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Abstract

With the growing popularity of short-form video shar-

ing platforms such as Instagram and Vine, there has been

an increasing need for techniques that automatically ex-

tract highlights from video. Whereas prior works have ap-

proached this problem with heuristic rules or supervised

learning, we present an unsupervised learning approach

that takes advantage of the abundance of user-edited videos

on social media websites such as YouTube. Based on the

idea that the most significant sub-events within a video class

are commonly present among edited videos while less inter-

esting ones appear less frequently, we identify the signifi-

cant sub-events via a robust recurrent auto-encoder trained

on a collection of user-edited videos queried for each par-

ticular class of interest. The auto-encoder is trained using

a proposed shrinking exponential loss function that makes

it robust to noise in the web-crawled training data, and

is configured with bidirectional long short term memory

(LSTM) [5] cells to better model the temporal structure of

highlight segments. Different from supervised techniques,

our method can infer highlights using only a set of down-

loaded edited videos, without also needing their pre-edited

counterparts which are rarely available online. Extensive

experiments indicate the promise of our proposed solution

in this challenging unsupervised setting.

1. Introduction

Short-form video has become a popular way for users

to share their experiences on social media platforms such

as YouTube and Facebook. With a well-crafted video, the

user’s experience can be quickly conveyed without testing

the attention span of viewers. However, manually produc-

ing a highlight clip from a lengthy video, such as those cap-

tured with wearable devices like GoPro cameras, can be

a time-consuming and laborious task, especially on small
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Figure 1. Overall system pipeline

form-factor display devices such as smart phones. An auto-

mated tool for generating highlight clips is thus immensely

desirable such that the user need only to deal with content

capture.

Previous techniques address this problem either by lim-

iting the scope to a particular context or through the use

of supervised learning. The first type of method gener-

ally employs heuristic rules designed for a certain type of

video, such as for broadcast sports [20, 18, 25, 31]. Though

effective for their targeted settings, these techniques may

not generalize well to generic, unstructured videos. In con-

trast, methods based on supervised learning rely on pairs of

edited and raw source videos [24] to infer highlight actions.

Collecting such video pairs, however, can be a challenge.

Although there exists a considerable amount of video data

on the web, users typically do not upload both the raw and

edited versions of a video.

In this work, we propose an unsupervised approach for
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generating highlight clips, using only edited videos. On the

web, there are seemingly countless short-form videos that

have been edited by thousands of users to contain mainly

highlight sub-events. Our method capitalizes on this wealth

of data by web crawling for videos in a given domain (e.g.,

“surfing”), and modeling the highlights from them by infer-

ring their common features. In this way, their raw counter-

parts are not needed, making it easy to scale up and collect

more training data. Additionally, since the videos have been

edited by a large community of users, the risk of building

a biased highlight model is greatly reduced in comparison

to using a training set constructed from a small number of

users.

There exist significant challenges with this approach:

(1) Although most people have a common notion of what

the highlights should be in a certain video domain such

as “surfing”, there nevertheless may exist subjective dif-

ferences among users (e.g., whether entering the water is

highlight-worthy). (2) A query on a given keyword, such

as “GoPro surfing”, may return some noisy results that are

not relevant to the targeted domain. (3) No information

other than the queried videos themselves are available to

be leveraged. Unlike in previous supervised learning ap-

proaches [24, 19, 4, 2], there are no unedited counterpart

videos that can be used to identify what is and is not impor-

tant to keep in a highlight clip.

To address these issues, we propose to identify and

model highlights as the most common sub-events among

the queried videos and remove uninteresting or idiosyn-

cratic snippet selections that occur relatively infrequently.

Our method accomplishes this via an auto-encoding recur-

sive neural network (RNN) [28] that is trained from posi-

tive examples to reconstruct highlight input instances accu-

rately while non-highlights are not. Intuitively, since high-

lights are assumed to occur much more frequently among

the queried videos, they will have clustered distributions in

the feature space while non-highlights occur as outliers.

We formulate the auto-encoder with two main features.

