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Abstract

Recent progress in using recurrent neural networks

(RNNs) for image description has motivated the exploration

of their application for video description. However, while

images are static, working with videos requires modeling

their dynamic temporal structure and then properly inte-

grating that information into a natural language descrip-

tion. In this context, we propose an approach that success-

fully takes into account both the local and global temporal

structure of videos to produce descriptions. First, our ap-

proach incorporates a spatial temporal 3-D convolutional

neural network (3-D CNN) representation of the short tem-

poral dynamics. The 3-D CNN representation is trained on

video action recognition tasks, so as to produce a represen-

tation that is tuned to human motion and behavior. Sec-

ond we propose a temporal attention mechanism that al-

lows to go beyond local temporal modeling and learns to

automatically select the most relevant temporal segments

given the text-generating RNN. Our approach exceeds the

current state-of-art for both BLEU and METEOR metrics

on the Youtube2Text dataset. We also present results on a

new, larger and more challenging dataset of paired video

and natural language descriptions.

1. Introduction

The task of automatically describing videos containing

rich and open-domain activities poses an important chal-

lenges for computer vision and machine learning research.

It also has a variety of practical applications. For example,

A man is shooting a gun 

... ... 

Figure 1. High-level visualization of our approach to video de-

scription generation. We incorporate models of both the local

temporal dynamic (i.e. within blocks of a few frames) of videos,

as well as their global temporal structure. The local structure is

modeled using the temporal feature maps of a 3-D CNN, while

a temporal attention mechanism is used to combine information

across the entire video. For each generated word, the model can

focus on different temporal regions in the video. For simplicity, we

highlight only the region having the maximum attention above.

every minute, 100 hours of video are uploaded to YouTube.1

However, if a video is poorly tagged, its utility is dramati-

cally diminished [22]. Automatic video description gener-

ation has the potential to help improve indexing and search

quality for online videos. In conjunction with speech syn-

thesis technology, annotating video with natural language

descriptions also has the potential to benefit the visually im-

paired.

While image description generation is already consid-

ered a very challenging task, the automatic generation of

video description carries additional difficulties. Simply

dealing with the sheer quantity of information contained in

video data is one such challenge. Moreover, video descrip-

tion involves generating a sentence to characterize a video

1https://www.youtube.com/yt/press/statistics.

html accessed on 2015-02-06.
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clip lasting typically 5 to 10 seconds, or 120 to 240 frames.

Often such clips contain complex interactions of actors and

objects that evolve over time. All together it amounts to

a vast quantity of information, and attempting to represent

this information using a single, temporally collapsed feature

representation is likely to be prone to clutter, with tempo-

rally distinct events and objects being potentially fused in-

coherently. It is therefore important that an automatic video

description generator exploit the temporal structure under-

lying video.

We argue that there are two categories of temporal struc-

ture present in video: (1) local structure and (2) global struc-

ture. Local temporal structure refers to the fine-grained mo-

tion information that characterizes punctuated actions such

as “answering the telephone” or “standing up”. Actions

such as these are relatively localized in time, evolving over

only a few consecutive frames. On the other hand, when we

refer to global temporal structure in video, we refer to the

sequence in which objects, actions, scenes and people, etc.

appear in a video. Video description may well be termed

video summarization, because we typically look for a sin-

gle sentence to summarize what can be a rather elaborate

sequence of events. Just as good image descriptions often

focus on the more salient parts of the image for description,

we argue that good video description systems should selec-

tively focus on the most salient features of a video sequence.

Recently, Venugopalan et al. [38] used a so-called

encoder–decoder neural network framework [8] to automat-

ically generate the description of a video clip. They ex-

tracted appearance features from each frame of an input

video clip using a previously trained convolutional neural

network [21]. The features from all the frames, or subsam-

pled frames, were then collapsed via simple averaging to

result in a single vector representation of the entire video

clip. Due to this indiscriminate averaging of all the frames,

this approach risks ignoring much of the temporal structure

underlying the video clip. For instance, it is not possible

to tell the order of the appearances of two objects from the

collapsed features.

