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Abstract

We propose a method to detect disocclusion in video se-

quences of three-dimensional scenes and to partition the

disoccluded regions into objects, defined by coherent defor-

mation corresponding to surfaces in the scene. Our method

infers deformation fields that are piecewise smooth by con-

struction without the need for an explicit regularizer and

the associated choice of weight. It then partitions the dis-

occluded region and groups its components with objects by

leveraging on the complementarity of motion and appear-

ance cues: Where appearance changes within an object,

motion can usually be reliably inferred and used for group-

ing. Where appearance is close to constant, it can be used

for grouping directly. We integrate both cues in an energy

minimization framework, incorporate prior assumptions ex-

plicitly into the energy, and propose a numerical scheme.

1. Introduction

Persistent tracking of three-dimensional (3D) objects in

video presents long-standing challenges unless they are flat

[33], or the video is short [25]. As surfaces move in 3D rel-

ative to the viewer, previously unseen portions of the scene

become visible and will have to be attributed to different

objects to maintain tracking. Such disocclusion phenomena

are the focus of our investigation.

Consider a camera rotating around a box in Fig 1: Both

the occluded and disoccluded regions involve portions of

different objects, in this case just the box and the “back-

ground.” Occlusions have been addressed by [29, 1]. We

focus on disocclusions, by determining the disoccluded area

(Sect. 2), partitioning it and grouping each portion with an

object (Sect. 3).

Grouping unseen portions of the scene into different ob-

jects requires prior assumptions on their properties. One

could assume that the “appearance” or “texture” of objects

is homogeneous (i.e., their reflectance exhibits spatially sta-

tionary statistics) and leverage on the similarity of image

color histograms to partition and group disoccluded regions.

However, this assumption often fails, as in Fig. 1. Alterna-

Figure 1. Relative motion between a three-dimensional scene and

the camera (here rotating around the box) causes disocclusion, i.e.,

regions of the image domain where previously unseen portions of

the scene project to. Unless objects in the scene are flat, the dis-

occlusion include portions of different objects. Persistent tracking

requires detecting the disocclusion and attributing their compo-

nents to different objects.

tively, one could assume that the “apparent motion” of ob-

jects is homogeneous (i.e., the deformation undergone by

the image domain is smooth within objects, and discontin-

uous across). However, when objects exhibit “textureless”

surfaces (i.e., constant reflectance), such a deformation is

undetermined, and cannot be used for grouping.

Fortunately, motion and appearance cues are comple-

mentary: When one fails to be informative, the other may

be. Leveraging such complementarity is central to this pa-

per. When the disoccluded region exhibits complex ap-

pearance, motion can be reliably inferred and exploited for

grouping. Otherwise, when the disoccluded region is tex-

tureless, photometric statistics are spatially homogeneous

and can be reliably used for grouping. Of course, both cues

can fail if an object has piecewise constant appearance, and

the transition happens right at the disocclusion (Fig. 2).

However, these are accidental phenomena that do not persist

in long temporal sequences.

For us, objects are layouts of piecewise smooth and

smoothly deforming surfaces in 3D supporting Lamber-

tian reflection seen under constant illumination throughout

a video sequence. There can be multiple objects moving

independently, in addition to viewer (or equivalently back-

ground) motion. Under these assumptions, the domain of

a video image of a scene can be partitioned into two types

of regions: Those that are co-visible, that under the stated

assumptions are a smooth deformation of regions in the pre-
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vious frame, and those that are disoccluded, i.e., whose pre-

image under perspective projection is a portion of a surface

that was not visible in the previous frame(s). In addition,

occluded regions are subsets of a region that, in the pre-

vious frame, was occupied by an object different than the

current one. These have been addressed by others [1].

Disoccluded regions in a video are the occluded regions

in the video played backwards. Because we eventually aim

at real-time closed-loop operation, we wish to process the

data causally. Furthermore, parts of objects can appear in

a frame and disappear in the next, a case which forward-

backward sweeps would not address (Sect. 4). With an

abuse of nomenclature, we refer to “objects” as both the

connected surfaces in 3D, and the subsets of the (2D) image

domain where they project.

Contributions: To detect disocclusions, we extend the

Sobolev framework of [38] to multiple objects (Sect. 2).