Since training data crawled from the web is generally noisy

(containing some amount of negative examples), we pro-

pose a novel shrinking exponential loss function that makes

the auto-encoder training robust to noisy data. With the

shrinking exponential loss, outliers are gradually identified

in the training data and their influence in the auto-encoder

training is progressively reduced. The other main feature

accounts for the temporal structure of video highlights (e.g.,

standing up on the surfboard, riding the wave, and then

falling into the ocean). To take advantage of this contex-

tual dependency, we construct the auto-encoder with bidi-

rectional long short term memory (LSTM) [5] cells, which

have been shown in areas such as speech recognition [3] to

effectively model long-range context in time-series data.

The main technical contributions of this work are the for-

mulation of video highlight detection as an unsupervised

learning problem that takes advantage of the abundance of

short-form video on the web, and modeling video highlight

structure through a robust recurrent auto-encoder with a

shrinking exponential loss function and bidirectional LSTM

cells. With the proposed unsupervised technique, we show

promising results that approach the quality of supervised

learning but without the burden of collecting pre- and post-

edit video pairs.

2. Related Work

As defined in [24], a video highlight is a moment of

major or special interest in a video. Generating highlight

clips is thus different from the task of video summariza-

tion, which instead accounts for factors such as “diversity”

and “representativeness” to convey a brief but comprehen-

sive synopsis of a video. Despite this different goal, we re-

view methods for video summarization in addition to video

highlight detection because of similarities between the two

topics.

Video Highlight Detection Traditionally, video highlight

detection has primarily been focused on broadcast sports

videos [20, 18, 25, 31]. These techniques usually employ

features that are specific to a given sport and the struc-

ture of sports broadcasts, and are therefore hard to gen-

eralize to the more generic videos of ordinary users. Re-

cently, the scope of highlight detection was expanded to a

broad range of videos in [24], where a latent SVM model

was proposed to rank highlight segments ahead of less in-

teresting parts through supervised learning. Good results

have been demonstrated with this approach on action videos

such as those captured by GoPro cameras. However, the

supervised learning requires each training example to be a

video pair composed of an edited video and its correspond-

ing raw source video. Such training pairs are difficult to

collect in large quantities, since users tend to upload/share

only the edited versions, as the source videos generally are

too long for general consumption. This makes large scale

training mostly impractical for this approach. In addition, it

employs a computationally-intensive feature representation,

namely dense trajectories [29], which involves computing

dense optical flows and extracting low-level features such

as HoG, HoF and MBH prior to Fisher vector encoding. By

contrast, our method performs unsupervised learning from

edited videos only, and utilizes generic deep learning fea-

tures which are more computationally efficient and more

accurate in characterizing both appearance and motion.

Video Summarization A comprehensive review of video

summarization can be found in [27]. Among recent meth-

ods, several are guided by saliency-based properties such
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as attention [13], interestingness [17, 7, 4], and important

people and objects [9]. However, the most salient frames

in a video do not necessarily correspond to its highlights,

which depend heavily on the video domain. Others aim

to provide a comprehensive synopsis based on connectivity

of sub-events [12] or diversity of video segments [32, 10].

While this helps to provide a complete overview of a video,

a highlight clip instead is focused on only certain segments

that are specific to the video domain, while discarding the

rest.

Video summarization techniques have also employed

supervised learning. Methods along this direction use

category-specific classifiers for importance scoring [19] or

learn how to select informative and diverse video subsets

from human-created summaries [2]. These supervised tech-

niques have led to state-of-the-art video summarization re-

sults, but are not suitable for highlight clip generation. In

addition, it is generally feasible to have only a limited num-

ber of users to annotate training videos, which may lead to

a biased summarization model. Our method instead learns

from videos pooled from many users on the web to obtain

a highlight model less influenced by the particular prefer-

ences of certain people.

Novelty Detection The one-class learning of our recur-

rent auto-encoder is related to works on novelty detec-

tion, which aim to identify outliers from an observed class.

In [15], novelty detection is performed for audio features

using an auto-encoder with LSTM. Our concurrent work

deals instead with RGB video data, for which meaning-

ful features are more challenging to extract. We address

this through temporal video segmentation, extraction of

high-level spatial-temporal features for each segment, and

then temporal pooling, before feeding to the auto-encoder.

Moreover, we introduce a novel shrinking loss function to

address the noisy training data in our context.

There exist other unsupervised novelty detection tech-

niques that could potentially be applied to our problem,

such as the unsupervised one-class learning in [11] or

outlier-robust PCA [30]. In our work, we chose the auto-

encoder as our basic unsupervised framework because its

properties are well-suited to our application, such as scal-

ability, easy parallelization, and seamless integration with

LSTM cells. How to customize other novelty detection

techniques for video highlight detection is a potential di-

rection for future investigation.