In this paper, we introduce a temporal attention mech-

anism to exploit global temporal structure. We also aug-

ment the appearance features with action features that en-

code local temporal structure. Our action features are de-

rived from a spatio-temporal convolutional neural network

(3-D CNN) [36, 18, 15]. The temporal attention mechanism

is based on a recently proposed soft-alignment method [1]

which was used successfully in the context of machine

translation. While generating a description, the temporal at-

tention mechanism selectively focuses on a small subset of

frames, making it possible for the generator to describe only

the objects and/or activities in that subset (see Fig. 1 for the

graphical illustration). Our 3-D CNN, on the other hand,

starts from both temporally and spatially local motion de-

scriptors of video and hierarchically extracts more abstract

action-related features. These features preserve and empha-

size important local structure embedded in video for use by

the description generator.

We evaluate the effectiveness of the proposed mecha-

nisms for exploiting temporal structure on the most widely

used open-domain video description dataset, called the

Youtube2Text dataset [6], which consists of 1,970 video

clips with multiple descriptions per video. We also test the

proposed approaches on a much larger, and more recently

proposed, dataset based on the descriptive video service

(DVS) tracks in DVD movies [35], which contains 49,000

video clips.

Our work makes the following contributions: 1) We pro-

pose the use of a novel 3-D CNN-RNN encoder-decoder

architecture which captures local spatio-temporal informa-

tion. We find that despite the promising results generated by

both prior work and our own here using static frame CNN-

RNN video description methods, our experiments suggest

that it is indeed important to exploit local temporal struc-

ture when generating a description of video. 2) We pro-

pose the use of an attention mechanism within a CNN-

RNN encoder-decoder framework for video description and

we demonstrate through our experiments that it allows fea-

tures obtained through the global analysis of static frames

throughout the video to be used more effectively for video

description generation. Furthermore, 3) we observe that the

improvements brought by exploiting global and local tem-

poral information are complimentary, with the best perfor-

mance achieved when both the temporal attention mecha-

nism and the 3-D CNN are used together.

2. Video Description Generation Using an

Encoder–Decoder Framework

In this section, we describe a general approach, based

purely on neural networks to generate video descriptions.

This approach is based on the encoder-decoder frame-

work [8], which has been successfully used in machine

translation [30, 8, 1] as well as image caption genera-

tion [19, 11, 39, 41, 17].

2.1. EncoderDecoder Framework

The encoder-decoder framework consists of two neu-

ral networks; the encoder and the decoder. The encoder

network φ encodes the input x into a continuous-space

representation which may be a variable-sized set V =
{v1, . . . ,vn} of continuous vectors:

V = {v1, . . . ,vn} = φ(x).

The architecture choice for the encoder φ depends on the

type of input. For example, in the case of machine transla-

tion, it is natural to use a recurrent neural network (RNN)
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for the encoder, since the input is a variable-length sequence

of symbols [30, 8]. With an image as input, a convolutional

neural network (CNN) is another good alternative [41].

The decoder network generates the corresponding out-

put y from the encoder representation V . As was the case

with the encoder, the decoder’s architecture must be chosen

according to the type of the output. When the output is a

natural language sentence, which is the case in automatic

video description, an RNN is a method of choice.

The decoder RNN ψ runs sequentially over the output

sequence. In brief, to generate an output y, at each step t
the RNN updates its internal state ht based on its previous

internal state ht−1 as well as the previous output yt−1 and

the encoder representation V , and then outputs a symbol yt:
[

yt
ht

]

= ψ(ht−1, yt−1, V ) (1)

where for now we simply note as ψ the function updating

the RNN’s internal state and computing its output. The

RNN is run recursively until the end-of-sequence symbol

is generated, i.e., yt = 〈eos〉.
In the remaining of this section, we detail choices for the

encoder and decoder for a basic automatic video description

system, taken from [38] and on which our work builds.