This framework naturally encompasses coarse-to-fine de-

formation inference without an explicit regularizer and the

associated weighting constant. To partition and group dis-

occluded regions to various objects, we leverage on the

complementarity of motion and appearance cues by intro-

ducing a novel data term that encompasses both (Sect. 3).

We derive an efficient numerical scheme and test it against

competing methods on benchmark datasets (Sect. 4).

1.1. Related work

Persistent object tracking in video touches upon a large

body of work in video segmentation (e.g., [14, 19, 36, 16]),

tracking (e.g., [35, 3, 12, 20]), optical flow (e.g., [15, 6,

7, 39, 26]), and motion segmentation (e.g., [33, 27]). In

dealing with visibility phenomena, our work relates to oc-

clusion detection. There is a literature on detecting occlud-

ing boundaries from static images or short-baseline video

(see [29] and references therein). Since we tackle persis-

tent tracking, we do not discuss this further. Our work is

related to [1] that partitions the image domain into (flat)

layers like [33], but in a convex optimization setting after

relaxing the ℓ0 norm to ℓ1. We detect occlusions without

the need for such a relaxation and without the need for reg-

ularization of the deformation field, which can cause over-

smoothing in some regions, and under-smoothing in others.

Instead, following [38] we employ a Sobolev approach [28]

(see also [9, 4]) to infer deformation fields that are by con-

struction smooth in a naturally coarse-to-fine manner. On a

short time-scale, such deformation fields are related to op-

tical flow, which we do not review here, except for when

the flow is partitioned into regions, as in motion segmenta-

tion. There, the flow field is often assumed to be piecewise

parametric. Here we allow each component to be a dif-

feomorphism to handle articulated and deforming objects

without over-segmenting them. Other motion segmentation

approaches perform clustering of optical flow, often non-

causally [23, 14].

Although our goal is segmentation, our method produces

diffeomorphic warps, and relates to diffeomorphic regis-

tration, e.g., [4, 32, 10]. We produce a piecewise dif-

feomorphism of the image rather than a global diffeomor-

phism as in [4, 32, 10], an assumption that breaks under

(dis)occlusions. Also, our warp computation is parameter-

free in contrast to [4, 32, 10].

Taylor et al. [30] perform layer segmentation in longer

video sequences leveraging occlusion cues, but do not ex-

plicitly address the interplay of motion and intensity cues

in disocclusion. Similarly, [27] performs layered segmen-

tation by grouping. Only intensity cues are used for the

disocclusion in [8, 38].

This work also relates to dense 3D reconstruction of ge-

ometry and photometry [18, 22, 37, 13, 17], since an explicit

3D reconstruction of the scene produces as a side effect a

partition of the video into regions. However, it requires a

static scene, and does not address deforming objects mov-

ing independently, which our work addresses.

2. Sobolev Warps and Occlusions

We seek to partition the domain D of a time-varying

color image It : D ⊂ R
2 → R

3 for t = 1, 2, . . . , into

a collection {Rt
i}

N
i=1 of regions Rt

i . We omit the time in-

dex hereafter for simplicity. These regions are also called

“objects,” that move coherently, as defined next.

The (apparent) motion of each region Ri, also referred

to as a warp or a deformation, is defined in the domain of

the image It as the map wi : Ri → D that transforms It+1

back to It. Assuming the scene is Lambertian, illumination

is constant, and the image is corrupted by additive zero-

mean Gaussian noise, the maximum-likelihood estimate of

wi is obtained by minimizing Ewarp(wi, Oi), given by

Ewarp=

∫

Ri\Oi

|It+1(wi(x))− It(x)|
2 dx+ β

∫

Oi

dx, (1)

where Oi ⊂ Ri is the (unknown) occluded region that is

visible at time t but not at time t + 1. Note that, although

wi is defined on all of Ri, the data It+1, It only provides

evidence of it in the co-visible region Ri\Oi. To avoid the

trivial solution Oi = Ri and thus wi undetermined, we put

a penalty on the occluded area as in [1].

