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Abstract

This paper proposes a shrinkage-based framework for

unsupervised trajectory clustering. Facing to the chal-

lenges of trajectory clustering, e.g., large variations within

a cluster and ambiguities across clusters, we first intro-

duce an adaptive multi-kernel-based estimation process to

estimate the ‘shrunk’ positions and speeds of trajectories’

points. This kernel-based estimation effectively leverages

both multiple structural information within a trajectory and

the local motion patterns across multiple trajectories, such

that the discrimination of the shrunk point can be prop-

erly increased. We further introduce a speed-regularized

optimization process, which utilizes the estimated speeds

to regularize the optimal shrunk points, so as to guaran-

tee the smoothness and the discriminative pattern of the fi-

nal shrunk trajectory. Using our approach, the variations

among similar trajectories can be reduced while the bound-

aries between different clusters are enlarged. Experimen-

tal results demonstrate that our approach is superior to the

state-of-art approaches on both clustering accuracy and ro-

bustness. Besides, additional experiments reveal the effec-

tiveness of our approach when applied to trajectory analy-

sis applications, e.g., anomaly detection and route analysis.

1. Introduction

Trajectory clustering is fundamental in many applica-

tions including behavior analysis [25, 1, 24, 20], scene anal-

ysis [32, 22, 27, 28], and video surveillance [17, 11]. In

many scenarios, due to the existence of large amount of

trajectories and trajectory patterns, automatically clustering

trajectories into suitable pattern groups without manually

labeled data (i.e., unsupervised clustering) becomes essen-

tial [17, 11, 28].

Although trajectory itself records positions of object

over time and contains significant information for cluster-

ing, directly perform clustering over these positions often

creates poor results. Two reasons lead to the failure of the

(a) Variations within a cluster (b) Ambiguities across clusters

(c) The shrinkage result of (a) (d) The shrinkage result of (b)

Figure 1. (a, b) The illustration of the challenges of trajectory clus-

tering. (c, d) The shrunk trajectories and the clustering results ob-

tained by our approach.

simple strategy. 1) Variations within a cluster: Due to the

uncertain nature of object motion or the inaccuracy of tra-

jectory extraction, trajectories from the same cluster may

have large variations (e.g., the red trajectories in Fig. 1(a)1).

This variation greatly decreases the similarity between tra-

jectories in a cluster. 2) Ambiguities across clusters: In

many scenarios, trajectories with similar shapes and close

positions may belong to different clusters due to their un-

derly semantic difference. For example, in Fig. 1(b), sim-

ilar traffic trajectories belong to different clusters (labeled

by red and green) since they are on different traffic lanes.

As a result, the information of position is ambiguous on the

boundary between clusters.

To overcome the problems above, we propose a

shrinkage-based framework for unsupervised trajectory

clustering. The proposed approach introduces an adap-

tive multi-kernel-based estimation process to estimate the

shrunk positions and speeds of trajectory points, so as to

reduce the variations of similar trajectories and enlarge the

boundaries between different clusters. In order to maintain

the information of the original trajectories, we further intro-

duce a speed-regularized optimization process which lever-

1All the figures in this paper are best viewed in color.
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ages the estimated speed to regularize the optimal shrunk

positions. In this way, the optimal shrunk result can ef-

fectively inherit both the shape information in the original

trajectories and the discriminative patterns obtained by the

kernel-based estimation process. Applying the above two

processes iteratively, trajectories are shrunk to the centers

of their clusters, as in Fig. 1(c) and Fig. 1(d).

Our approach can be viewed as a combination of the

mean shift clustering and the manifold-based model. The

center of a cluster is represented by a manifold and its struc-

ture corresponds to a motion pattern. Trajectories belong-

ing to a cluster are regarded as noisy traversals of a mani-

fold, which contains structural information. Therefore, tra-

jectory clustering means suppressing the noise in trajecto-

ries and reconstructing the manifolds. Taking advantages of

the structural information of trajectories, we improve tradi-

tional mean shift algorithm via adaptive multi-kernel-based

estimation and speed-based regularization. By shrinking

trajectories with our approach, the clustering structures of

trajectories are enhanced, making the information of trajec-

tory positions more suitable for clustering.

The contributions of our work are three folds. First, we

introduce an adaptive multi-kernel-based estimation pro-

cess to estimate the shrunk positions and speeds of tra-

jectory points. This kernel-based estimation process effec-

tively leverages both multiple structural information within

a trajectory and the local motion pattern across multiple tra-

jectories. Second, we introduce a speed-regularized opti-

mization process to further optimize the shrunk positions,

so as to make the optimal shrunk result inherit both the

shape information in the original trajectories and the dis-

criminative patterns obtained by the kernel-based estima-

tion process. Third, we establish a novel framework for

addressing the unsupervised trajectory clustering problem,

which iteratively performs position estimation and opti-

mization to shrink trajectory points before clustering.