2.2. Encoder: Convolutional Neural Network

Deep convolutional neural networks (CNNs) have re-

cently been successful at large-scale object recognition [21,

31]. Beyond the object recognition task itself, CNNs trained

for object recognition have been found to be useful in a va-

riety of other computer vision tasks such as object local-

ization and detection (see, e.g., [27]). This has opened a

door to a flood of computer vision systems that exploit rep-

resentations from upper or intermediate layers of a CNN as

generic high-level features for vision. For instance, the ac-

tivation of the last fully-connected layer can be used as a

fixed-size vector representation [19], or the feature map of

the last convolutional layer can be used as a set of spatial

feature vectors [41].

In the case where the input is a video clip, an image-

trained CNN can be used for each frame separately, result-

ing in a single vector representation vi of the i-th frame.

This is the approach proposed by [38], which used the con-

volutional neural network from [21]. In our work here,

we will also consider using the CNN from [31], which has

demonstrated higher performance for object recognition.

2.3. Decoder: Long ShortTerm Memory Network

As discussed earlier, it is natural to use a recurrent neu-

ral network (RNN) as a decoder when the output is a natural

language sentence. This has been empirically confirmed in

the contexts of machine translation [30, 8, 1], image cap-

tion generation [39, 41] and video description generation in

open [38] and closed [11] domains. Among these recently

successful applications of the RNN in natural language gen-

eration, it is noticeable that most of them [30, 8, 1, 39, 41],

if not all, used long short-term memory (LSTM) units [13]

or their variant, gated recurrent units (GRU) [8]. In this pa-

per, we also use a variant of the LSTM units, introduced in

[42], as the decoder.

The LSTM decoder maintains an internal memory state

ct in addition to the usual hidden state ht of an RNN (see

Eq. (1)). The hidden state ht is the memory state ct modu-

lated by an output gate:

ht = ot ⊙ ct,

where ⊙ is an element-wise multiplication. The output gate

ot is computed by

ot = σ(WoE [yt−1] +Uoht−1 +Aoϕt(V ) + bo),

where σ is the element-wise logistic sigmoid function and

ϕt is a time-dependent transformation function on the en-

coder features. Wo, Uo, Ao and bo are, in order, the weight

matrices for the input, the previous hidden state, the con-

text from the encoder and the bias. E is a word embedding

matrix, and we denote by E [yt−1] an embedding vector of

word yt−1.

The memory state ct is computed as a weighted sum be-

tween the previous memory state ct−1 and the new memory

content update c̃t:

ct = ft ⊙ ct−1 + it ⊙ c̃t,

where the coefficients – called forget and input gates respec-

tively – are given by

ft = σ(WfE [yt−1] +Ufht−1 +Afϕt(V ) + bf ),

it = σ(WiE [yt−1] +Uiht−1 +Aiϕt(V ) + bi).

The updated memory content c̃t also depends on the current

input yt−1, previous hidden state ht−1 and the features from

the encoder representation ϕt(V ):

c̃t = tanh(WcE [yt−1] +Ucht−1 +Acϕt(V ) + bc).

Once the new hidden state ht is computed, a probability

distribution over the set of possible words is obtained using

a single hidden layer neural network

pt = softmax(Up tanh(Wp[ht, ϕt(V ),E [yt−1]] + bp) + d),
(2)

where Wp,Up,bp,d are the parameters of this network,

[. . . ] denotes vector concatenation. The softmax function

allows us to interpret pt as the probabilities of the distribu-

tion p(yt | y<t, V ) over words.
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At a higher level, the LSTM decoder can be written down

as




p(yt | y<t, V )
ht

ct



 = ψ(ht−1, ct−1, yt−1, V ). (3)

It is then trivial to generate a sentence from the LSTM

decoder. For instance, one can recursively evaluate ψ and

sample from the returned p(yt | . . . ) until the sampled yt is

the end-of-sequence symbol. One can also approximately

find the sentence with the highest probability by using a

simple beam search [30].