3. Auto-Encoder-Based Removal of Outliers

An auto-encoder is an artificial neural network [21] that

is trained to reconstruct its own input. A common use of

auto-encoders is for dimensionality reduction, where if the

hidden layers have fewer nodes than the input/output layers,

then the activations of the final hidden layer can be taken
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Figure 2. Conceptual illustration of our overall pipeline and ar-

chitecture. (a) Each video is first segmented into multiple short

snippets. (b) Then we apply a pre-trained 3D convolution neural

network model [26] to extract spatial-temporal features. (c) This

is followed by a temporal pooling scheme that respects the local

ordering structure within each snippet. (d) The robust recurrent

auto-encoder with the proposed companion loss is then employed

to capture the long range contextual structure.

as a compressed representation of the original signal. An

auto-encoder operates by taking an input vector x ∈ [0, 1]d

and first mapping it to a hidden layer h ∈ [0, 1]d
′

through a

deterministic function fθ(x) = s(Wx + b), parameterized

by θ = {W, b} where W is a d′ × d weight matrix, b is a

bias vector, and s is the activation function, such as a sig-

moid or rectified linear unit (ReLU). This hidden layer is

then mapped to an output layer y ∈ [0, 1]d with the same

number of nodes as the input layer through another func-

tion gθ′(x) = s(W ′x + b′), with s being a linear function

at this layer. Thus, y = gθ′(fθ(x)). Backpropagation with

stochastic gradient descent (SGD) is employed to optimize

the parameters θ and θ′ via the following loss function

(θ∗, θ′∗) = argmin
θ,θ′

1

n

n∑

i=1

L(xi, yi) (1)

= argmin
θ,θ′

1

n

n∑

i=1

L(xi, gθ′(fθ(x
i))), (2)

where L is generally defined as the squared error L(x, y) =
‖x − y‖2 and each xi is a training sample. When d′ < d,

the auto-encoder acts as a compression neural network that

works surprisingly well for single-class document classifi-

cation [14] and novelty detection [6]. The key idea is that

inlier (or positive) instances are expected to be faithfully re-

constructed by the auto-encoder, while outliers (or negative)

instances are not. So one can classify an unseen instance

by checking its reconstruction error from the auto-encoder.

Our work is partially inspired by the applications of auto-

encoders for novelty detection, and we present two signifi-

cant modifications to tailor them for our highlight detection

problem.
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4. Our Approach

In this section, we introduce a new domain-specific

video highlight system. Our core idea is to leverage the

wealth of crowd-sourced video data from the web and auto-

matically learn a parametric highlight detection model. Be-

fore describing the technical details, we first introduce the

overall system pipeline, illustrated in Fig. 1.

4.1. Overview

Acquisition of Training Data: Our system starts with a

simple video crawling step. Given the keyword for a spe-

cific domain, such as “GoPro Surfing”, our system auto-

matically retrieves a large number of videos from YouTube

with this keyword. We restrict this search to only short-form

videos (i.e., videos less than four minutes long), since such

videos from social media are likely to have been edited by

the user. With this approach, we can easily build a large-

scale training set edited by many different people. Since

our system learns what is a highlight based on common-

alities among different videos, having a diverse user pool

helps to avoid biases in this inference. Let us denote the

training video set as S = {v1, v2, ..., vN}. Our system then

automatically models the highlights in S through the use of

a proposed auto-encoder.

Temporal Segmentation: A highlight can be defined as a

motion or moment of interest with respect to the video do-

main context. So we first segment each video vi, i ∈ [1, N ]
into multiple non-uniform snippets using an existing tem-

poral segmentation algorithm [19]. We added a constraint

to the segmentation algorithm to ensure that the number of

frames within each snippet lies in the range of [48, 96]. The

segmented snippets serve as the basic units for feature ex-

traction and subsequent learning and inference (Fig. 2(a)).

After segmentation, a highlight sequence in the edited video

might correspond to one or multiple consecutive snippets.

At runtime, our system outputs the highlight confidence

score for each snippet within the input video.