2. Related Works

Many works have been proposed on trajectory analysis

and they can be categorized into supervised methods and

unsupervised ones. Since supervised methods [14, 18] re-

quires sufficient labeled trajectories to learn reliable models

about trajectory patterns, they have limitations in handling

scenarios with large amount of trajectories and trajectory

patterns. Therefore, we focus on unsupervised methods in

this paper, which find trajectory patterns by applying an un-

supervised clustering over input trajectories.

Similarity Measuring. Many unsupervised clustering

methods focus on developing effective similarity metrics to

model the similarity between trajectories [13, 23, 3, 19].

In [23], a longest common subsequence (LCSS) distance

is introduced, which is directly based on the analysis of ob-

jects’ coordinates. Treating trajectories as time series, Chen

and Ng [3] developed an edit distance with real penalty

(ERP) to measure the similarity between trajectories. Lin

et al. [15] introduce heat maps to describe trajectories and

perform heat surface matching to measure trajectory simi-

larities. Besides, Hu et al. [11] and Nawaz et al. [19] further

represent and measure trajectory similarities in the Fourier

or Wavelet domain. However, since trajectory patterns vary

a lot in different scenarios, these methods still have limita-

tions in adapting with different input trajectories.

Cluster Pattern Modeling. As many unsupervised pro-

cesses perform clustering by iteratively finding and updat-

ing trajectory clusters [16, 12, 19, 2, 31], finding suitable

ways to model cluster patterns in each iteration is essen-

tial. Cluster patterns can be described as trajectory dis-

tribution [12], cluster center [19], semantic path [2, 31],

and model parameters [17, 11, 19]. In recent years, prob-

abilistic models are widely utilized to model cluster pat-

terns [6, 31, 17, 11]. In [6], the dynamics of trajectories

is modeled by Gaussian processes. In [17], the points of

trajectories are modeled by Gaussian mixture models and

the dynamics of trajectories is modeled by hidden Markov

models (HMM), which understands activity from the model

of trajectories. A Dirichlet process mixture model (DPMM)

is applied to trajectory clustering in [11], which can be ex-

tended to online clustering. Although these methods show

satisfactory performances in some scenarios, their perfor-

mances are often affected by the cluster initialization (or

pre-clustering) results [17]. A poor cluster initialization re-

sult may limit the clustering accuracy of these methods.

Mean shift and Manifold-based Modeling. Mean shift

algorithms [7, 4] have been widely applied to unsupervised

clustering, which can be viewed as a manifold denoising

algorithm [26]. On the other hand, manifold learning meth-

ods have also been used to cluster data from noisy obser-

vations. The early works in [21, 8, 5] learn structure of

manifold from samples based on the assumption of smooth-

ness. An outlier removal algorithm is proposed in [29] to

deal with non-Gaussian noise. Multiple-manifold learn-

ing algorithms using curvature-based measure are proposed

in [9, 30], which are useful to learn discriminative mani-

folds jointly and synthesize data. Recently, Wang et al. [26]

combine traditional mean shift with smooth manifold learn-

ing and propose a manifold blurring mean shift algorithm

for manifold denoising. However, none of these methods

are developed focusing on trajectory clustering. Without

fully leveraging the information of trajectories, the perfor-

mance of these methods on trajectory clustering is limited.

3. Proposed Approach

Suppose that we have a set of trajectories {Ti}
M
i=1, which

corresponds to the motion processes of M objects. Each tra-

jectory can be represented as Ti = [pi,1, ...,pi,T ]
⊤, where

pi,t ∈ R
D is the position point of the i-th object at time t in
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the D-dimensional space. For each point pi,t, the speed of

object at this point is estimated as vi,t = (pi,t+1−pi,t)/δt,
where δt is the time step. For convenience, we represent

the speed of Ti as Vi = ∆Ti = [vi,1, ...,vi,T ]
⊤. Suppose

that there exist K discriminative motion patterns. Each tra-

jectory Ti contains one of these motion patterns. What we

want to do is to cluster these trajectories with high accuracy.

In this paper, we propose an adaptive multi-kernel-based

estimation for the positions and the speeds of trajectories

and further optimize the estimated points with the regular-

ization based on the estimated speeds. Applying the two

steps iteratively, we achieve suppressing the noise in the tra-

jectories and shrinking them to the centers of their clusters

accordingly, which attains a much more discriminative rep-

resentation of original trajectories.