In [38], Venugopalan et al. used this type of LSTM de-

coder for automatic video description generation. However,

in their work the feature transformation function ϕt con-

sisted in a simple averaging, i.e.,

ϕt(V ) =
1

n

n
∑

i=1

vi, (4)

where the vi’s are the elements of the set V returned by

the CNN encoder from Sec. 2.2. This averaging effectively

collapses all the frames, indiscriminate of their temporal re-

lationships, leading to the loss of temporal structure under-

lying the input video.

3. Exploiting Temporal Structure in Video De-

scription Generation

In this section, we delve into the main contributions of

this paper and propose an approach for exploiting both the

local and global temporal structure in automatic video de-

scription.

3.1. Exploiting Local Structure:
A SpatioTemporal Convolutional Neural Net

We propose to model the local temporal structure

of videos at the level of the temporal features V =
{v1, . . . ,vn} that are extracted by the encoder. Specifi-

cally, we propose to use a spatio-temporal convolutional

neural network (3-D CNN) which has recently been demon-

strated to capture well the temporal dynamics in video

clips [36, 18].

We use a 3-D CNN to build the higher-level represen-

tations that preserve and summarize the local motion de-

scriptors of short frame sequences. This is done by first

dividing the input video clip into a 3-D spatio-temporal

grid of 16 × 12 × 2 (width × height × timesteps) cuboids.

Each cuboid is represented by concatenating the histograms

of oriented gradients, oriented flow and motion boundary

(HoG, HoF, MbH) [9, 40] with 33 bins. This transforma-

tion is done in order to make sure that local temporal struc-

ture (motion features) are well extracted and to reduce the

computation of the subsequence 3-D CNN.

Our 3-D CNN architecture is composed of three 3-D

convolutional layer, each followed by rectified linear activa-

tions (ReLU) and local max-pooling. From the activation of

the last 3-D convolution+ReLU+pooling layer, which pre-

serves the temporal arrangement of the input video and ab-

stracts the local motion features, we can obtain a set of tem-

poral feature vectors by max-pooling along the spatial di-

mensions (width and height) to get feature vectors that each

summarize the content over short frame sequences within

the video. Finally, these feature vectors are combined, by

concatenation, with the image features extracted from sin-

gle frames taken at similar positions across the video. Fig. 2

illustrates the complete architecture of the described 3-D

CNN. Similarly to the object recognition trained CNN (see

Sec. 2.2), the 3-D CNN is pre-train on activity recognition

datasets.

3.2. Exploiting Global Structure:
A Temporal Attention Mechanism

The 3-D CNN features of the previous section allows us

to better represent short-duration actions in a subset of con-

secutive frames. However, representing a complete video

by averaging these local temporal features as in Eq. 4 would

jeopardize the model’s ability to exploit the video’s global

temporal structure.

Our approach to exploiting such non-local temporal

structure is to let the decoder selectively focus on only a

small subset of frames at a time. By considering subsets of

frames in sequence, the model can exploit the temporal or-

dering of objects and actions across the entire video clip and

avoid conflating temporally disparate events. Our approach

also has the potential of allowing the model to focus on key

elements of the video that may have short duration. Meth-

ods that collapse the temporal structure risk overwhelming

these short duration elements.

Specifically, we propose to adapt the recently pro-

posed soft attention mechanism from [1], which allows

the decoder to weight each temporal feature vector V =
{v1, . . . ,vn}. This approach has been used successfully by

Xu et al. [41] for exploiting spatial structure underlying an

image. Here, we thus adapt it to exploit the temporal struc-

ture of video instead.

Instead of a simple averaging strategy (as shown in

Eq. (4)), we take the dynamic weighted sum of the temporal

feature vectors such that

ϕt(V ) =

n
∑

i=1

α
(t)
i vi,

where
∑n

i=1 α
(t)
i = 1 and α

(t)
i ’s are computed at each time

step t inside the LSTM decoder (see Sec. 2.3). We refer to

α
(t)
i as the attention weights at time t.