Eq. (1) is reminiscent of many optical flow estimation al-

gorithms [15, 6, 7, 39], but there are important differences:

First, each warp is restricted to a subset Ri ⊂ D with

no compatibility condition or relation among the different

warps. Second, there is no regularizer for the warps. Most

motion segmentation or optical flow schemes either assume

that each warp belongs to a (small-dimensional) paramet-

ric family such as the group of affine transformations, or

impose a penalty on the (piecewise) smoothness of wi. In-

stead, we leverage on the Sobolev framework [28] to impose
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regularity in a naturally coarse-to-fine framework, while al-

lowing the warps to be arbitrary diffeomorphisms (smooth

maps with a smooth inverse). So, rather than adding a reg-

ularizer for the warps in (1), we compute each warp as the

integral of a smooth time-varying vector field that, at each

instant, belongs to a Sobolev space. This allows us to effi-

ciently optimize (1) without imposing global regularization,

which may be too much for fine-scale objects, and too little

for large ones.

Given the warp wi, the optimal occlusion Oi is

Oi = {x ∈ Ri : |It+1(wi(x))− It(x)|
2 > β}. (2)

Substituting the expression above into the energy, we obtain

Ewarp(wi) =

∫

Ri

ρ(It+1(wi(x))− It(x)) dx, (3)

which now depends only on the warp wi, and where

ρ(y) = |y|2 for |y|2 < β and ρ(y) = β for |y|2 ≥ β
(4)

With this, we can finally clarify the notion of “coherent mo-

tion” used to define the regions Ri: A region Ri moves co-

herently if there is a warp wi that is smooth according to

the Sobolev metric, that (locally) minimizes (3).

The gradient of Ewarp, Gi : wi(Ri) → R
2, with respect

to the Sobolev metric has been computed by [38] and is

Gi(x)
.
= ∇SobE(wi)(x) = avg(Fi) +

1

α
G̃i(x), (5)

where α > 0 is a parameter that will be eliminated below,

Fi : wi(Ri) → R
2 is

Fi = ∇It+1∇ρ(It+1 − It ◦ w
−1
i ) det∇w−1

i , (6)

avg(Fi) is the average over wi(R), ∇ is the vector of par-

tials, and G̃i satisfies the partial differential equation (PDE):











−∆G̃i(x) = Fi(x)− avg(Fi) x ∈ wi(Ri)

∇G̃i(x) ·N = 0 x ∈ ∂wi(Ri)

avg(G̃i) = 0

, (7)

where ∆ is the Laplacian, N is normal to ∂wi(Ri), G̃i is

the deformation, and avg(Fi) is the translation.

To extend the framework to multiple regions, we ex-

tend each warp wi to the entire domain D by imposing

∆G̃i(x) = 0 for x ∈ D\Ri and a Dirichlet condition on

∂Ri. The extension is continuous, but not differentiable

across Ri.
1

1While one can define the Sobolev metric over the entire domain D [4],

thus naturally having a regular gradient defined over the entire domain D,

this is avoided to enable capturing fine-scale structures in a manner that is

not influenced by neighboring large-scale structures, for instance an arm

swinging near the torso of a person.

Starting with the identity map wi(x) = x, we deform it

by the gradient descent (5) as follows. Define φ0,τ
i : D →

D and φτ,0
i : D → D as the evolving warp and its inverse

where τ is an artificial time variable parameterizing the evo-

lution. The inverse is needed to compute Fi. The evolution

of the warps according to the gradient descent of Ewarp is

Gτ
i = ∇SobEwarp(φ

0,τ
i ), (8)

∂τφ
τ,0
i (x) = ∇φτ,0

i (x) ·Gτ
i (x), (9)

∂τφ
0,τ
i (x) = −Gτ

i (φ
0,τ
i (x)) (10)

for all x ∈ D. This gives a coarse-to-fine evolution. One

can eliminate the parameter α by noting the independence

of the deformation and translation components on α in (5).

This gives Algorithm 1, which decreases the energy.

Algorithm 1 Sobolev Warp Computation

1: Set φτ,0
i (x) = φ0,τ

i (x) = x for τ = 0
2: repeat

3: repeat

4: Let α → ∞ so Gτ
i = avg(F τ

i ) is a translation

5: Translate: Perform one iteration of (9)-(10)

6: until avg(F τ
i ) = 0.

7: Deform: Do one iteration of (9)-(10) with Gτ
i = G̃τ

i

8: until G̃τ
i = 0

9: Set wi = φ0,τ∞
i where τ∞ is the convergence time

In Section 3.3, we will need to compute the occlusion so

that it can be removed in the next frame. It can be computed

at the end of the evolution as

Oτ∞
i = {x ∈ Ri : |It+1(φ

0,τ∞
i (x))−It(x)|

2 > β}. (11)

3. Causal Object Segmentation

If the motion of each region Ri was reliably inferred,

one could attempt to propagate forward the Ri to segment

the next frame. Unfortunately, regions that become disoc-

cluded between t and t + 1 are not included in any of the

Ri. While this is not a major problem if we are interested

in only two adjacent frames, t and t + 1, as the area of

the occluded/disoccluded regions is small, as time goes by

the disocclusion typically grows. Thus, this phenomenon is

hard to ignore when one considers long temporal sequences.