3.1. Adaptive Multi­Kernel­based Estimation

For each point pi,t ∈ Ti, we first find its neighbors

{pn}
N
n=1. Each pn satisfies ‖pi,t − pn‖2 ≤ r, where r

is the radius of the neighborhood. Note that these neighbors

might belong to other trajectories. Then we can obtain an

estimate of pi,t and the corresponding estimate of its speed

vi,t via nonparametric estimation as follows,

p̂i,t =

∑N
n=1 K(pi,t,pn)pn∑N
n=1 K(pi,t,pn)

, (1)

v̂i,t =

∑N
n=1 K(pi,t,pn)vn∑N
n=1 K(pi,t,pn)

, (2)

Here, K(·, ·) is the kernel function, which is critical for the

rationality of estimation. Different from previous works

in [26, 10] merely using position or speed information to

construct kernel function, we design a compound kernel for

fully utilizing the structural information of trajectory from

multiple aspects. Specifically, the proposed kernel is con-

sist of three components, which is defined as follows: for

pn′ ∈ Ti and pn ∈ Tj ,

K(pn′ ,pn) = Kp(pn′ ,pn)Ks(pn′ ,pn)Ka(pn′ ,pn), (3)

where

• Kp(pn′ ,pn) = exp
(
−‖pn′ − pn‖

2
2/(2α

2)
)

is a ker-

nel measuring the consistency of position. Points

with similar positions are close in the kernel space.

• Ks(pn′ ,pn) = exp
(
−‖vn′ − vn‖

2
2/(2β

2)
)

is a ker-

nel measuring the consistency of speed. Points with

similar speeds are close in the kernel space.

• Ka(pn′ ,pn) = exp
(
−‖ai − aj‖

2
2/(2γ

2)
)
, where

ai = [pi,1;pi,T ] contains the source and the desti-

nation of the trajectory Ti, is a kernel measuring the

consistency of aim. The source and the destination

of trajectory implies the aim of the trajectory, that is

(a) Position based kernel Kp (b) Proposed K = KpKvKa

Figure 2. The kernel function in the red (green) frame corresponds

to the red (green) point on the red (green) trajectory. In the last

subfigure, the green cross represents the estimated new positions

of the green point. For a clear illustration, only few trajectories are

shown and the kernel function is interpolated linearly.

“where is it from and where will it go to”. The po-

sition points belonging to the trajectories with similar

aim should be close in the kernel space. Note that the

aim of trajectory is flexible whose definition can be

various according to different practical situations. The

specific definition here is suitable for our work.

Here we do not estimate positions and speeds indepen-

dently based on Kp and Kv . With the help of the pro-

posed kernel, the information of position and speed are fully

adapted with each other — they leverage information with

each other and share the information from the domain of

aim. Note that we do not use high-order information of tra-

jectory, i.e., the acceleration of point, because this informa-

tion is very sensitive to noise, which is generally unreliable

in practical situations. Fig. 2 illustrates the rationality and

the superiority of our kernel function. It can be found that

in the position with various crossing trajectories, the ker-

nel merely based on the similarity of position does not have

discriminative power — the close position points belonging

to different trajectories have almost the same kernels. On

the contrary, applying our kernel function, the kernels of the

close position points are different, which along their own di-

rections. Moreover, the estimated position shifts away from

the ambiguous position. It tends to the position of the tra-

jectory with the similar aim. Therefore the new position

further increases the discriminative power.

The positions estimated by (1) formulate an estimated

trajectories T̂i = [p̂i,1, ..., p̂i,T ]
⊤, i = 1, ...,M . Note that

the estimate of speed V̂i = [v̂i,1, ..., v̂i,T ]
⊤ is not equal to

∆T̂i. It provides us with important information for opti-

mizing the new trajectory.

3.2. Speed­regularized Trajectory Optimization

For each estimated trajectory we wish to preserve the rel-

ative positions among points so that the shape of the trajec-

tory will not be too different from that of the original one.

