

episodes on the timeline. However, it only deals with inter-

actions between actors for structured videos like TV series.

In their follow-up work [39], story-based video search is

also discussed, but it requires textual supervision of plot

synopses, subtitles, and transcripts, all of which are not

available for general users’ egocentric videos. Our work is

also related to [17] that leverages a large set of Flickr images

and YouTube videos to build storylines. However, in [17],

videos are simply summarized with a small set of selec-

tive keyframes, and their story graphs are chronologically

connected image clusters obtained using only low-level im-

age features. Finally, in [16] photo streams are leveraged to

create storylines in Disneyland, but video use, including of

first-person videos, is not discussed.

Egocentric Vision Research. Recent studies on egocentric

video have explored the tasks of object recognition [30], ac-

tivity recognition [7] and novelty detection [1]. Some works

also aim to efficiently visualize egocentric videos, such as

summarization [20, 23] and snap points detection [43]. The

work of [20] outputs a sequence of frames containing im-

portant objects and people from egocentric videos based

on image region ranking obtained from low-level cues. A

subshot-based summarization of [23] considers the influ-

ence between subshots in order to capture event connectiv-

ity. Other researches aim to recognize social interaction [8],

location [2] and human motion [29]. In contrast, our method

jointly models multiple high-level semantic story elements.

Instead of learning how to make decision on inherent impor-

tance of subshots, as is the goal in much egocentric summa-

rization, we shift the focus to providing a semantically rich

representation that can help search effectively. Thus, a vari-

ety of semantic queries can be answered without re-training

or re-tuning of the model.

Image-based localization. Location, which is one of our

story elements, estimation is related to the broader task

of image-based localization (e.g. IM2GPS [14]). Most

image-based localization approaches employ structure-

from-motion algorithms [33] to reconstruct geometry of the

scene and then proceed with 2D-to-3D image-to-geometry

matching. This can be both expensive and require dense

imagery of locations of interest, which is inappropriate for

our task. Instead, we build on purely image-based localiza-

tion techniques that amount to matching a query image to a

gallery of images representing location directly [14, 34].

Object discovery. Our unsupervised supporting object dis-

covery is related to recent works in mid-level object mining
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that attempt to discover image patches that correspond to

semantic objects or object parts. Most such works focus

on discriminative clustering with pruning [15, 21, 35]. A

notable departure is never-ending image learner [5] where

objects and their sub-categories are learned in a weakly su-

pervised manner from text web search. The difference with

[5] is that, instead of using object names as search queries,

since we do not know what supporting objects appear or

exist beforehand, we search for locations, from which sup-

porting objects are discovered in an unsupervised manner.

1.2. Contributions

Our contributions can be summarized as follows.

(1) To the best of our knowledge, our work is the first at-

tempt to automatically create storyline representation, and

support story-based semantic retrieval for unstructured ego-

centric videos, particularly in the tourism domain.

(2) We define four sets of story elements and propose a

joint inference algorithm to infer and visualize them on a

timeline. We also formulate the story-based retrieval based

on simple AND-OR graphs through marginalization using

the Metropolis-Hastings algorithm.

(3) We evaluate our approach with a Disneyland dataset

collected from YouTube. We show that our joint inference

approach outperforms alternative baselines for the discov-

ery of story elements and story-based retrieval.

2. Problem Formulation

Given an input egocentric video, our goal is to jointly

recognize and visualize story elements: actors, locations,

events, and supporting objects (defined in detail in Section

2.2) on a timeline. We first obtain various training data

sources from the Internet in order to train classifiers that

assign confidence to presence of each story element at each

frame (Section 2.1). We then jointly infer these story el-

ements over time, taking into account temporal continuity

and mutual context of co-occurrences between them (Sec-

tion 3). Finally, we present a visual summary of interactions

between story elements on the timeline and show how our

storylines support search and retrieval with various story-

based queries (Section 4).

