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Abstract

The segmentation of transparent objects can be very use-

ful in computer vision applications. However, because they

borrow texture from their background and have a similar

appearance to their surroundings, transparent objects are

not handled well by regular image segmentation methods.

We propose a method that overcomes these problems us-

ing the consistency and distortion properties of a light-field

image. Graph-cut optimization is applied for the pixel la-

beling problem. The light-field linearity is used to estimate

the likelihood of a pixel belonging to the transparent ob-

ject or Lambertian background, and the occlusion detector

is used to find the occlusion boundary. We acquire a light

field dataset for the transparent object, and use this dataset

to evaluate our method. The results demonstrate that the

proposed method successfully segments transparent objects

from the background.

1. Introduction

Image segmentation is a fundamental problem in com-

puter vision. The goal of segmentation is to simplify and/or

change the representation of an image into something that

is more meaningful and easier to analyze [26]. For ex-

ample, it is very important to separate foreground object-

s from the background in applications such as object de-

tection, object recognition [19], and surveillance tasks [8].

Numerous methods have been developed to deal with the

image segmentation problem, including techniques based

on thresholding [20], partial differential equations [7], and

graph partitioning [27, 4]. However, none of these meth-

ods are suitable for the segmentation of transparent objects

from an image. The difficulty of dealing with such object-

s means that transparent object segmentation is a relatively

untouched field.

Although there are few techniques for separating trans-

parent objects from an image, many tasks in our everyday

life deal with transparent objects. For example, when a ma-

chine is operating in kitchens, living rooms, and offices, it

should avoid touching fragile objects such as glasses, vases,

Figure 1. Input and output of our system. The left side shows the

captured light-field image, and the right-hand side is a magnifica-

tion of the central viewpoint. The output after segmentation of the

transparent object is shown on the bottom-right.

bowls, bottles, and jars. One way of detecting these trans-

parent objects is to segment them from captured images of

the scene. The appearance of a transparent object is highly

dependent on the background, from which its texture and

colors are largely borrowed. Thus, it is extremely challeng-

ing to separate the transparent object from the background.

It is almost impossible to achieve stable transparent ob-

ject segmentation in a 2D image using conventional image

segmentation approaches. In this paper, we utilize a light-

field camera to capture 4D light-field images, and propose

a method that can segment the transparent objects from the

captured 4D light-field image (see Fig. 1). Our method can

automatically segment the transparent objects without any

interaction. The main idea is to take advantage of the light-

field distortion (LFD) feature [14] that has been proposed

for transparent object recognition. LFD does not rely on the

appearance of the background, and LFD features from the

Lambertian and non-Lambertian areas have different prop-

erties. As shown in Fig. 2, the features from the Lamber-

tian area are almost linearly distributed with respect to the

viewpoints, unlike features from transparent objects. We

call this property light-field linearity (LF-linearity). How-

ever, features from the background will be nonlinear when

occlusion occurs, and features from the transparent object

will be linear when the distortion is relatively mild. This
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does not present a problem when LFD is used for recogni-

tion tasks, because several dominant features can determine

what type of transparent object is contained in the image.

We cannot completely separate the transparent object from

the background using LFD alone, but we can use this feature

to obtain a rough estimate of the position of the transparent

object and the background.

To completely segment the transparent object from an

image, we utilize the graph-cut optimization method [4]

with LF-linearity and occlusion detection from the 4D light-

field image. Our method only uses information from a geo-

metric relationship that is independent of the color and tex-

ture.

The contributions of this paper are as follows: 1) we pro-

pose a method for a challenging computer vision problem,

transparent object segmentation, and the method is automat-

ic, requiring no human interaction; 2) an energy function is

defined using the LF-linearity, and occlusion detector; and

3) comparisons show that the proposed method obtains bet-

ter results than previous method for finding glass [16].

2. Related work

There are various strategies for optimizing energy func-

tions. The combinatorial min-cut/max-flow graph-cut al-

gorithm is widely used for energy functions defined on a

discrete set of variables. Greig et al. [12] were the first

to realize that powerful min-cut/max-flow algorithms could

be used to minimize certain energy functions in computer

vision applications. The energy function encodes both re-

gional object information and the regularization of the im-

age smoothness. The regional information usually comes

from user interaction [4, 22], particularly in image editing

applications. Automatic segmentation approaches that do

not require user interaction have been developed in recen-

t years. An object segmentation framework [6] has been

proposed for the automatic extraction of candidate object-

s by solving a sequence of constrained parametric min-cut

problems. Another method [21] estimates whether a pixel is

inside the foreground object based on the point-in-polygon

problem, whereby any ray starting from a point inside the

polygon will intersect the boundary of the polygon an odd

number of times. In our method, we use occlusion to de-

tect the boundary of a transparent object, and this occlu-

sion boundary also allows us to determine which side is the

background. We detect the occlusion boundary by design-

ing a series of occlusion detectors to check the pattern of

forward-backward matching consistency in all viewpoints.