Some traditional methods can achieve this aim. For exam-

ple, we can optimize the estimated trajectory with a regu-

larization of differential smoothness (RDS) as follows,

T̃i = argmin
T

‖T − T̂i‖
2
F + λ‖∆T ‖2F , (4)
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where the speed of the trajectory is energy-limited. Be-

sides, we can also apply the manifold blurring mean shift

(MBMS) algorithm [26], optimize the trajectory as follows,

p̃i,t = pi,t + (I −Ui,tU
⊤

i,t)(p̂i,t − pi,t), (5)

where Ui,t contains the first L (L < D) eigenvectors of the

matrix P = [pi,t−d, ...,pi,t+d] representing the context of

pi,t in Ti. Here, the difference between the estimated tra-

jectory and the original one is constrained to be orthogonal

to the local tangent spaces of the proposed manifold. The

final optimized trajectory is T̃i = [p̃i,1, ..., p̃i,T ]
⊤.

The problem of the two methods above is merely utiliz-

ing the structural information of single trajectory. In the

case of noisy trajectory, its structural information (i.e., its

position and its speed) is unstable, which cannot provide

us with sufficient prior information to optimize the trajec-

tory itself. Fortunately, in the previous step, we have ob-

tained the estimated speed of trajectory based on our adap-

tive multi-kernel estimation, which contains the structural

information from other trajectories implicitly. Leveraging

the estimated speed to regularize the optimization of trajec-

tory, we obtain the final optimal trajectory by solving the

following optimization problem,

T̃i = argmin
T

‖T − T̂i‖
2
F + λ‖Wi(∆T − V̂i)‖

2
F . (6)

Here Wi = diag(wi,1, ..., wi,T ), whose diagonal elements

are calculated as wi,t = ‖p̂i,t+1 − p̂i,t‖2. The first term

is the data fidelity term, which ensures that the final opti-

mal trajectory T̃i should be close to the trajectory obtained

by the adaptive multi-kernel-based estimation. The second

term is a regularization term, which ensures that the speed

of the final optimal trajectory T̃i should be close to the es-

timated speed V̂i. The significance of the regularization at

various positions is adaptive, which is controlled by the fac-

tor λw2
i,t. For the positions having large changes, the sig-

nificance of the speed-based regularization is high, which

guarantees the smoothness of T̃i. The optimization problem

(6) is a regularized least-square problem. Denote W⊤

i Wi

as Γi, the solution of (6) is

T̃i = (I + λ∆⊤
Γi∆)−1(T̂i + λ∆⊤

ΓiV̂i), (7)

where I is an identity matrix.

3.3. Iterative Scheme and Clustering

Repeating the adaptive multi-kernel-based trajectory es-

timation and the speed-regularized trajectory optimization

iteratively, the trajectories within the same cluster are

shrunk together. As a result, we propose our adaptive multi-

kernel-based shrinkage (AMKS) algorithm in Algorithm 1.

Ideally, the final shrunk trajectories {T̃i}
M
i=1 should ag-

gregate to the centers of clusters. These shrunk trajectories

Algorithm 1 Adaptive Multi-Kernel-based Shrinkage

Input: Trajectories {Ti}
M
i=1, number of iteration J .

Output: Shrunk trajectories {T̃i}
M
i=1.

1: Initialize T
(0)
i = Ti, i = 1, ...,M .

2: for j = 1 : J do

3: for i = 1 : M do

4: Adaptive Multi-kernel Trajectory Estimation:

5: Compute Vi = ∆T
(j−1)
i .

6: for t = 1 : T do

7: Estimate p̂i,t and v̂i,t by (1, 2).

8: end for

9: Speed-regularized Trajectory Optimization:

10: Given T̂i, V̂i and Wi, compute T
(j)
i by (7).

11: end for

12: end for

13: T̃i = T
(J)
i , i = 1, ...,M .

have very strong discriminative power, which can be used

as features to cluster original trajectories. Applying simple

clustering methods, i.e., k-means with Euclidean distance to

the features, we can cluster trajectories with high accuracy,

which will be shown in the section 4.

3.4. Further Analysis

Advantages. Our algorithm can be viewed as an im-

provement of traditional methods. Specifically, if we only

repeat the step of nonparametric trajectory estimation and

use Gaussian kernel in (1), our algorithm is degraded to tra-

ditional mean shift (MS) algorithm [4]. If we use Gaussian

kernel in (1) and replace the step of speed-regularized tra-

jectory optimization (7) by the manifold blurring (5), our

algorithm is equal to MBMS algorithm [26]. Compared

with MS and MBMS, the main advantages of our algorithm

include: 1) We apply an adaptive multi-kernel-based esti-

mation process, which synthesizes multiple structural infor-

mation of multiple trajectories. The adaptive multi-kernel-

based estimation ensures that the useful information from

other trajectories will be used while the harmful informa-

tion will be rejected. 2) We introduce a speed-regularized

trajectory optimization process to guarantee the smoothness

and the discrimination of the optimized trajectories.