2.1. The Data

The Disneyland park consists of multiple districts, each

of which includes a sets of attractions, dining, and other en-

tertainment (e.g. parades and stage shows). For simplicity,

we hereafter use the term attractions, without distinction, to

indicate the locations corresponding to all of the attractions,

dining, and entertainment. We denote the set of attractions

by L. We obtain the list of attractions from Disney’s offi-

cial maps, resulting in |L| = 64 attractions. For dining, we

consider a character dining as a separate attraction, and all

the other dining experiences as a single restaurant attrac-

tion. The character dining (e.g. Goofy’s Kitchen) is a set of

restaurants where visitors can take pictures with characters.

Training sets of images and videos. Once list of attrac-

tions is defined, we crawl two types of training data from

the Internet: sets of attraction images and videos. We query

each attraction name to download at maximum 100 and

1, 000 top-ranked images from Google and Flickr1, respec-

tively. We then manually remove irrelevant images. These

images are used to learn location classifiers and to discover

supporting objects and learn corresponding detectors.

Training videos are downloaded from YouTube by

querying the same attraction names. Training videos are not

restricted to be egocentric. Most training videos are short,

around 2-3 minutes long, of a subject participating in one

event at one attraction. After manual cleanup of irrelevant

videos, we obtain at maximum 100 training videos per at-

traction, which are used for training event classifiers.

Test Set of Egocentric Videos. We collect test egocen-

tric videos captured in the target domain (i.e. Disneyland

park) from YouTube2. Since we are interested in the in-

teraction between different story elements, we impose sev-

eral requirements on the selected test videos; (i) each video

should be longer than 5 minutes, and (ii) contain recordings

of multiple actors (i.e. travelers with family or friends) who

visit multiple attractions (i.e. at least 3 different attractions)

and participate in more than one event (e.g. walking, shop-

ping, dining and taking rides).

Consequently, we download 10 egocentric videos from

YouTube. The number of videos is relatively small, mainly

because we limited ourselves to collection of egocentric

videos under above mentioned terms3. However, our videos

are sufficient representative of general egocentric videos

on YouTube. While the dataset of [8] is also Disneyland-

related, we exclude it here because it focuses on interactions

among visitors and lacks Disney attraction experiences.

2.2. Definition of Story Elements

In the following, we discuss each of four story elements:

{Actors, Locations, Supporting objects, Events}.

Actors. We define actors as friends or family mem-

bers who interact with the subject recording the egocentric

video. The number of actors is not fixed beforehand, and

is driven by the face detection and association in the video.

In order to reliably discriminate actors from bystanders ap-

pearing accidentally in the frame, we perform the following

procedure: (i) we run face detection using the Fraunhofer

1We download only creative-commons licensed images to ensure we

have the rights to use them (original image content was not altered).
2Videos are, again, collected under creative-commons licensing terms,

or with explicit permission of the users, to ensure we have the right to use

or display them (original content of videos was not altered).
3A majority of YouTube videos are not creative-commons licensed.
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engine [32] to detect actor candidates, (ii) we perform tem-

poral clustering and filtering, informed by face bounding

box sizes, to extract tracks of faces that are sufficiently long

and at a fairly high resolution. We discuss details of actor

detection in Section 3.1.

Locations. It is useful to find at which location each frame

is likely to have been taken, because visitors’ activities and

stories can be segmented according to attractions. To this

end, we perform attraction-based localization in which we

assign likelihood to each frame, in the video, of it being

captured at each of the defined attractions. In this paper,

we use terms attractions and locations interchangeably. We

present the algorithm in detail in Section 3.2.

Supporting objects. Supporting objects that interact with

actors play an important role not only in storyline represen-

tation but also in story element estimation. The detection of

characteristic objects can hint at the location, or at the event,

that actors must be enjoying (e.g. Lightning McQueen char-

acter is most often encountered in the Car’s land district).