The forward-backward matching consistency has been used

in many previous studies such as [1]. For more sophisti-

cated occlusion detection strategies, we refer to [2] and the

references therein.

From a different perspective, a number of studies have

analyzed images captured by special optics or devices to

obtain the physical parameters of the transparent object,

such as its refractive index and surface normal. Schlieren

photography [24, 25] has been used to analyze gas and

fluid flows and shock waves. This method requires high-

quality and precisely aligned optics to visualize the refrac-

tion response in a scene as a gray-scale or color image.

Wetzstein et al. [30] extended this technique to light-field

background-oriented Schlieren photography, using a com-

mon digital camera and a special optical sheet, known as

a light-field probe (LF-probe), to reconstruct the transpar-

ent surface [31]. Similarly, Ji et al. [13] used an LF-probe

and multiple viewpoints to reconstruct an invisible gas flow.

The light refracted by transparent objects tends to be polar-

ized, meaning that polarizing filters can be used to measure

their light intensity [17, 18]. Ding et al. [10] used a cam-

era array and checkerboard pattern to acquire dynamic 3D

fluid surfaces. Ye et al. [33] acquired dynamic 3D fluid sur-

faces with a single camera, but they used a special ”Bokode”

background (which emulates a pinhole projector) to capture

ray–ray correspondences. All of the above methods require

some special optics or devices, so their applicability is re-

stricted to laboratory environments, and they are not feasi-

ble for common practical use.

Similar to our target, learning-based method [15, 16] has

been proposed for finding glass in a single view image.

Fritz et al. [11] used SIFT feature and LDA for learning a

transparent object and detecting its location and region as a

bounding box. Wang et al. [28, 29] used RGB-D image for

glass object segmentation. The depth image was utilized as

one of the cues for transparency that the depth information

is missing in the glass region, since the glass refracts the ac-

tive light from the sensor. For multi-view images as input,

the epipolar-plane-image (EPI) analysis method was used to

extract layers with specular properties [9]. Multi-view im-

ages with known camera motion has been used to recover

shape and pose of transparent object [3]. Our method utilize

the characteristic that transparent objects distort the back-

ground by refraction to derive the LFD feature [14] which

was originally proposed for transparent object recognition.

We take advantage of occlusion information and the dis-

tortion feature for transparent object segmentation from a

single-shot light-field image, and the proposed method also

has the potential for glass and specular objects.

3. Feature descriptors from light field

In this section, we define LF-linearity and occlusion de-

tector for describing feature of transparent object.

3.1. Light­field linearity

The LFD feature was proposed by Maeno et al. [14].

They used this feature to classify different shapes of trans-

parent objects. We will utilize an important property of this
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(a) Linear features from Lambertian area.

(b) Non-linear feature from transparent object.

Figure 2. Different properties of the LFD feature.

feature to the likelihood of a pixel being the Lambertian

background.

Similar to [14], we define the LFD as the set of relative

differences between the coordinates of the corresponding

points:

LFD(u, v) = {(s, t,∆u,∆v)|(s, t) 6= (0, 0)}, (1)

where (s, t) is the viewpoint coordinate, and (∆u,∆v)
is the difference between point p(0, 0, u, v) in the cen-

tral viewpoint view(0, 0) and its corresponding point

p′(s, t, u′, v′) in viewpoint view(s, t):

{

∆u = u′ − u

∆v = v′ − v
(2)

In the experiments, we use an optical flow algorithm to

obtain the correspondences between the central viewpoint

view(0, 0) and viewpoints view(s, t).
As described in Fig. 2, the disparities in a transparen-

t object include the refraction effect. Thus, the LFD fea-

tures coming from the transparent object are more distorted

than features from the background, and these features devi-

ate from the hyperplane given by the Lambertian reflection

in the phase space. The hyperplane in the stuv-space con-

taining point p(0, 0, u, v) can be described as:

n1s+ n2t+ n3∆u+ n4∆v = 0, (3)

where (s, t,∆u,∆v) is as before, i.e., the viewpoint coordi-

nates and the difference between the corresponding image

view(0,0)

forward 

matching

backward 

matching

view(0,0) view(s,t)

p’’ (0,0,u’’,v’’) p’ (s,t,u’,v’)

p (0,0,u,v)

e (s,t,u,v)