Computational Complexity and Acceleration. In each

iteration, the computational complexity of our algorithm is

O((MT )2D +MT 3D), where the first term is for the step

of adaptive multi-kernel-based trajectory estimation and the

second is for solving the regularized least-square problem

(7). Fortunately, focusing on trajectory clustering we may

not need to update the neighbors of points at each iteration

so that the first term is negligible in practice. Moreover,

because the matrix I + λ∆⊤W⊤

i Wi∆ is sparse and sym-

metric, the computational complexity of the second term
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can be reduced to O(MTD). Therefore, the computa-

tional complexity of our algorithm is O(MTD), which is

at most equal to that of MBMS. In the following content,

we call our algorithm updating neighborhoods iteratively

as “AMKS” and call the accelerated algorithm computing

neighborhoods only once as “FastAMKS”. Fig. 3 shows the

performance of acceleration using “FastAMKS”. We can

find that the run time of “FastAMKS” w.r.t. the number

of points of trajectories (MT ) increases much more slowly

than that of original “AMKS” does. Moreover, experimen-

tal results in the next section will show that the performance

of “FastAMKS” on clustering is comparable, even better

than that of “AMKS”.

Figure 3. Comparison of our AMKS and FastAMKS algorithm on

run time w.r.t. the number of points of trajectories MT .

Configuration of Parameters. Our algorithm has six

significant parameters: the radius of neighborhood r, the

three bandwidths {α, β, γ} of kernels, the significance of

regularization term λ and the number of iteration J . Dif-

ferent from traditional methods [4, 21, 5, 26, 9], we apply

an adaptive strategy to configure these parameters. Specifi-

cally, given trajectories {Ti}
M
i=1, we can compute a density

map for points of trajectories as follows: compute the his-

togram of points of trajectories H = [H(x1, .., xD)] as

H(x1, .., xD) = |{pi,t ∈ [x1, x1+1)× ..× [xD, xD+1)}|,

where | · | calculates the cardinality of set; then a smoothed

density map Ĥ = [Ĥ(x1, ..., xD)] is computed by Gaussian

filtering Ĥ = G ∗ H , where ∗ is convolution and G is a

Gaussian filter. Fig. 4 gives an example of the 2D case. For

pi,t ∈ [x1, x1 + 1)× ...× [xD, xD + 1), we select r as

ri,t = (C/Ĥ(x1, ..., xD))1/D, (8)

where C is a constant. In our work, we reduce C from

200 to 10 linearly with the increase of iteration. (8) en-

sures that the number of points in the neighborhood to be

relatively invariant to the change of position. As Fig. 4(b)

shows, the point with high density (i.e., the red cross) has

small neighborhood while the one with low density (i.e., the

green cross) has large neighborhood. Given ri,t, the band-

widths of kernels are set accordingly, where α = ri,t/3 and

β = γ = 2ri,t/3. Such a configuration ensures the influ-

ence of the points out of the neighborhood can be ignored.

(a) Traffic trajectories (b) Smoothed density map Ĥ

Figure 4. (a) A set of traffic trajectories. (b) The smoothed density

map. The two crosses represent two points of trajectories and their

corresponding neighborhoods are shown as circles.

Finally, the significance of regularization term λ = 1 and

the number of iteration J = 7 empirically in our work. In

the experimental results, we will show that the performance

of our algorithm is robust to the change of λ and the shrunk

trajectories converge stably after 7 iterations.

4. Experiments

We use four data sets in our experiments: T19: the traffic

trajectory data set in [17], which contains 1900 trajectories.

The trajectories are clustered into 19 groups, each of which

has 100 trajectories. The time length T = 50. The noise is

moderate and there are few abnormal trajectories. T11: the

traffic trajectory data set in [27], which contains 220 trajec-

tories. The trajectories are clustered into 11 groups, each of

which has 20 trajectories. The time length T = 50. The

number of samples is small and the noise is serious. T15:

the traffic trajectory data set in [11], which contains 1500

very noisy trajectories. The trajectories are clustered into

15 groups. The number of trajectories in a group is from 18

to 278, which is very unbalanced. NY: the pedestrian track-

let data in New York Train Station [31, 32], which contains

over 40000 tracklets, rather than complete trajectories.

For demonstrating the effectiveness and the robustness

of our approach, we also consider the noisy and the incom-

plete versions of the data sets (T19, T11 and T15 only).

Noisy case: We add Gaussian noise N (0, σ2) to the origi-

nal trajectories. The standard deviation σ = 0.03R, 0.05R,

respectively, where R is the dynamic range of trajectories.