Unlike the attractions, we do not have a readily available

prior information about object lists or named entities, which

would allow even weak supervision. Therefore, we propose

a fully unsupervised algorithm for object discovery (i.e. de-

tecting supporting objects and training detectors for them),

which we explain in Section 3.4.

Events. We define events as various activities in which vis-

itors participate in Disneyland. We enumerate the following

common events: walking, shopping, dining, watching per-

formance, posing with Disney characters, getting on ground

transportation, taking a boat, and going on rides.

2.3. Other Domains Beyond Disneyland

Our approach is easily extendible to other domains of

tourism. Among the four types of story elements, only

class list of locations and events should be defined a pri-

ori, the discovery of actors and objects are unsupervised.

Since plenty of online public information is available for all

popular tourist destinations, it is typically not challenging to

define locations and events. Here, for example, we leverage

the official visitors’ maps for the Disneyland park.

Given a new domain of interest (e.g. city tour of Paris),

we perform two pre-requisite steps before applying our ap-

proach: (i) constructing list of locations and events using

the official guide books, maps, or webpages, and (ii) collect-

ing training sets of images and videos from Google/Flickr

and YouTube, as done in previous section. Once the in-

put data are ready, we can use exactly the same algorithms,

without modification, to extract story elements from ego-

centric videos of the new domain.

Note that although we focus on the Disneyland park here,

our method is applicable as long as one can list classes of

locations and events, and collect training images and videos.

Figure 2. The graphical model for joint inference of story elements

between locations, events, and objects.

3. Joint Inference of Story Elements

Given an unlabeled egocentric video of T frames, our

task is to recognize actors at ∈ A, locations lt ∈ L, events

et ∈ E and supporting objects ot ∈ O in every frame

t ∈ [1, T ]. Our key idea is to jointly infer the story elements,

which often show temporal smoothness and co-occurrence

relations. Particularly, events, objects, and locations are

highly correlated among each other. Detection of a specific

object can be a strong clue for localization (e.g. if a frame

includes an elephant-like object, it is likely to be taken at the

location Dumbo the Flying Elephant). In a reverse direc-

tion, localization can significantly reduce the search space

for object detection. Events and locations are also intercon-

nected; for instance, the event taking a boat is highly likely

at the attraction Jungle Cruise4.

On the other hand, the actor story elements have dif-

ferent correlation behavior, because actors can appear any-

where at any time as they potentially share every experience

with the subject. As such, the presence/absence of actors is

presumably independent of all the other story elements and

would not benefit from joint modeling.

Therefore, we jointly model locations, events and objects

(i.e. all the story elements except actors) with a Markov

random field as shown in Fig.2. The vertices in the graph

represent story elements at each frame t, and edges indicate

the dependencies among the variables. In particular, Fig.2

illustrates that each element at time t is conditionally inde-

pendent of those at t ± 2, given the elements of the same

type at t±1 (i.e. the 1st-order Markovian assumption). The

model also encodes that supporting objects are condition-

ally independent of events given the location information.

The joint probability of the model for the egocentric

video V is encoded by:

p(e, l,o,V) =
1

Z
φ(e, l,o,V)ψ(e, l,o) (1)

where Z is the normalizing constant, e = {et}
T
t=1, l =

{lt}
T
t=1, and o = {ot}

T
t=1. The unary potential φ(·) and the

pairwise potential ψ(·) are

4 Similar correlations exist in other domains, for example, in Paris, the

event taking a panoramic view is likely to be associated with the location

Eiffel Tower, but not with Champs Elysees.
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φ(e, l,o,V) =

T∏

t=1

φe(et,vt)φl(lt,vt)φo(ot,vt), (2)

ψ(e, l,o)=




∏

x∈{e,l,o}

T−1∏

t=1

ψx(xt, xt+1)






∏

x∈{e,o}

T∏

t=1

ψx,l(xt, lt)




where vt it the t-th frame of the video V.