Figure 3. Checking the consistency of the forward and backward

matching between a pair of viewpoints.

points. The positions of the viewpoints can be obtained by

camera array calibration [32]. (n1, n2, n3, n4) is the unit

normal vector ~n of the hyperplane. This vector is estimated

by fitting (s, t,∆u,∆v) from all M viewpoints:






( s, t, ∆u, ∆v)1
( s, t, ∆u, ∆v)2

...
( s, t, ∆u, ∆v)M







︸ ︷︷ ︸

A







n1

n2

n3

n4







︸ ︷︷ ︸

~n

= 0. (4)

We then use singular value decomposition to calculate

A
⊤
A = UDU

⊤, and the linear least-squares solution to ~n
is the column of U associated with the smallest eigenvalue

in D, where the smallest eigenvalue is the least-squares er-

ror E(u, v). Smaller errors imply better linearity, and larger

errors indicate that the feature deviates strongly from the

hyperplane. Because this error E(u, v) describes the linear-

ity of the LFD feature, we call this the LF-linearity. This

important property is used to define the regional term in the

energy function. Figure 6(b) shows an example of the visu-

alized LF-linearity.

3.2. Occlusion detector

The background can be occluded by foreground objects

in different viewpoints. This is an important cue for deter-

mining the boundaries between the foreground and back-

ground. The occlusion boundary is often detected by com-

paring the appearance of points over time as the camera or

object moves. In a light-field image, we detect occlusion

points by checking the consistency of the forward and back-

ward matching between a pair of viewpoints, as illustrated

in Fig. 3.

We denote an arbitrary point in the image captured by the

central viewpoint view(0, 0) as p(0, 0, u, v), and the cor-

responding point in the image captured by another view-

point view(s, t) as p′(s, t, u′, v′). Here, (s, t) are the coor-

dinates of the viewpoint view(s, t), and (u, v) are the co-

ordinates of the point in the image plane (as shown in Fig.

2). We also attempt to find the point in the central view-

point view(0, 0) that corresponds to p′(s, t, u′, v′), which

we denote as p′′(0, 0, u′′, v′′).
The consistency is independent of the intensity at each

point, so we can simply calculate the geometric error of the
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Figure 4. An example of the pixel at occlusion boundary. The

pixel in the center viewpoint can find the corresponding point from

the viewpoints in the left 3 columns (shown in blue dots), but the

corresponding point cannot be found in the right viewpoints where

the point is occluded by the foreground object (shown in red dots).

The blue dots have good LF-consistency, while the red dots are

with poor LF-consistency.

forward and backward matching:

e(s, t, u, v) = dist(p(0, 0, u, v), p′′(0, 0, u′′, v′′)), (5)

where dist(p, p′′) is the Euclidean distance between p and

p′′.
In the non-occlusion case, points p(0, 0, u, v) and

p′′(0, 0, u′′, v′′) should be very close, which means the er-

ror e(s, t, u, v) will be very small. If this consistency re-

quirement is not satisfied, the point is either occluded in the

corresponding viewpoint, or the optical flow has been incor-

rectly estimated. The small values are mainly from noise,

and the large error values do not have much physical mean-

ing. Hence, we define the LF-consistency c(s, t, u, v) by

binarizing the error e(s, t, u, v).

c(s, t, u, v) =

{

0, e(s, t, u, v) < τ

1, e(s, t, u, v) ≥ τ
. (6)

where τ is a tolerance interval that allows the noise intro-

duced by the optical flow calculation. We assign zeros to

consistent points and ones to inconsistent points.

The LF-consistency has different patterns when the oc-

clusion boundary appears in different directions. Fig. 4

shows an example of a point that has both consistency and

inconsistency in different viewpoints. Based on our obser-

vations, we have designed a series of occlusion detectors

F (s, t, θ) to detect the occlusion boundaries between fore-

ground and background. The detectors of 5× 5 case, which

are used in our experiments, are shown in Fig. 5, and θ is

the normal direction of the occlusion boundary. The size of

(a) θ = 0 (b) θ = 45 (c) θ = 90 (d) θ = 135

(e) θ = 180 (f) θ = 225 (g) θ = 270 (h) θ = 315

Figure 5. Occlusion detectors F (s, t, θ) in 8 different directions.