Incomplete case: Following [11], we select 20% trajecto-

ries randomly from each cluster and omit their first or last

G points. G is set to be 10% (slight incompleteness) and

40% (serious incompleteness), respectively.

Following methods are tested. 1) Similarity-measure-

based methods: clustering raw trajectories by K-means or

spectral clustering with the Euclidean distance or the DTW

distance (“ED+Kmeans”, “ED+SC”, “DTW+Kmeans”,

“DTW+SC”). 2) Cluster-pattern-modeling methods: the

“Heat-map” method in [15]; the “HMM” based method

in [17]; and the “DPMM” in [11]. 3) Mean shift-based

methods: the mean shift-based clustering “MS” in [4]; the

manifold blurring mean shift algorithm “MBMS” in [26];

our “AMKS+Kmeans” and “FastAMKS+Kmeans” ap-

proaches.

4332



Table 1. Clustering Accuracy on The Data Set T19 (%)

Method Clean σ=0.03R σ=0.05R G=10% G=40%

ED+Kmeans 88.9 88.2 86.8 83.2 73.4

DTW+Kmeans 92.1 88.7 83.3 88.2 77.7

ED+SC 84.2 84.2 84.2 81.6 72.2

DTW+SC 95.6 89.5 86.8 89.6 75.7

Heat-map [15] 95.0 91.8 88.5 91.8 67.9

HMM [17] 96.8 89.6 83.8 90.5 75.5

DPMM [11] 98.0 — — — —

MS [4] 98.4 98.0 97.5 96.0 80.0

MBMS [26] 98.6 98.2 97.8 94.1 80.0

FastAMKS+Kmeans 99.5 99.5 99.4 96.2 82.4

AMKS+Kmeans 99.5 99.5 99.4 95.1 82.1

Table 2. Clustering Accuracy on The Data Set T11 (%)

Method Clean σ=0.03R σ=0.05R G=10% G=40%

ED+Kmeans 90.5 86.4 85.8 87.2 80.3

DTW+Kmeans 90.0 87.7 86.9 87.3 74.1

ED+SC 86.3 86.3 86.3 85.9 76.4

DTW+SC 90.9 90.9 90.9 90.9 81.8

Heat-map [15] 91.8 85.4 84.9 88.0 75.0

HMM [17] 86.3 85.4 85.4 85.9 75.0

MS [4] 95.5 95.5 95.0 95.1 83.6

MBMS [26] 97.7 97.3 96.4 96.8 80.5

FastAMKS+Kmeans 99.1 99.1 98.6 98.6 87.3

AMKS+Kmeans 99.1 99.1 99.1 98.6 85.4

Table 3. Clustering Accuracy on The Data Set T15 (%)

Method Clean σ=0.03R σ=0.05R G=10% G=40%

ED+Kmeans 82.6 78.8 77.0 80.8 72.3

DTW+Kmeans 83.2 80.0 78.8 81.1 71.8

ED+SC 85.0 81.2 81.2 84.4 76.1

DTW+SC 85.3 81.9 74.6 85.1 77.5

Heat-map [15] 82.0 78.9 71.8 82.0 78.1

HMM [17] 84.4 80.1 78.9 84.0 74.1

DPMM [11] 86.7 83.3 81.5 86.1 78.1

MS [4] 85.3 84.6 84.2 84.4 76.6

MBMS [26] 86.6 85.4 84.3 84.0 75.8

FastAMKS+Kmeans 87.6 86.0 84.7 84.4 78.1

AMKS+Kmeans 87.4 85.6 84.7 84.4 78.0

4.1. Trajectory Clustering

The Number of Clusters. When the number of clus-

ters is not pre-determined, we can estimate the number of

clusters by applying mean shift clustering algorithm to the

shrunk trajectories. Specifically, we follow the strategy

in [11]: after obtaining shrunk trajectories, we randomly

select 30 subsets from trajectories. The number of trajecto-

ries in each subset is more than a half of the total number

of shrunk trajectories. The mean shift clustering algorithm

clusters the trajectories in each subset. The averaged num-

ber of the learned clusters is used to estimate the real num-

ber of clusters. Fig. 5 shows the experimental results on the

three data sets, where the red squares correspond to the esti-

mated number of clusters w.r.t. the real number of clusters.

We can find that the estimated number of clusters fits the

real number of clusters well in most situations.