While we defer the details of the unary terms to the

following sections, we here focus on the pairwise poten-

tial ψx(xt, xt+1), which models the transition probability

of each story element (i.e. x = {e, l, o}: event, location,

object). We use a Potts-like potential to encourage the ele-

ments of neighboring frames to have similar values:

ψx(xt, xt+1) =

{
γx if xt = xt+1

1 if xt 6= xt+1

, x ∈ {e, l, o}, (3)

where γx ≥ 1 is a parameter to learn. A large γx encourages

the story elements to persist at the same values for longer.

The pairwise potential ψx,l(xt, lt) models correlations

among the location and other story elements of events and

supporting objects. Since the object discovery is unsuper-

vised, we let ψo,l(ot, lt) = ηot,lt , where the parameter ηot,lt
is learned by co-occurrence statistics of locations and ob-

jects in the training images. We might do the same with the

pairwise potential between locations and events, if we had

sufficient video training data. However, since we do not, we

rely on prior information and encourage locations and event

variables to take compatible values:

ψe,l(et, lt) =

{
ν if et and lt are compatible

1 otherwise
(4)

The value of ν ≥ 1 is a parameter that we learn. By sharing

the parameters, we can keep the number of parameters in

our model small, which helps avoid overfitting with a small

number of training video instances.

Learning: We learn γx and ν using cross validation,

and ηo,l is set to a uniform prior plus the approximation

of p(l|o). The uniform prior ensures each location have

nonzero probability of every object. The approximated

p(l|o) is computed by counting the fraction of detections

for object o that co-occur with location l. For example, if

an object o = A co-occurs a half of the time with location

l = B and the other half with l = C, then p(l = B|o =
A) = p(l = C|o = A) = 0.5.

Inference. We use loopy belief propagation [24], which

does not guarantee convergence to the global optimum, but

we observe that this approximate inference works well in

practice for our problem.

3.1. Actor Detection

We recognize actors at in an unsupervised manner as

follows. We first detect faces in each video frame vt us-

ing Fraunhofer face detector [32], which returns bounding

boxes containing faces along with confidence scores. The

detector is also capable of returning estimates of age, face

orientation and emotion, which can further be useful in es-

timating the mood of actors such as happiness and surprise.

Due to a large amount of motion and other noise in ego-

centric videos, many false positives are unavoidable even

with the state-of-the-art face detector [32]. In addition, it is

challenging to distinguish true actors from accidental by-

standers that may appear in the vicinity, given that Dis-

neyland is densely populated. We observe that true actors

should appear for larger and more frequently, compared to

bystanders. Therefore, we retain high confidence detections

that are temporally consistent (i.e. appear for at least 1 sec-

ond in the video) and larger than 60-by-60 pixels in size.

3.2. Image­based Localization

We define unary localization potential, φl(lt,vt), by rec-

ognizing in which attraction each frame vt is recorded.

Recall that we collect training images per location from

Google/Flickr, which are used to train attraction-based loca-

tion classifiers. We leverage the images instead of videos,

because it is easier to obtain weakly-labeled images than

videos. For example, if we query the attraction name Mad

Tea Party, almost all top-ranked images obtained by the

search engine are relevant, whereas the returned videos may

include lots of noisy and irrelevant parts.

We extract dense SIFT features and use Improved Fisher

Vectors (IFV) [26] for feature encoding. In order to pre-

serve weak spatial information of each attraction, we also

use the spatial histogram [19]. Each image is divided into

1 × 1 and 2 × 2 regions, and the total of 5 spatial regions

are all encoded by IFV and then concatenated to obtain the

final feature fl(vt) ∈ R
81,920. Then we train a linear SVM

for each attraction, where a score of frame t belonging to

the attraction l is computed by wlfl(vt) − bl, where wl is

a learned weight vector and bl is a bias. Since each linear

SVM is trained independently, we found it useful to cali-

brate the different 1-vs-all SVM scores by fitting a sigmoid

function to the output of each attraction SVM [28]. The

final potential is then represented by

φl(lt,vt) = σlt (wltfl(vt)− blt) , (5)

where σlt(·) is the learned sigmoid for each attraction lt.