The challenge becomes to assign the various components of

the disocclusion to existing regions, or to spawn new ones.

This is illustrated in Fig. 1: So long as the scene is popu-

lated by non-flat surfaces, multiple objects contribute to the

disoccluded region.

We assume a partition into objects at time t−1 and prop-

agate it forward to time t. The disocclusion, i.e., the part of

the domain D not covered by the propagated segmentation,

is initially assigned to regions based on estimated warps,

and this is refined by minimizing the energy in Section 3.1.
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background
object

occlusion

object moves left at frame t+1

image at frame t 

Figure 2. Illustration of an error that arises in segmentation by

grouping pixels only based on motion residuals. The object (dark

yellow) moves to the left to occlude a portion of the background

(dark green). Pixels in the occluded region are likely to be classi-

fied incorrectly in frame t if only motion residuals are used since

both residuals are large. When the background is constant in the

occluded region and around it, classifying by residuals almost cer-

tainly leads to misclassifications.

3.1. Complementarity of Motion and Appearance

Of course both appearance and motion cues are obtained

from image irradiance. What we mean by “cues” is bottom-

up computation that leverages on the assumption of smooth

spatial variation of image irradiance (appearance cues) ver-

sus smooth temporal variation of the same (motion cues).

To attribute disoccluded regions to any of the existing

objects, we can leverage the photometric regularity and as-

sign each segment to the object that has similar “texture” or

motion. We favor the latter, as objects can have spatially-

varying appearance, as in the cereal box in Fig. 1. This

fails when the object and the background are textureless, as

in Figure 2, or when they exhibit similar fine-scale texture.

However, in this case grouping by appearance is straightfor-

ward. We leverage on this complementarity by exploiting

preferentially motion regularity, consistent with our defini-

tion of objects, resorting to appearance regularity when the

photometry is not suitable to reliably estimate motion.

Textureless regions: To leverage on this complemen-

tarity, we use the local standard deviation σi(x) of It in

a neighborhood Bx,r′ ∩ Ri where Bx,r′ = {y ∈ D :
|x − y| ≤ r′} is the ball of radius r′ centered at point x.

We can then define a measure of local constancy of any re-

gion local to a point x as the minimum standard deviation

over all regions that intersect the ball:

σ(x) = min
i, Bx,r′∩Ri 6=∅

σi(x). (12)

Low values of σ(x) indicate that the underlying color chan-

nels are not sufficiently exciting and therefore motion esti-

mates can be expected to be unreliable.

Motion ambiguity function: Grouping by residuals also

should not be done when current warp residuals are large.

Define the forward, backward and minimum residuals as

Res
f
i (x) = |It+1(w

f
i (x))− It(x)|

2 (13)

Resbi (x) = |It(w
b
i (x))− It−1(x)|

2 (14)

Resi(x) = min{Res
f
i (x),Resbi (x)} (15)

where wf
i and wb

i are the current forward and backward

warps of region Ri. The backward residual is used to re-

move some ambiguity in Fig. 2 as sometimes occluded pix-

els at time t + 1 are visible at time t − 1, and hence the

backward motion may be reliable. The minimum of Resi
over all regions that intersect with a ball around x,

Res(x) = min
i, Bx,r′∩Ri 6=∅

Resi(x), (16)

is small when motion cues are reliable. We define the mo-

tion ambiguity function, maf : D → {0, 1}, which indicates

whether motion cues are unreliable, as

maf(x) =

{

1 if σ(x) < k/r′ or Res(x) > β

0 otherwise
, (17)

where k > 0 is a parameter, the sensitivity to which is stud-

ied empirically in Sect. 4. maf is 1 if the pixel is in or

borders a constant region or if all motion residuals are large.