Feature Representation: Recent work in deep learning

has revealed that features extracted at higher layers of

a convolutional neural network are generic features that

have good transfer learning capabilities across different do-

mains [1, 33, 8, 23, 26]. An advantage of using deep learn-

ing features is that there exist accurate, large-scale datasets

such as Places [33] and One-million Sports [8] from which

they can be extracted. In addition, GPU-based extraction

of such features is much faster than that for the traditional

bag-of-words and Fisher vector models. For example, C3D

features [26] are 50× faster to extract than dense trajecto-

ries [29]. We therefore extract C3D features, by taking sets

of 16 input frames, applying 3D convolutional filters, and
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Figure 3. Unlike the squared loss used in standard auto-encoders,

we propose a more general exponential loss L = e
λ with its expo-

nential parameter λ shrinking during the course of training. The

horizontal axis e represents the reconstruction error, while the ver-

tical axis L signifies the loss.

extracting the responses at layer “FC6” as suggested in [26]

(Fig. 2(b)). This is followed by a temporal mean pooling

scheme to maintain the local ordering structure within a

snippet (Fig. 2(c)). Then the pooling result serves as the

final input feature vector to be fed into the auto-encoder

(Fig. 2(d)).

Unsupervised Learning: After building the representa-

tion for each snippet, we learn a discriminative model for

highlight detection using a novel robust recurrent auto-

encoder. It is assumed that the collected training set S for

each domain contains coherence in the highlights so that

they can be distinguished from the remaining parts by re-

construction error. We note that this cannot be treated as

a multiple instance learning problem. Since a video does

not necessarily contain at least one highlight snippet, such

as when the video is actually unrelated to the keyword, the

bag and instance relationship is hard to define.

4.2. Robust Auto­encoder Via Shrinking Exponen­
tial Loss

In training an auto-encoder, it is assumed that the train-

ing data consists only of positive instances, which the auto-

encoder learns to replicate as output. However, since we

obtain our training data through web crawling, we cannot

guarantee that the data is free of negative instances. To train

an auto-encoder that is robust to such noise, we propose a

shrinking exponential loss function that helps to reduce the

influence of negative examples. This function is defined by

L(x, y) = (‖ x− y ‖2
2
)λ (3)

λ = f(epo), (4)

where λ is a function f of the current epoch number epo,

and L is equivalent to the standard squared loss when λ = 1.
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With backpropagation for network training, an example that

has a large loss gradient will contribute more to the training

than other examples whose corresponding loss gradient is

small. Since network parameters are randomly initialized,

all the examples will generally have a large loss at the be-

ginning. So to expedite convergence in the early stages of

training, we utilize a relatively large value of λ, which mag-

nifies the loss gradients. As the positive examples share

commonalities and are assumed to be more clustered rela-

tive to the negative examples, the network parameters will

start to converge in a manner such that the positive exam-

ples become more accurately reconstructed. At the same

time, it is desirable to shrink the exponent λ in order to de-

crease the influence of negative examples, which on average

have larger loss gradients because of their more dispersive

nature.

To accomplish this we define f to be monotonically de-

creasing with respect to epo as shown in Figure 3, with val-

ues greater than 1 in early stages to promote convergence,

and shrinking to less than 1 in later stages to reduce the

impact of outliers with higher reconstruction error. In our

work, we empirically define f such that λ varies linearly in

the range of [e, s], with e ∈ (0, 1] and s ≥ 1, giving

f(epo) = s−
epo ∗ (s− e)

Γ
, (5)

where Γ is the total number of training epochs. As demon-

strated later in our experiments, this formulation of our

shrinking exponential loss provides greater robustness to

negative examples than the standard squared loss for which

λ is fixed to 1.

4.3. Recurrent Auto­Encoder with LSTM Cells

Each highlight snippet has a certain degree of depen-

dence on its preceding and even subsequent frames. Taking

surfing as an example, a surfer must first stand up on the

board before riding a wave. The “stand up” action thus pro-

vides contextual information that can help to discriminate

subsequent surfing highlights. In this work, we take advan-

tage of such temporal dependencies through the use of long

short term memory cells.