3.3. Event Recognition

Both visual content and motion information are excel-

lent cues for event recognition. For example, the motion

pattern of a walking person is clearly different from that of
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a person who is watching a performance. In the same vein,

some prior works [23, 29] leverage the camera egomotion

to recognize activities. However, multiple activities may

have similar motion patterns; for example, the camera mo-

tion is relatively stationary in both watching performance

and dining events. Hence, visual content is appended to

disambiguate such cases (e.g. the presence of menu, plates

and silverware would strongly indicate the dining event).

Based on the above observation, we exploit both visual

and motion features to train event classifiers. As a visual

feature, we exploit Bag-of-Words (BoW) and spatial his-

togram to encode dense-SIFT features. As a motion fea-

ture, we extract dense optical flow [22], and quantize the

flow angles and magnitudes into 16-bins. We also compute

the mean and variance of both flow angles and magnitudes.

The visual and motion features are then concatenated to pro-

duce a feature vector fe(vt) ∈ R
15,036. Similar to localiza-

tion, we train 1-vs-all SVM for each event and fit a sigmoid

function to obtain a probability distribution over each event,

resulting in the following unary potential:

φe(et,vt) = σet (wetfe(vt)− bet) . (6)

3.4. Supporting Object Detection and Recognition

One possible approach to discover supporting objects is

to let a human annotator identify a list of objects of inter-

est, and manually label them. However, this would require

excessive human effort, and thus is expensive and time-

consuming. Therefore, we implement an unsupervised ap-

proach that discovers supporting objects from training im-

ages of each attraction, and then trains an object detector for

each discovered object. Given a novel egocentric video, we

can then apply the trained object detectors to each frame to

detect the most salient supporting object in that frame.

We first cluster training images from the same attraction,

using two global features of GIST and RGB histograms,

with Gaussian mixture models (GMM) and affinity propa-

gation [10]. For each image cluster, we then use an algo-

rithm similar to [38] that localizes one common object from

each cluster. To ensure the quality of the discovered objects,

we also manually rule out inconsistent or poor discovered

objects. However, note that this is done by a binary selec-

tion on the level of discovered objects, and hence requires

little effort. We then train object detectors with linear SVM

for each discovered object. The final object unary potential

is given in the form similar to locations and events:

φo(ot,vt) = σot (wotfo(vt)− bot) . (7)

Note that we are interested in discovering iconic objects that

are dedicated and characteristic to each attraction, as op-

posed to generic object categories (e.g. ImageNet [6]). For

instance, we want to detect Dumbo (i.e. an elephant-like

ride vehicle) in the attraction Dumbo the Flying Elephant,

but not generic chair in the attraction Enchanted Tiki Room.

(a) Frame-Based (b) Frame+HMM

Figure 3. The graphical models of the two baselines.

Although we mainly use SVM classifiers with standard

image features for the story element detection, our frame-

work is orthogonal to the choice of classifiers and descrip-

tors, which can be replaced by any state-of-the-arts methods

(e.g. deep learning features [11]).

4. Story-based Retrieval

Wearable cameras allow users to record the videos of ev-

erything they experience throughout a day. However, it still

remains challenging to search and retrieve relevant video

segments since egocentric videos are long and taken in an

unconstrained environment. In this section, our goal is to

perform story-based retrieval that enabled users to easily

review locations and events, and find objects or people of

interest, by leveraging our model of jointly inferred story

elements. We use a simple AND-OR graph to describe

the query syntax, which consists of combination of story

elements (e.g. search for a subshot taken after my daugh-

ter (actors) danced with (events) Chip ’n’ Dale (supporting

objects)). In Section 5.2 we illustrate typical examples of

queries written in the form of AND-OR graphs and their

corresponding retrieval results.