Clustering Accuracy. We compare various trajectory

clustering approaches on the three data sets. The real num-

ber of clusters is pre-determined. The experimental results

Figure 5. The estimated number of clusters v.s. the ground truth

of clustering accuracy are shown in Tables 1-32. From Ta-

bles 1-3, we have following observations:

1) The results of our approach (AMKS+Kmeans and

FastAMKS+Kmeans) is superior to other competitors in

most situations. Especially in the noisy cases, since our ap-

proach is essentially related to manifold denoising, it is very

robust to the noise — the clustering accuracy is almost un-

changed with the increase of noise. Besides, an interesting

result is the accelerated algorithm FastAMKS sometimes

is equal to, even a little better than AMKS. In our opin-

ion, that is because the initial structure of neighborhoods

has few changes w.r.t iterations in the case of clean data.

In the noisy or incomplete cases, the changes of the neigh-

borhoods caused by shrinkage may introduce some errors.

Therefore, the neighborhoods obtained from original trajec-

tories may be more reliable.

2) The similarity-measure-based methods (ED+Kmeans,

ED+SC, DTW+Kmeans, DTW+SC) achieve relatively low

accuracies in datasets with larger variations (e.g., T11 and

T15). This reveals that pre-defined similarity measures have

limitations in adaptively handling different trajectory data.

Comparatively, our approach has stronger capabilities in

handing various trajectory data with the inclusion of adap-

tive multi-kernel estimation.

3) Our approach also has better or similar results to

the cluster-pattern-modeling methods (Heat-map, HMM,

DPMM). This further demonstrates the effectiveness of our

framework. Moreover, note that the results of cluster-

pattern-modeling methods are highly dependent on the clus-

ter initialization results (e.g., the HMM based method [17]

learns its HMM model based on a spectral pre-clustering re-

sult, the DPMM based method [11] learns its initial model

from pre-selected representative trajectories). The results of

these methods may be obviously decreased when their ini-

tial clustering results are less satisfactory. In contrast, our

approach aims to enhance the discrimination among trajec-

tories before clustering, and thus is more robust to the vari-

ation of initialization.

4) Our approach is also superior to the mean shift-based

methods (MS, MBMS). This is because: (a) We apply an

adaptive multi-kernel estimation to ensure the embedding

of useful information from multiple trajectories and mul-

2Some experimental results of DPMM [11] are unavailable because of

the lack of source code.
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(a) T19: original trajectories and the shrunk trajectories obtained by MS [4], MBMS [25], adaptive multi-kernel estimation and our FastAMKS.

(b) T11: original trajectories and the shrunk trajectories obtained by MS [4], MBMS [25], adaptive multi-kernel estimation and our FastAMKS.

(c) T15: original trajectories and the shrunk trajectories obtained by MS [4], MBMS [25], adaptive multi-kernel estimation and our FastAMKS.

Figure 6. Visualization and comparison of shrunk trajectories. The color of trajectory indicates the cluster it belongs to.

(a) The shrunk trajectories w.r.t.

the number of iteration.

(b) λ v.s. clustering accuracy.

Figure 7. The robustness of our algorithm on the data set T11.

tiple aspects. (b) We leverage the information from other

trajectories in the trajectory optimization process, so as to

guarantee the smoothness and the discrimination of the op-

timized trajectories.

Stability of Trajectory. Besides the numerical results

in the Tables and the examples in Fig. 1, we gives more

visual results in Fig. 6. We compare the shrunk trajecto-

ries obtained by MS [4], MBMS [25], the adaptive multi-

kernel-based estimation without speed-based regularization

and our FastAMKS, respectively. The shrunk trajectories

obtained by MS are very unstable. Many of shrunk tra-

jectories contains discontinuous points so that the trajecto-

ries are shared by different clusters. MBMS improves the

performance of MS a little — the shrunk trajectories are

more smooth but still cannot preserve the shape of origi-

nal ones. The instability of shrunk trajectories has negative

influences on clustering accuracy. Replacing the Gaussian

kernel used in MS and MBMS with our kernel (3), we can

suppress the instability of shrunk trajectories greatly. How-

ever, without our speed-based regularization, there still exist

some discontinuous points. Combining the adaptive multi-

kernel-based estimation and the speed-based regularization,

our FastAMKS algorithm obtains much more smooth and

discriminative shrunk trajectories than its three competitors.

Robustness of Parameters. We also demonstrate the

robustness of our FastAMKS algorithm to the number of

iteration J and the significance of regularization term λ.

The experimental results of the data set T11 are shown in

Fig. 7. Specifically, Fig. 7(a) shows that the shrunk trajec-

tories converges well after 7 iterations. Fig. 7(b) shows that

the clustering accuracy is robust to the change of λ in a wide

range from 0.01 to 14. Similar results can also be verified

on the other data sets.