Complementary data term: The cost for x ∈ Ri is

fi(x)=(1−maf(x))Resi(x)−maf(x) log pi,x(It(x)), (18)

where pi,x are local normalized color histograms of the im-

age It within the region Ri. Therefore, if the motion is

reliable, as defined by the maf, the cost is the residual of the

pixel in the region and if the motion is unreliable, the cost

is the fidelity of the pixel to the local intensity distribution

of the region Ri. The data energy for region Ri is then:

Ei
data =

∫

Ri

fi(x) dx. (19)

This complementary data term is a key feature in resolving

disocclusions (Fig. 3).

3.2. Temporal and Spatial Regularity

To leverage temporal and spatial regularity of the re-

gions, we first note that the warps are regular by construc-

tion within the Sobolev framework. We also note that, in

between frames, disoccluded regions are small, adjacent to

the object they belong to, and typically result in an updated

region of similar shape. Thus, if R′
i is the forward warping

of the ith region from frame t to t + 1, we bias the final

regions Ri to be close to R′
i in shape and location.

To this end, we construct a local shape similarity prior.

Measuring the similarity of Ri and R′
i generally requires

knowledge of point correspondences. Similar to ICP [5], we

assume that x ∈ Ri corresponds to its closest point in R′
i,

cli(x), which can be computed efficiently with Fast March-

ing [24]. Define the local shape similarity, Si : Ri → R
+,

of Ri within the ball Br,x to R′
i within Br,cli(x) as follows:

Si(x)=
1

|Bx,r|

∫

Bx,r

|1Ri
(y)−1R′

i
(cli(x)−x+y)|dy, (20)
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Disocclusion assignment with appearance only [38]

Disocclusion with direct combination of motion and appearance [30]

Disocclusion with complementary motion and appearance (ours)

Figure 3. Rotating around an object. Disoccluded parts of an

object that have different appearance than the visible parts in

the previous frame (cereal box) pose difficulties to existing algo-

rithms. Labeled above are various strategies for addressing dis-

occlusions. Our method also performs well under self-similar ap-

pearance (statue), and handles various visibility artifacts from non-

convex objects.

where 1R is the indicator function of R, and |Bx,r| is the

area of Br,x (see Fig. 4). The score measures the differ-

ence between the shapes Ri ∩Bx,r and R′
i ∩Bcli(x),r using

translation invariant set symmetric difference. The shape

similarity energy is:

Ei
shape =

∫

Ri

Si(x) dx. (21)

In addition, to bias regions Ri towards being close to R′
i, let

dR′

i
denote the distance function to ∂R′

i, and define

Ei
dist =

∫

Ri

dR′

i
(x) dx. (22)

Finally, we induce spatial regularity of Ri, i.e., nearby

points x and y are penalized if they do not belong to the

same region. Let

WRi
= Gs ∗ (1− 1Ri

) (23)

Br,cli(x)

cli(x)

x

Br,x

R0
i

Ri

Figure 4. Illustration of the quantities in the local shape similarity

term, Si. R
′

i is the forward warped region and Ri is a candidate in

frame t + 1. The region Ri in a ball around x is compared to R
′

i

in a ball around cli(x), the closest point on R
′

i to x to from Si(x).

be a Gaussian smoothing of standard deviation s of the com-

plement of the indicator function of Ri [11]. A large value

of WRi
(x) implies that x ∈ Ri is near many points of

D\Ri. We induce spatial regularity of Ri by

Ei
smooth =

∫

Ri

WRi
(x) dx. (24)

3.3. Overall Model and Optimization Method

The assumptions underlying our model are captured by

the following energy, which is minimized with respect to

the regions Ri:

Eseg =
N
∑

i=1

Ei
data + γlsE

i
shape + γdE

i
dist + γsE

i
smooth, (25)

where γls, γd, γs > 0 are weights. We optimize the energy

above by a first order approximation to the gradient descent,

ignoring terms that involve integrals over Ri. They could

be easily included, at a high computational cost and modest

performance gain. By defining

Hi(x) = fi(x)+γlsSi(x)+γddR′

i
(x)+γsWRi

(x), (26)

we arrive at our optimization scheme in Algorithm 2.