Once each query is encoded by an AND-OR graph, we

then use a sampling method to compute the marginal prob-

ability that satisfies the query. As a simple example, if we

want to query subshots of event A at location B, the AND-

OR graph looks like [(et=A) AND (lt=B)]. We sample our

Markov random field with the Metropolis-Hastings algo-

rithm to compute p(et = A, lt = B). This is done by first

drawing a large number of samples from the Markov ran-

dom field, and then for each subshot i that is represented

by ei, li and oi, we compute the proportion of number of

samples that agree with the queried evidence to the total

number of samples. The AND-OR graph can also encode

temporal queries. For instance, if we want to search for

subshots after event A at location B, then the AND-OR

syntax is [(et−1 = A) AND (lt−1 = B)]. Likewise, we

rank each subshot at t by p(et−1 = A, lt−1 = B). For OR

syntax, we use max pooling of all possible branches. If we

want to query subshots of event A at location B1 or B2,

the AND-OR graph can be expressed as [(et = A) AND

((lt = B1) OR (lt = B2))], then we rank the subshots by

max(p(et =A, lt =B1), p(et =A, lt =B2)).
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Methods Localization Event recognition

Metrics Top-1 Top-5 Top-1

Chance 0.016 0.078 0.125

Frame-based 0.243 0.390 0.356

Frame+HMM 0.315 0.464 0.392

Our Method 0.323 0.473 0.439

Table 1. Performance of attraction-based localization and event

recognition. We report top-1/top-5 attraction accuracies for local-

ization and top-1 accuracies for event recognition.

5. Experiments

We evaluate our proposed method with a new Disney-

land dataset of egocentric videos collected from YouTube

(see Section 2.1). Since this is the first work that aims to

predict story elements from egocentric videos, there are no

existing baselines to compare against. Instead, we define

the following baselines for the performance comparison of

both story element recognition and story-based retrieval.

1. Frame-Based: predicts story elements only based on

each frame without considering any temporal smooth-

ness or joint co-occurrence inference.

2. Frame+HMM: models temporal continuity with an

HMM for each story element separately. The main dif-

ference with our method is that our method also mod-

els the relations among different story elements.

These two baselines can be viewed as simplified variants of

our model. We use the same features and the same SVM

classifiers, but different model structure. Fig.3 illustrates

the graphical representation for each baseline.

We perform experiments on the two key tasks that re-

quire building and using the storyline representation: 1)

joint inference of story elements, and 2) story-based ego-

centric video retrieval. It is challenging to quantitatively

evaluate the storyline representation itself, because it is a

form of mid-level data structure that is designed to facili-

tate visualization and other high-level tasks. Therefore, we

evaluate the estimation accuracies of story elements and the

performance of story-based retrieval instead.

5.1. Results of Joint Estimation of Story Elements

We quantitatively evaluate the accuracies of our joint in-

ference model for the location and event recognition. To ob-

tain groundtruth, we let human labelers, with expert knowl-

edge of Disneyland, annotate the locations and events at ev-

ery 10 frames of test egocentric videos. We report the recog-

nition rate, which is a fraction of predicted labels that match

the groundtruth labels. Table 1 shows the prediction accura-

cies for both location and event recognition. For attraction-

based localization, we report top-1 and top-5 accuracies.

Our method outperforms all the baselines for the both tasks.

Among baselines, the frame+HMM baseline leads a bet-

ter performance than purely frame-based variant, which

demonstrates that modeling temporal smoothness benefits

Figure 4. Examples of discovered supporting objects that occur

frequently in individual attractions.

location and event recognition in egocentric videos. Our

method is better than the frame+HMM baseline, showing

the value of joint inference of story elements. In particular,

our method significantly improves event recognition perfor-

mance; we attribute this to strong correlations that exist be-

tween events and locations.