The attention weight α
(t)
i reflects the relevance of the
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Figure 2. Illustration of the spatio-

temporal convolutional neural network

(3-D CNN). This network is trained for

activity recognition. Then, only the con-

volutional layers are involved when gen-

erating video descriptions.

a 

man 

…
 

…
 

…
 

… 

Soft-Attention 

…
 

Features-Extraction 
Caption  

Generation 

… 

…
 

Figure 3. Illustration of the proposed temporal attention mecha-

nism in the LSTM decoder

i-th temporal feature in the input video given all the previ-

ously generated words, i.e., y1, . . . yt−1. Hence, we design

a function that takes as input the previous hidden state ht−1

of the LSTM decoder, which summarizes all the previously

generated words, and the feature vector of the i-th temporal

feature and returns the unnormalized relevance score e
(t)
i :

e
(t)
i = w⊤ tanh (Waht−1 +Uavi + ba) ,

where w, Wa, Ua and ba are the parameters that are esti-

mated together with all the other parameters of the encoder

and decoder networks.

Once the relevance scores e
(t)
i for all the frames i =

1, . . . , n are computed, we normalize them to obtain the

α
(t)
i ’s:

α
(t)
i = exp

{

e
(t)
i

}

/
n
∑

j=1

exp
{

e
(t)
j

}

.

We refer to the attention mechanism as this whole process

of computing the unnormalized relevance scores and nor-

malizing them to obtain the attention weights.

The attention mechanism allows the decoder to selec-

tively focus on only a subset of frames by increasing the

attention weights of the corresponding temporal feature.

However, we do not explicitly force this type of selective

attention to happen. Rather, this inclusion of the atten-

tion mechanism enables the decoder to exploit the temporal

structure, if there is useful temporal structure in the data.

Later in Sec. 5, we empirically show that this is indeed the

case. See Fig. 3 for the graphical illustration of the temporal

attention mechanism.

4. Related Work

Video description generation has been investigated and

studied in other work, such as [20, 2, 26]. Most of these

examples have, however, constrained the domain of videos

as well as the activities and objects embedded in the video

clips. Furthermore, they tend to rely on hand-crafted vi-

sual representations of the video, to which template-based

or shallow statistical machine translation approaches were

applied. In contrast, the approach we take and propose

in this paper aims at open-domain video description gen-

eration with deep trainable models starting from low-level

video representations, including raw pixel intensities (see

Sec. 2.2) and local motion features (see Sec. 3.1).

In this sense, the approach we use here is more closely

related to the recently introduced static image caption gen-

eration approaches based mainly on neural networks [19,

11, 39, 41, 17]. A neural approach to static image caption

generation has recently been applied to video description

generation by Venugopalan et al. [38]. However, their di-

rect adaptation of the underlying static image caption gener-

ation mechanism to the videos is limited by the fact that the

model tends to ignore the temporal structure of the under-

lying video. Such structure has demonstrated to be helpful

in the context of event and action classification [32, 12, 5],

and is explored in this paper. Other recent work [25] has

explored the use of DVS annotated video for video descrip-

tion research and has underscored the observation that DVS

descriptions are typically much more relevant and accurate

descriptions of the visual content of a video compared to

movie scripts. They present results using both DVS and

script based annotations as well as cooking activities.

While other work has explored 3-D Deep Networks for

video [33, 15, 17, 28] our particular approach differs in a

number of ways from prior work in that it is based on CNNs

as opposed to other 3-D deep architectures and we focus on
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pre-training the model on a number of widely used action

recognition datasets. In contrast to other 3-D CNN for-

mulations, the input to our 3-D CNN consists of features

derived from a number of state of the art image descrip-

tors. Our model is also fully 3-D in that we model en-

tire volumes across a video clip. In this paper, we use a

state-of-the-art static convolutional neural network (CNN)

and a novel spatio-temporal 3-D CNN to model input video

clips. This way of modeling video using feedforward con-

volutional neural networks, has become increasingly pop-

ular recently [38, 28, 36]. However, there has also been

a stream of research on using recurrent neural networks

(RNN) for modeling video clips. For instance, in [29],

Srivastava et al. propose to use long short-term memory

units to extract video features. Ranzato et al. in [24] also

models a video clip with an RNN, however, after vector-

quantizing image patches of the video clip. In contrast to

other approaches such as [11], which have explored CNN-

RNN coupled models for video description, here we use an

attention mechanism, use a 3-D CNN and focus on open-

domain video description.