(a) Central view (b) LF-linearity (c) Detected occlusion

Figure 6. An example of visualized the LF-linearity and detected

occlusion.

occlusion detector is corresponding to the number of view-

points. The non-zero values in the detector indicate a point

is occluded in the corresponding viewpoint.

We use c(s, t, u, v) and F (s, t, θ) to decide the likeli-

hood of a pixel (u, v) being the occlusion boundary in the

direction θ:

O(u, v, θ) =
∑

s

∑

t

c(s, t, u, v) · F (s, t, θ). (7)

The direction with largest response of all the detectors

will be chosen as the occlusion direction:

θ̃(u, v) = arg max
θ

O(u, v, θ). (8)

An example of the detected occlusion is shown in Fig. 6(c).

4. TransCut: graph-cut segmentation for

transparent object

The goal of this work is to segment transparent objects

by using LF-linearity and occlusion detector. We formu-

late the segmentation task as a pixel labeling problem with

two labels (transparent objects as the foreground and oth-

er objects as the background). Later part of this paper, we

describe each pixel as p = (0, 0, u, v) and some variables

with subscript p indicate the variables at pixel p of the cen-

ter viewpoint, since we solve the pixel labeling problem in

2D image space. Similar to other segmentation methods
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Trans 

Obj

Background

Good LF-linearity

Occlusion

Extracted by occlusion detector

Transparent Object

Poor LF-linearity 

excludes the occlusion

Figure 7. Properties of different components in an image contain-

ing a transparent object. The Lambertian background (blue) has

good LF-consistency, the transparent object (red) has poor LF-

linearity excludes the occlusion area, and the occlusion boundary

(orange) can be detected by occlusion detector.

[4, 22], we define an energy function to evaluate the label-

ing problem:

E(l) =
∑

p∈P

Rp(lp) + α
∑

(p,q)∈N

Bp,q · δ(lp, lq), (9)

where lp is the label of an image pixel p (lp = 0 denotes

a background pixel, lp = 1 denotes a foreground pixel),

Rp(lp) is the regional term that measures the penalties for

assigning lp to p, Bp,q is the boundary term for measuring

the interaction potential between pixels p and q, N is the

neighborhood set, α adjusts the balance betweenRp(lp) and

Bp,q · δ(lp, lq), and

δ(lp, lq) =

{

1, if lp 6= lq

0, if lp = lq
(10)

The segmentation task aims to determine the labeling that

minimizes Eq. 9. We use the graph-cut method to optimize

the energy function.

4.1. Regional term

We assume that all Lambertian objects in the image

should be labeled as background, and the refractive trans-

parent object should be labeled as the foreground. As il-

lustrated in Fig. 7, the background and the occluded areas

(shown in blue and orange) should be labeled as the back-

ground, and the transparent object (red) should be labeled

as foreground.

The Lambertian object has good LF-linearity while the

transparent object has poor LF-linearity. The occlusion area

also has poor LF-linearity and can be detected by the occlu-

sion detector, so the transparent object locates in area with

poor LF-linearity other than the occlusion area. The case

of the occlusion area with good LF-linearity rarely occurs

because, when the forward-backward matching is not con-

sistent, the LF-linearity will be poor. Therefore, the region

with good LF-linearity should be background. When a pixel

belongs to the background, the penalty for labeling this pix-

el as a Lambertian object or occlusion area should be low,

while the penalty for labeling this pixel as part of a trans-

parent object should be high. The opposite is true when a

pixel belongs to the foreground.

Before defining the regional term of the energy function,

we first scale the LF-linearity E(u, v) to the range [0, 1] us-

ing a sigmoid function:

Ẽp = sigmoid(E(u, v), a, b), (11)

where sigmoid(ϕ, a, b) is the function:

sigmoid(ϕ, a, b) =
1

1 + exp(−a(ϕ− b))
, (12)

a controls the steepness of the function, and b is the shift,

which acts as the threshold value here.

The regional term for a pixel p is defined as:

Rp(0) = βẼp · (1− Õp), (13)

Rp(1) = Ẽp · Õp + (1− Ẽp), (14)

where Õp = O(u, v, θ̃), which is the maximum response

from the occlusion detectors descried in Eq. 7 and Eq. 8.