Fig.4 illustrates some examples of supporting object de-

tections. Notice that our algorithm is able to discover dif-

ferent types of objects that occur frequently in individual

attractions, including buildings, transportation vehicles, and

Disney characters. However, due to large image appearance

variations, which comes from the nature of theme park im-

ages, we also obtain lots of inconsistent object clusters.

Fig.5 shows an example of storyline representation of an

input egocentric video, which displays four story elements

on a timeline. Each instance of story elements is repre-

sented by a horizontal bar with a unique color. The classes

of the same story element (e.g. watching and walking) are

represented with similar but different colors. The story-

based visualization can help summarize egocentric videos

better and provide users with an overview of various cor-

relations between story elements. Fig.5 clearly shows that

objects, locations and events often co-occur; for example,

we can expect to find the supporting object birds in the lo-

cation Enchanted Tiki Room.

5.2. Results of Story­based Retrieval

We also evaluate the performance of semantic story-

based retrieval. All egocentric videos in the test set are seg-

mented into subshots of 2-second long each, which consti-

tute the database for retrieval. To respond to a query such as

what objects did I see at the Enchanted Tiki Room, we first

retrieve subshots which were taking place at the Enchanted

Tiki Room, then return detected objects from the retrieved

subshots. In order to evaluate the retrieval, we use the av-

erage normalized rank of relevant subshots as used in the

video google [36],
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Figure 5. Storyline visualization for an egocentric video. We present four story elements and their co-occurrences on a timeline. We show

some selected frames with inferred labels for the detection of story elements.

Method Event Location Event & Location

Frame-based 0.179 0.266 0.217

Frame+HMM 0.176 0.228 0.201

Our Method 0.170 0.217 0.192

Table 2. Evaluation of retrieval performance with average normal-

ized ranks of relevant images in Eq.(8). Lower is better.

r̃ =
1

NNrel

(

Nrel∑

i=1

Ri −
Nrel(Nrel + 1)

2
) (8)

where Nrel is the number of relevant subshots for a story-

based query, N is the number of the total subshots, and Ri

is the rank of the i-th relevant subshots. The value of r̃ is

from 0 to 1 and 0.5 corresponds to a random retrieval. A

lower rank value is better.

For test, we experiment on three different types of

queries: query by location only (i.e. find subshots that oc-

cur in a particular place), query by event only (i.e. find sub-

shots of a particular event), and query by both location and

event (i.e. find subshots of a particular event that happens

in a particular place). Queries are automatically generated

from groundtruth labels for all possible locations, events

and combinations of both. We report the retrieval perfor-

mance in Table 2, which clearly show that our method out-

performs both baselines in all cases.

Fig.6 shows two retrieval examples with queries and

their corresponding AND-OR graphs. For the first query,

our system searches for objects at the Enchanted Tiki Room

while the subject does watching performance, and returns

the top-three object detections. Since the database contains

segmented subshots of 2 seconds of egocentric videos, the

top-ranked results often originate from the same video. Our

algorithm can find birds during the show at the Enchanted

Tiki Room, though the localization of bounding boxes may

be sometimes inaccurate due to weak object proposals. The

second query can successfully retrieve the girl riding the

merry-go-round at the King Arthur Carrousel.

Figure 6. Two examples of retrieval results with queries and their

corresponding AND-OR graphs. We show the frames from top-

three ranked subshots for the queries.

6. Conclusion

In order to provide users with concise but meaningful vi-

sualization, our work explicitly defines story elements and

proposes to use a new storyline representation to summa-

rize a large set of unstructured egocentric videos. We also

propose a novel joint inference method to jointly recognize

all story elements. Through experiments on YouTube ego-

centric videos, we show that our approach outperforms al-

ternative baselines. We also demonstrate that story-based

retrieval indeed helps users easily search and organize un-

structured egocentric video content.
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