Given an input sequence x = (x1, x2, ..., xT ), xt ∈
Rd, t ∈ [1, T ], a recurrent neural network (RNN) designed

as an auto-encoder needs to first compute a hidden vector

sequence h = (h1, h2, ..., hT ), ht ∈ Rd′

, d′ < d such that it

outputs a reconstructed sequence y = (y1, y2, ..., yT ) where

yt ≈ xt. This can be solved through iterations of the fol-

lowing equations:

ht = H(Wihxt +Whhht−1 + bh) (6)

yt = Whoht + bo (7)

where Wih and Whh denote the input-hidden and hidden-

hidden weighting matrices, and bh and bo represent bias

Ct

it ot

ft Forget Gate

Output GateInput Gate

Cell

ht

xt

xt

xt xt

Figure 4. Long short term memory cell (regenerated from [3]).

vectors. H is the hidden layer activation function, usually

chosen as an element-wise sigmoid.

For time-series data, it has been found that LSTM

cells [5] are more effective at finding and modeling long-

range context along a sequence, as shown in recent works

on speech recognition [3] and human action recogni-

tion [16]. Figure 4 shows a typical structure of a LSTM

cell, which operates by learning gate functions that deter-

mine whether an input is significant enough to remember,

whether it should be forgotten, and when it should be sent

to output. By storing information over different time ranges

in this manner, a LSTM-RNN is better able to classify time-

series data than a standard RNN. Inspired by these works,

we propose to integrate LSTM cells as the hidden nodes in

the auto-encoder network. With LSTM cells, H is then de-

fined by the following composite functions:

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (8)

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (9)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (10)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (11)

ht = ot tanh(ct) (12)

where σ is the logistic sigmoid function, and i, f, o are re-

spectively the input gate, forget gate and output gate, which

take scalar values between 0 and 1. c denotes the cell activa-

tion vectors which have the same size as the hidden vector

h. The terms in the W matrices represent the connections,

for example, with Wxi denoting the input-input gate matrix

and Whf representing the hidden-forget gate matrix.

In practice, we use bidirectional LSTM cells to model

both forward and backward dependencies. For further de-

tails on LSTM, please refer to [5] and [3].

5. Experiments

5.1. Datasets

Edited Videos for Training Set As mentioned in

Sec. 4.1, our system can automatically harvest domain-

specific datasets from the web using keywords and other
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# of train

videos

# of test

videos

Coverage of

train set

H-ratio of

train set

freeride 912 27 0.63 0.33
parkour 781 29 0.83 0.32
skating 940 34 0.67 0.26
skiing 945 50 0.83 0.32

skydiving 762 30 0.83 0.38
surfing 928 52 0.80 0.31

swimming 1015 29 0.73 0.25
Table 1. Statistical information on our dataset

search conditions. Unlike previous data crawling systems

such as in [24], ours need only obtain short-form videos

edited by users, and not their corresponding raw versions.

The editing operations may have been applied either by

post-processing or through selective capture. For evaluat-

ing the performance of our approach, we have crawled more

than 6500 short-form videos totaling about 13800 minutes

from YouTube1. The search terms include freeride, parkour,

skating, skiing, skydiving, surfing and swimming. Temporal

segmentation of the videos yields 442075 snippets. Com-

pared with the training set used in [24], ours is more than

10× longer, and can easily be expanded further.

To obtain a better sense of how this set correlates with the

underlying highlights, we present two quantitative measure-

ments, Coverage and H-ratio. Coverage refers to the per-

centage of videos that contain at least one highlight snippet

(the basic unit of segmentation), while H-ratio is the per-

centage of highlight snippets among all the snippets within

the set. We calculate these measures from a randomly se-

lected subset of 30 videos from each domain with manual

highlight annotations. The statistics of our dataset in Ta-

ble 1 show the Coverage value to be about 70% and the

H-ratio about 30% in each domain, indicating that users in-

deed tend to share edited videos which have a significant

amount of highlight content.

Raw Videos for Testing Set For each domain, we also

manually collected about 30 raw videos (see third column of

Table 1) which do not correspond to the training videos, and

asked six people to annotate the highlights for each video.

A snippet is considered to be a highlight only if they were

labeled as such by at least four of the people. Annotations

were collected by simply having the users mark each snip-

pet as highlight or not. The total length of the testing videos

is about 700 minutes, which is 2.5x longer than the testing

data used by [24].

1We use the tool “youtube-dl” in http://rg3.github.io/youtube-dl/ to

crawl for videos using the domain name and with a search condition of

less than four minutes.