4.2. Anomaly Detection

One of useful applications in company with trajectory

clustering is anomaly detection. The trajectories that are

very different from their centers of clusters are regarded as

abnormal trajectories. In our work, the mean of the shrunk

trajectories belonging to the same cluster is regarded as the

center of the cluster, denoted as {Ck}
K
k=1 and shown in

Fig. 8. Inspired by [14], we propose a simple anomaly de-

tection method based on our clustering results and the ex-

cess kurtosis-based abnormality measure. For each original

trajectory Ti belonging to the k-th cluster, we can compute

the residual between Ti and the center of the cluster, de-
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(a) The centers of clusters and anomaly in T19. (b) The centers of clusters and anomaly in T11. (c) The centers of clusters and anomaly in T15.

Figure 8. Visualization of centers of clusters and abnormal trajectories. The blue lines are centers of clusters obtained by our algorithm. The

green lines are trajectories occupying the sidewalk. The yellow lines are trajectories changing lane unusually. The red lines are trajectories

traveling in opposite direction.

(a) Original tracklets in NY. (b) Clustering results of shrunk tracklets. (c) The proposed graph and inferred paths.

Figure 9. In (b), given clustering results of shrunk tracklets, we can find the centric points of clusters and construct graph via detecting the

density of points in the region between points. In (c), the proposed graph (red dots and lines) is shown. The colorful background shows the

typcial semantic regions inferred in [31], and the yellow arrows shows the shortest paths connecting corresponding dots.

noted as Ei,k = Ck − Ti = [e1i,k, ...e
D
i,k] ∈ R

T×D. As-

suming that {edi,k}
D
d=1 are independent with each other, we

compute the excess kurtosis of the residual, κi,k, as

κi,k =
1

D

D∑

d=1

κ(edi,k) =
1

D

D∑

d=1

(
µ4(edi,k)

σ4(edi,k)
− 3

)
, (9)

where µ4(edi,k) and σ(edi,k) are the fourth moment and the

standard deviation of edi,k. In any case, −2 < κ < ∞. If

κ < 0, the distribution of the residual is broad and the peak

is small. On the contrary, if κ > 0, the distribution of the

residual is compact and the peak is obvious. In the case that

κ = 0, the distribution is almost similar to normal distribu-

tion. Assume that the distribution of the residual between a

normal trajectory and the center of its cluster is the Gaus-

sian with zero mean and small variance. The trajectory with

κ < 0 are likely to be anomaly.

Setting a threshold, we detect the trajectory whose ex-

cess kurtosis below the threshold as an abnormal trajectory.

In our work, we set the threshold as −1.5. The results on

T19, T11 and T15 are shown in Fig. 8, which verifies the

feasibility of our method. The abnormal trajectories, e.g.,

unusual change of lane, occupation of sidewalk and travel

in opposite direction, are found by our method.

4.3. Tracklet Clustering and Route Analysis

Our method can also be used to cluster tracklets and an-

alyze routes in the scene. Applying our AMKS+Kmeans

algorithm on the data set NY, we obtain shrunk tracklets

and their clustering results. Compared with original track-

lets in Fig. 9(a), the shrunk tracklets are aggregated tightly

in various local regions. The clustering results in Fig. 9(b)

show that our method clusters tracklets based on their lo-

cal structures. Given the clustering results, we can analyze

the routes in the scene effectively. For the shrunk tracklets

in the same cluster, we compute the mean of points in the

cluster, as the red dots in Fig. 9(b). These dots indicate the

“popular” locations that many tracklets (pedestrians) pass.

For each two dots, if there are dense points in the region be-

tween them, as the red ellipse in Fig. 9(b) shows, there exists

an edge connecting them. As a result, we construct a graph

connecting these dots. The shortest paths in the graph indi-

cate popular routes on which there are a lot of pedestrians,

as Fig. 9(c) shows. Comparing our paths with the semantic

regions inferred in [31], we can find that a lot of them are

similar, which verifies the rationality of our result.

5. Conclusion

In this paper, we propose an effective and robust tra-

jectory clustering approach, which extends mean shift and

manifold denoising algorithms and achieves outstanding re-

sults. Experimental results show that our approach can

be used to cluster trajectories, detect anomaly and analyze

scene, which is not only robust to the noise and the incom-

pleteness of data but also insensitive to the changes of pa-

rameters. In the future, we plan to extend this analytic work

to a predictive model. We will also explore other applica-

tions, e.g., action recognition and scene understanding.
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