Algorithm 2 Assigning Disocclusion to Regions

1: // initialize Ri for gradient descent

2: Compute propagation of segmentation, R′
i using (27)

3: Compute disocclusion D = D\ ∪i R
′
i

4: Compute warps of R′
i using Algorithm 1

5: Compute Hi by substituting Ri with R′
i ∪D

6: Set Ri = R′
i ∪ {x ∈ D : Hi(x) ≤ Hj(x), ∀j}

7: // end initialize

8: repeat // first order approximation of gradient descent

9: Update warps of Ri using Algorithm 1

10: Compute Hi

11: Rnew
i ={x∈D : dRi

(x)<ε, Hi(x) ≤ Hj(x), ∀j}
12: Update regions by Ri = Rnew

i

13: until Ri’s do not change between iterations

Algorithm 2 first computes an initialization of regions Ri

to the gradient descent (lines 2-6). This is accomplished by
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Figure 5. [Left]: Segmentation from the frame t. [Middle, left]:

the propagation of the segmentation from frame t to t + 1 (black

regions indicate disoccluded regions). [Middle, right]: initializa-

tion of the regions. [Right]: final segmentation.

Figure 6. Illustration of initialization method in the first frame.

[Left]: Aggregation of optical flow fields, [Right]: initial segmen-

tation in the first frame.

propagating forward the segmentation at time t− 1 to t:

R′
i = {x ∈ D : 1Rt

i
\Ot

i
(w−1

i (x)) ≥ 1Rt
j
\Ot

j
(w−1

j (x)), ∀j}

(27)

where Ot
i ⊂ Rt

i is the part of the ith region that is occluded

at frame t (11), which is removed, and wi is the warp from

t − 1 to t. R′
i does not partition all of D because of disoc-

clusion. Therefore, the disoccluded region D = D\ ∪i R
′
i

is initially assigned based on motion cues computed from

R′
i and other terms in Hi.

With this initialization, the first order approximation to

the gradient descent is computed (lines 9-12). Note that

the condition, dRj
(x) < ε, is to allow pixel changes only

within a band of the boundaries of the current regions so as

to approximate the gradient descent. Each step of the warp

computation (from t to t + 1 and from t to t − 1) in line 9

requires only a few iterations in Algorithm 1 since the warps

in the previous iteration of line 9 are close to the final. See

Fig. 5 for an example of various stages of this method.

3.4. Initialization for the First Frame

So far we have assumed that, at time t, we have a parti-

tion at time t − 1. This is the case during regime operation

when processing a video sequence, but not when t = 0. For

certain applications, such as interactive video segmentation

[3, 2], one can assume that the user provides an initial par-

tition. More in general, a number of methods could be em-

ployed to obtain an initial partition, using a variety of cues,

including semantic labeling from trained detectors. While

this process may be costly, it only needs to be performed

once as our method affords us the ability to correct initial

errors based on motion and appearance regularity.

In the next section, we present results for an initializa-

tion performed by clustering optical flow (with regularity

(24) using Classic-NL [26]) during a longer initial temporal

segment, until enough motion is observed (see Fig. 6).

4. Experiments

Our algorithm aims to segment objects, thus we test it

on benchmarks with ground truth object annotation: the

Freiburg-Berkeley Motion Seg. (FBMS-59) [23], and Seg-

Track (v1 & v2) [31, 20]. FBMS-59’s two sets - training

(29 sequences) and test (30 sequences), range between 19-

800 frames with multiple objects. SegTrack v2 consists of

14 sequences ranging from 29-279 frames with multiple ob-

jects. SegTrack v1 is an earlier version with single objects,

which we use to expand the comparison to more methods.

Evaluation: FBMS-59 scores a subset of frames (3-

41). Results are reported in terms of precision, recall, F -

measure, and the number of objects with F ≥ 0.75. Seg-

Track (v1 & v2) evaluates, on all frames, the number of

pixels incorrectly classified (v1). Results on v2 are reported

as average intersection over union overlap.

Comparisons: On FBMS-59, we compare against a

baseline approach [14], one based on clustering motion

tracks [23], one segmenting based on occlusion, motion and

appearance cues [1], and finally a most recent one integrat-

ing motion, appearance, occlusion, and temporal regularity

[30]. On SegTrack, we compare to [8] that attempts to solve

disocclusions using only appearance and to other state-of-

the-art methods [20, 19, 21, 16, 34].

Initialization: On FBMS-59, we report results of our

method automatically initialized as described in Sect. 3.4.

On SegTrack our method is initialized by the user in frame

1 and compared with similarly initialized methods and also

automated methods. Typically, sequences in SegTrack do

not have enough object motion in the first few frames to

ensure proper initialization.