Places CNN [4] C3D [26]

freeride 0.241 0.302
parkour 0.323 0.425
skating 0.310 0.304
skiing 0.462 0.388

skydriving 0.337 0.433
surfing 0.501 0.539

swimming 0.350 0.320
Overall mAP 0.361 0.387

Table 2. Comparison of mean average precision (mAP) between

2D and 3D CNN features with a standard auto-encoder. Both types

of features are 4096-D vectors. The Places CNN features were

temporally pooled by dividing each snippet into two uniform sub-

snippets and performing mean pooling on each, while the C3D

features were simply mean pooled within each whole snippet.

5.2. Implementation & Evaluation Details

Our system was implemented in C++ and runs on a

workstation with a 3.1GHz dual-core CPU and an Nvidia

Tesla K40 graphics card. For all the training and testing

videos, we first segment them into multiple snippets using

the method described in Sec. 4.1. For the standard auto-

encoder, we treat each snippet as one example, while for

the bidirectional recurrent auto-encoder with LSTM cells,

we treat the nine-snippet sequence centered on the current

snippet as one example. We found that increasing the se-

quence length has little effect on the performance. For all

the experiments conducted in this paper, we use basic auto-

encoders with only one hidden layer and linear activation

functions. The number of hidden nodes was chosen to be

half that of the input layer. Raw features are extracted from

the “FC6” layer of the C3D [26] network prior to PCA di-

mensionality reduction, which maintains 90% of the total

energy. We then apply simple mean pooling within each

snippet, which provides performance for C3D similar to that

of segmented temporal pooling. The performance benefits

of employing the 3D spatial-temporal C3D features rather

than the 2D single-frame features of Places CNN is shown

in Table 2, where the results are obtained using standard

auto-encoders trained on each type of feature without ap-

plying PCA.

Our results can be reproduced through the following net-

work training parameters which were set without careful

tweaking: learning rate of 0.01, weight decay of 0.0005,

and momentum of 0.9. We set the maximum epoch number

(Γ) to 100, and let λ shrink from 2 to 0.25.

For evaluation, we use the same metric as in [24]. For

each video, we sort the snippets in ascending order based

on their corresponding reconstruction errors. We then com-

pute the hit rate of the top K snippets with respect to their

ground-truth. Finally this number is averaged across the en-

tire testing set to obtain the mean average precision (mAP).
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s e
mAP

freeride skiing skydiving

0.5
0.25 0.260 0.429 0.330

0.5 0.277 0.443 0.356

1

0.25 0.278 0.447 0.355

0.5 0.274 0.423 0.361

1 0.264 0.423 0.336

2

0.25 0.274 0.437 0.362

0.5 0.286 0.476 0.373

1 0.289 0.476 0.360

2 0.283 0.453 0.366
Table 3. Results with different shrinking exponential parameters.

λ shrinks linearly from s to e. Due to limited space, we only show

results for three domain categories.

5.3. Results and Discussion

We compare our robust recurrent auto-encoder (RRAE)

to other unsupervised alternatives and to the supervised

learning technique of [24]. Before that, we examine the

effect of different parameters for the shrinking exponential

loss.

5.3.1 Effect of Shrinking Exponential Loss

As discussed in Sec. 4.2, using a shrinking exponential loss

during training helps to reduce the influence of outliers

compared with the standard fixed loss. This is validated

in Table 4 by comparing the standard auto-encoder (AE)

with its robust version based on the new shrinking exponen-

tial loss (robust AE). Intuitively, by gradually changing the

shape of loss functions through shrinking λ, the gradients

of non-highlight snippets become relatively small so that

their influence on network training is gradually reduced. As

shown in Table 3, shrinking λ consistently matches or sur-

passes s = e = 1 (the standard fixed squared loss). We also

observed in this study that shrinking to small values (e.g.,

λ = 0.125) may be unfavorable in some cases as this ends

up ignoring too many examples, including inliers. Although

carefully tweaking the shrinking range can improve results,

we found that going from λ > 1 to λ < 1 generally works

well for the domain categories we examined. Nevertheless,

design of a more optimal shrinking scheme would be an in-

teresting direction for future work.