Rp(0) assigns a large penalty to pixels that have poor LF-

linearity exclude the occlusion area, and Rp(1) assigns a

large penalty to pixels with poor LF-linearity inside the oc-

clusion area or pixels with good LF-linearity. β adjusts the

balance between Rp(0) and Rp(1).

4.2. Boundary term

In the boundary term of the energy function, we must de-

fine the pairwise potentials between two neighboring pixel-

s. We use the 4-neighbor system, so each pixel has two

horizontal neighboring pixels and two vertical neighboring

pixels. We utilize the maximum response of the occlusion

detectors to assign pairwise potentials.

The boundary term applies a penalty when neighboring

pixels p, q are assigned different labels. Given a pixel p
(see Fig. 8), the weight of its 4 neighboring edges can be

described as:

{

wp,q1 = Õp

wp,q2 = wp,q3 = wp,q4 = 0
, if θ̃ = 0, (15)

{

wp,q1 = wp,q2 = Õp/
√
2

wp,q3 = wp,q4 = 0
, if θ̃ = 45, (16)

and so forth. The weight for each edge is calculated twice as

wp,q and wq,p, and the penalty for assigning different labels

to p and q is defined as:

Bp,q = exp(−γ · (wp,q + wq,p)). (17)
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Figure 8. Definition of energy for the pairwise potential Bp,q . The

example shows the maximum response Op,θ̃ comes from θ̃ = 0,

hence we assign a small penalty Bp,q1 to the corresponding edge

(blue)

The weight is small in the background and foreground re-

gions. The penalty of the region is high in the case of as-

signing different labels to the neighboring pixels. It works

easy to propagate the same labels in the same regions. In

contrast, the occlusion boundary will have large values of

Õp, and it stop to propagate the label between the different

regions. γ controls the rate of the importance of the penalty.

5. Experiments

As there are no light field datasets available for the e-

valuation of transparent object segmentation, we captured

the necessary data ourselves. We shall demonstrate our pro-

posed transparent object segmentation method on various

examples, including single and multiple objects segmen-

tation with different backgrounds, and compare with other

methods such as finding glass [16].

5.1. Assumptions

To ensure the effectiveness of the matching process, our

experiments were conducted under the following assump-

tions:

• All viewpoints of the light-field camera can capture the

entirety of the target objects.

• The degree of reflection on the surface of the target

objects is relatively low.

• Background is relatively far away with rich texture.

5.2. Results and discussion

In the experiments, we used a light-field camera with 5×
5 viewpoints (ProFusion 25, Viewplus Inc.) to acquire the

images. We placed the target objects about 50 cm from the

camera, with the background a further 100 cm behind the

objects. We captured seven transparent objects (shown in

Fig. 9) with seven different background scenes (shown in

Fig. 10). The backgrounds include indoor scenes such as

(a) Object 1 (b) Object 2 (c) Object 3 (d) Object 4

(e) Object 5 (f) Object 6 (g) Object 7

Figure 9. seven transparent objects of various shapes for the exper-

iments.

(a) Scene 1 (b) Scene 2 (c) Scene 3 (d) Scene 4

(e) Scene 5 (f) Scene 6 (g) Scene 7

Figure 10. Seven different backgrounds for the experiments. These

include indoor and outdoor scenes in both day and night.

a library and outdoor scenes such as a city backdrop seen

through a window.

As mentioned in Sec. 3, we use an optical flow algorithm

to obtain the corresponding points p, p′ and p′′ in the central

viewpoint view(0, 0) and the other viewpoints view(s, t).
We utilize the optical flow algorithm proposed in [5], which

integrates descriptor matching into variational motion esti-

mation. Although this optical flow algorithm is very accu-

rate, it cannot deal with textureless regions, and such areas

will cause problems when the matching is not correct. For

this reason, we remove those textureless regions for which

the squared horizontal intensity gradient averaged over a

square window of a given size is below a given threshold

[23]. The parameters used in all experiments are fixed to

the same values. We determine the parametersα, β, γ based

on the preliminary experiments, and set α = 70, β = 4.5,

γ = 4.5 which are suitable for our dataset. Parameter a de-

cide the thresholding is hard or soft, b is determined by the

level of least-squares error, and τ is related to the accuracy

of optical flow and image resolution. We set a = 0.5, b = 5
and τ = 8, which are suitable for our case.