Parameters: For FBMS-59, we tune the parameters

on a few sequences in the training dataset, and then fix

them on training and test datasets. On SegTrack, param-

eters are fixed. Parameters consistent across datasets are

γls = 0.1, γd = 0.001, γs = 5. Sensitivity of key parame-

ters is addressed later.

Results on FBMS-59 are in Table 1. Figure 7 shows

some representative outcomes. Overall our method is more

accurate, even compared to non-causal (NC) methods that

process the video in batch. This suggests that good disoc-

clusion is key to accurate object segmentation.

Failure Cases on FBMS-59: The main source of er-

ror is the automatic initialization in frame 1. This could

be mitigated by running our method on multiple candidate

initializations, although initialization is not our focus here.

To show that better initialization would resolve failures,

we show that the results of the 10 most inaccurate cases

(typically when an object failed to be detected) improves

with user annotation in the first frame (Table 2, Figure 8).

Fig. 9 shows that our method recovers from errors in the

first frame (short of failed detection).
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image ground truth Lee et al. [19] Grundman et al. [14] Ochs et al. [23] Taylor et al. [30] ours

Figure 7. Sample Visual Results on FBMS-59. Comparison of various state-of-the-art methods. Only a single frame on various sequences

are shown. Failure cases (bottom two) in our method typically arise when not enough motion is present in the first few frames.

Training set (29 sequences) Test set (30 sequences)

P R F N/65 P R F N/69
[14] 79.17 47.55 59.42 4 77.11 42.99 55.20 5

[23] 81.50 63.23 71.21 16 74.91 60.14 66.72 20

[1] 87.20 59.60 70.81 17 79.64 50.73 61.98 7

[30] 85.00 67.99 75.55 21 82.37 58.37 68.32 17

[30]-NC 83.00 70.10 76.01 23 77.94 59.14 67.25 15

ours 89.53 70.74 79.03 26 91.47 64.75 75.82 27

Table 1. FBMS-59 results. Average precision (P), recall (R),

F-measure (F), and number of objects detected (N) over all se-

quences in the training and test datasets of FMS-59. Higher values

indicate superior performance. All methods are fully automatic.

[1], [30] and our method are causal; other methods are not.

marple9 cats4 farm1 goats1 giraffes1 all

ours (auto) 0.7950 0.7723 0.6730 0.6166 0.7515 0.7217

ours (manual) 0.9782 0.9025 0.7519 0.7505 0.9255 0.8617

Table 2. Failure cases on FBMS-59 in Fig. 7 can be enhanced with

user annotation in the first frame. Thus, the main source of error in

our method is the initialization. Results are in terms of F-measure.

Figure 8. Sample failure cases (various frames) on FBMS-59 in

Fig. 7 are enhanced with user annonation in the first frame.

Forward-Backward Sweeps on FBMS-59: Although

disocclusions are backward-occlusions, addressed exten-
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Figure 9. Results (on FBMS-59) with four different levels of errors

in initialization. Errors are mitigated in subsequent frames.

sively in the literature [29, 1], computing disocclusions via

forward-backward sweeps followed by a grouping proce-

dure does not perform as well as our method. We compare

to the non-causal version of [30], consisting of one forward

and one backward pass. Then, advanced grouping is per-

formed based on motion, appearance, temporal continuity,

and constraints imposed by occlusions/disocclusions. The

result, labeled [30]-NC in Table 1, is worse than ours on all

measures. This reaffirms that forward-backward sweeps is

not an adequate approach to resolve disocclusions.

Results on SegTrack: Table 3. We let the user annotate

the first frame, as in [16, 8, 34]. Our method outperforms

all others on all but one sequence. That our method out-

performs [8] reaffirms that our exploiting complementary

motion and appearance cues is beneficial. Results on v2

(Table 4, Fig. 10) show that our method out-performs fully

automated ones but also those using user annotation.
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human ours [34] [16] [8] [21] [19]

Mean 347 409 535 874 455 677* 740*

Birdfall 130 144 163 189 265 189 288

Cheetah 308 623 806 1170 570 806 905

Girl 762 835 1904 2883 841 1698 1785

Monkeydog 306 252 342 333 289 472 521

Parachute 299 169 275 228 310 221 201

Penguin 279 429 571 443 456 - 136285

Table 3. SegTrack v1 results. Evaluation is performed in terms of

the number of pixels classified incorrectly; smaller values indicate

superior results. Note that our method, [34], [16], and [8] use user

annotation in frame 1, and [21], [19] do not.