5.3.2 Unsupervised Learning Comparisons

There exist other unsupervised learning techniques that

could be applied to this problem. In addition to the stan-

dard auto-encoder (AE), two frequently used methods for

anomaly detection and outlier removal are Principal Com-

ponents Analysis (PCA) and One-class Support Vector Ma-

chines (OCSVM) [22]. For PCA, we project the original

d dimensional input vector into a d′ dimensional subspace,

with d′ < d as in the auto-encoder. Then snippets with

small PCA reconstruction error are taken as highlights. For

one-class SVM, we use the LibSVM implementation where

its parameters γ (RBF kernel width) and ν (for controlling

the outlier ratio) are chosen using a simple line search based

on testing error. For the different domain classes, we found

that the optimal ν lies in the range of [0.5, 0.9], while γ lies

in [1, 10].
Comparisons among these methods are presented in Ta-

ble 4. Our robust recurrent auto-encoder consistently out-

performs AE, PCA and OCSVM on all the domain cate-

gories. Although OCSVM works better than PCA, it re-

quires much more computation because of its nonlinear ker-

nel. The table additionally includes comparisons to partial

versions of our techniques, namely recurrent AE without

the shrinking exponential loss, and non-recurrent AE but

with the shrinking loss (denoted as Robust AE). From these

results, we can see that when the standard auto-encoder is

equipped with LSTM cells (recurrent AE), the performance

is boosted by more than 10%, from 0.371 to 0.410. This in-

dicates the importance of modeling the temporal contextual

structure of video highlights.

Some of our detection results in different video domains

are illustrated in Figure 5. The blue bars represent recon-

struction error, with smaller values having a higher proba-

bility of being a highlight snippet.

5.3.3 Comparison to Supervised Learning

We have also compared our method to the latent ranking

SVM technique in [24], using their YouTube dataset and

their mAP evaluation metric. We note that our method is at

a significant disadvantage in this comparison, as our system

is trained using only the edited videos in the dataset, in con-

trast to [24] which also utilizes the unedited counterparts. In

addition, as the number of edited videos in this training set

is relatively small, there is a risk of over-fitting as our sys-

tem is primarily designed to leverage large-scale web data.

The results, listed in Table 5, show that even though the

supervised method benefits from major advantages in this

comparison, the performance gap on this testing set is small

for dog, gym, parkour and surfing. Moreover, as many of

the training and testing video clips are from the same raw

videos, it is particularly hard in this case for an unsuper-

vised method such as ours to obtain good results relative to

a supervised method trained on pre- and post-edit pairs.

We also examined latent ranking SVM trained on their

own data with C3D features, but applied to our testing set.

The results are shown in first column of Table 4 on domain

categories that are shared by the two datasets. It can be

seen that LRSVM does not perform as well as our RRAE.

A possible explanation is that the supervised learning has a

high risk of overfitting due to the limited training data, and

as a result it may not generalize well to large-scale testing
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LRSVM [24] PCA OCSVM AE Robust AE Recurrent AE RRAE

freeride * 0.235 0.258 0.268 0.277 0.277 0.288

parkour 0.246 0.377 0.445 0.507 0.508 0.618 0.675

skating 0.330 0.251 0.297 0.308 0.306 0.322 0.332

skiing 0.337 0.388 0.412 0.428 0.472 0.478 0.485

skydiving * 0.376 0.332 0.335 0.364 0.338 0.390

surfing 0.564 0.525 0.484 0.494 0.534 0.565 0.582

swimming * 0.274 0.238 0.255 0.277 0.275 0.283

mAP 0.347 0.352 0.371 0.391 0.410 0.434
Table 4. Performance results of our methods and several baseline methods, all using C3D features [26]. The dimensionality of C3D features

is reduced from 4096 by a domain specific PCA that keeps 90% of the total energy.
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Figure 5. Highlight detection results in different video domains. The blue bar represents reconstruction error, where highlights tend to have

smaller errors than non-highlight snippets. The red borders indicate snippets detected as highlights.

Supervised[24] RRAE

dog 0.60 0.49
gymnastics 0.41 0.35
parkour 0.61 0.50
skating 0.62 0.25
skiing 0.36 0.22
surfing 0.61 0.49

Table 5. mAP comparison to [24] on the YouTube dataset.

sets.

6. Conclusion

We presented a scalable highlight extraction method

based on unsupervised learning. Our technique relies on an

improved auto-encoder with two significant modifications:

a novel shrinking exponential loss which reduces sensitivity

to noisy training data crawled from the web, and a recurrent

auto-encoder configuration with LSTM cells. Generalizing

this technique to other video processing problems would be

a potential avenue for future work.
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