We compare our segmentation results with those from

LF-linearity thresholding and the finding glass method. For

the thresholding method, we simply filter out the Lamber-
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F-measure Recall Precision

Finding glass 0.30 0.82 0.19

LF-linearity thresholding 0.48 0.70 0.37

Proposed method 0.85 0.96 0.77

Table 1. Quantitative comparison of three methods. The results are

averaged over the single object dataset with 7 objects and 7 scenes.

F-measure Recall Precision

5 Viewpoints 0.76 0.75 0.78

9 Viewpoints 0.82 0.85 0.79

25 Viewpoints 0.85 0.96 0.77

Table 2. Comparison of different viewpoints number.

tian background by removing feature points whose least-

squares error E(u, v) is below a certain threshold, i.e.,

E(u, v) < th. In our experiments, we set th=5 which is

same to b. For the finding glass method, we implemented

the method described in [16] and applied to the center view

of our dataset.

Figure 13 shows the results for the same scene with d-

ifferent objects, and Fig. 14 shows the segmentation re-

sults for the same object with different backgrounds. We

can see that, simply LF-linearity thresholding will result in

holes inside the target object at points where the light field

is nearly linear, and mismatched regions from outside will

be included in the object. The finding glass method false-

ly detected the rich texture background as glass, since this

method is not suitable for rich texture images, which is men-

tioned as the limitation in the paper. The proposed TransCut

method gives very stable results for various objects in dif-

ferent scenes.

We determined the ground truth by manually labeling al-

l pixels, and quantitatively compared the segmentation re-

sults. This comparison is tabulated in Table 1. We have

used the F-measure to compare the performance of each al-

gorithm. This metric is the harmonic mean of the precision

(Pr) and recall (Re), i.e.,

F =
2 ∗ Pr ∗Re

Pr +Re
, (18)

where Re = TP/(TP +FN), and Pr = TP/(TP +FP )
(TP=True Positive, FN=False Negative, FP=False Positive).

We also compare the results calculated by different num-

ber of viewpoints. We reduced the viewpoints to the cen-

tral view with 4 far corner views, and uniformly distributed

3 × 3 views with larger disparity. The results are shown in

Table 2. We can see that the performance decreases when

the viewpoints become fewer, because fewer viewpoints are

more vulnerable to the noise.

The results of experiments including multiple objects are

shown in Fig. 11. These images show that the proposed

Figure 11. Comparison of segmentation results for multiple ob-

jects in different scenes. The 1st row shows the image from the

central viewpoint. The 2nd, 3rd, and 4th rows show output from

the finding glass, LF-linearity thresholding, and proposed Tran-

sCut methods, respectively.

Figure 12. Results for real scene.

method is effective when there is more than one object in

the scene, whereas the other two methods do not produce

good results in such scenarios. Further results can be found

in our supplementary material.

Moreover, we also conduct some experiments with real

scene. We can see that our method works though it is not

perfect in Fig. 12.

6. Conclusion

In this paper, we have proposed TransCut which is the

method for the segmentation of transparent objects. Un-

like conventional methods, our technique does not rely on
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Figure 13. Comparison of segmentation results for the same scene with different objects. The 1st row shows the image from the central

viewpoint. The 2nd, 3rd, and 4th rows show output from the finding glass, LF-linearlity thresholding, and proposed TransCut methods,

respectively. The last row shows the manually labeled ground truth.

Figure 14. Comparison of segmentation results for the same object in different scenes. The 1st row shows the image from the central

viewpoint. The 2nd, 3rd, and 4th rows show output from the finding glass, LF-linearity thresholding, and proposed TransCut methods,

respectively. We refer to the 3rd object in the last row of Fig. 13 for the ground truth.

color information to distinguish the foreground and back-

ground. We have used LF-linearity and occlusion detector

in 4D light field space for describing a transparent objec-

t, and designed an appropriate energy function utilizing the

LF-linearity and occlusion for pixel labeling by graph-cut.

The results show that our method produces stable results

with various objects in different scenes.

There are several future directions we are planning to

explore. Our dataset was captured by camera array where

the camera baseline is large and viewpoint number is few.

An straightforward future step is to apply our algorithm to

the light field image captured by Lytro camera. The cur-

rent results are not yet perfect, as our assumptions produce

some limitations. We intend to overcome these limitations

in future work, and extend to more flexible environment and

other non-Lambertian objects.
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