ours [34] [20] [19] [14]

Mean per object 76.4 71.8 65.9 45.3 51.8

Mean per sequence 77.0 72.2 71.2 57.3 50.8

Girl 91.6 84.6 89.2 87.7 31.9

Birdfall 77.3 78.7 62.5 49.0 57.4

Parachute 96.1 94.4 93.4 96.3 69.1

CheetahDeer 62.4 66.1 37.3 44.5 18.8

CheetahCheetah 52.2 35.3 40.9 11.7 24.4

Monkeydog-Monkey 84.1 82.2 71.3 74.3 68.3

Monkeydog-Dog 43.7 21.1 18.9 4.9 18.8

Penguin1 94.0 94.2 51.5 12.6 72.0

Penguin2 82.1 91.8 76.5 11.3 80.7

Penguin3 78.4 91.9 75.2 11.3 75.2

Penguin4 86.3 90.3 57.8 7.7 80.6

Penguin5 77.1 76.3 66.7 4.2 62.7

Penguin6 89.0 88.7 50.2 8.5 75.5

Drifting Car1 82.3 67.3 74.8 63.7 55.2

Drifting Car2 77.6 63.7 60.6 30.1 27.2

Hummingbird1 39.0 58.3 54.4 46.3 13.7

Hummingbird2 69.0 50.7 72.3 74.0 25.2

Frog 76.7 56.3 72.3 0 67.1

Worm 83.4 79.3 82.8 84.4 34.7

Soldier 84.0 81.1 83.8 66.6 66.5

Monkey 85.1 86.0 84.8 79.0 61.9

Bird of Paradise 96.1 93.0 94.0 92.2 86.8

BMXPerson 92.8 88.9 85.4 87.4 39.2

BMXBike 32.5 5.70 24.9 38.6 32.5

Table 4. SegTrack v2. The evaluation is performed in terms of

the overlap of the best segments; larger values indicate superior

results. Our method and [34] uses user annotation in frame 1.

Figure 10. Sample SegTrack v2 results of our method.

Sensitivity to Key Parameters: These include the

ball size r′ and the threshold parameter k in our texture-

less region detector (12) and (17). To this end, we plot PR

curves (measured in terms of correct/incorrectly classified

pixels) by fixing one parameter and varying the other and

vice-versa. Results (Fig. 11) on the cereal box and statue

sequences show that within the operating range, precision

does not drop much as recall is increased.
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Figure 11. Analysis of sensitivity of key parameters (the threshold

and ball size of the textureless detector). [Left]: ROC curve fixing

the ball size and varying the threshold. [Right]: ROC curve fixing

the threshold and varying the ball size.

Computational cost and implementation: Our unop-

timized C++ implementation is available2. The costliest

component is solving for the warps. This requires solving a

linear PDE, for which there are many available fast-solvers

that could be leveraged. We used conjugate gradient, which

can be sped up. The overall cost of our algorithm varies

with the amount of deformation between frames. Using a

3.1GHz 12-core processor (with parallelization for the gra-

dient (7)), processing one frame on FBMS-59 takes on av-

erage 30 secs.

5. Discussion

We propose a method for handling disocclusion in object

tracking that does not require explicit motion regulariza-

tion, operates naturally in a coarse-to-fine framework, and

leverages complementary motion and appearance cues. Our

method exhibits reduced dependency on tuning parameters

than competing ones, and mitigates typical failures modes.

Our approach assumes that a current estimate of the par-

tition into objects is given at time t to infer the same at t+1.

If the given partition is nonsensical, most likely so will be

the output of our inference scheme. This issue is particu-

larly cogent at time t = 0. It can be addressed by spawn-

ing multiple trackers corresponding to different initializa-

tion hypotheses, later aggregating them through a voting

scheme. In many tracking applications, however, the user

decides what s/he wants to be tracked, so at least a rough

initial partition is available. This is the case for interactive

video post-processing [3]. In this case, it would be best to

process the entire sequence non-causally, although in some

cases processing a sliding batch is still desirable to avoid

excessive delay in the interaction with the user.

Real-time operation remains a challenge, but our method

has potential since we process data causally, and we use

optimization methods that are rapidly evolving, so we can

benefit from their improvements.
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