5. Experiments

We test the proposed approaches on two video-

description corpora: Youtube2Text [6] and DVS [35]. Im-

plementations are available at https://github.com/

yaoli/arctic-capgen-vid.

5.1. Datasets

Youtube2Text The Youtube2Text video corpus [6] is well

suited for training and evaluating an automatic video de-

scription generation model. The dataset has 1,970 video

clips with multiple natural language descriptions for each

video clip. In total, the dataset consists of approximately

80,000 video / description pairs, with the vocabulary of

approximately 16,000 unique words. The dataset is open-

domain and covers a wide range of topics including sports,

animals and music. Following [38], we split the dataset into

a training set of 1,200 video clips, a validation set of 100

clips and a test set consisting of the remaining clips.

DVS The DVS dataset was recently introduced in [35]

with a much larger number of video clips and accompa-

nying descriptions than the existing video/description cor-

pora such as Youtube2Text. It contains video clips extracted

from 92 DVD movies along with semi-automatically tran-

scribed descriptive video service (DVS) narrations. The

dataset consists of 49,000 video clips covering a wide vari-

ety of situations. We follow the standard split of the dataset

into a training set of 39,000 clips, a validation set of 5,000

clips and a test set of 5,000 clips, as suggested by [35].

Description Preprocessing We preprocess the descrip-

tions in both the Youtube2Text and DVS datasets with

wordpunct tokenizer from the NLTK toolbox.2. We

did not do any other preprocessing such as lowercasing and

rare word elimination. After preprocessing, the numbers of

unique words were 15,903 for Youtube2Text and 17,609 for

DVS Dataset.

Video Preprocessing To reduce the computational and

memory requirement, we only consider the first 240 frames

of each video 3 For appearance features, (trained) 2-

D GoogLeNet [31] CNN is used to extract fixed-length

representation (with the help of the popular implemen-

tation in Caffe [16]). Features are extracted from the

pool5/7x7 s1 layer. We select 26 equally-spaced frames

out of the first 240 from each video and feed them into the

CNN to obtain a 1024 dimensional frame-wise feature vec-

tor. We also apply the spatio-temporal 3-D CNN (trained

as described in Sec. 5.2) in order to extract local motion

information4. When using 3-D CNN without temporal at-

tention, we simply use the 2500-dimensional activation of

the last fully-connection layer. When we combine the 3-D

CNN with the temporal attention mechanism, we leverage

the last convolutional layer representation leading to 26 fea-

ture vectors of size 352. Those vector are contatenated with

the 2D CNN features resulting in 26 feature vectors with

1376 elements.

5.2. Experimental Setup

Models We test four different model variations for video

description generation based on the underlying encoder-

decoder framework, with results presented in Table 1. Enc-

Dec (Basic) denotes a baseline incorporating neither local

nor global temporal structure. Is it based on an encoder

using the 2-D GoogLeNet CNN [31] as discussed in Sec-

tion 2.2 and the LSTM-based decoder outlined in Section

2.3. Enc-Dec + Local incorporates local temporal struc-

ture via the integration of our proposed 3-D CNN features

(as outlined in Section 3.1) with the 2-D GoogLeNet CNN

features as described above. Enc-Dec + Global adds the

temporal attention mechanism of Section 3.2. Finally, Enc-

Dec + Local + Global incorporates both the 3-D CNN and

the temporal attention mechanism into the model. All mod-

els otherwise use the same number of temporal features

vi. These experiments will allow us to investigate whether

the contributions from the proposed approaches are com-

plimentary and can be combined to further improve perfor-

mance.

2 http:/s/www.nltk.org/index.html
3 When the video clip has less than 240 frames, we pad the video with

all-zero frames to make it into 240-frame long.
4 We perturb each video along three axes to form random crops by

taking multiple 15× 15× 120 cuboids out of the original 20× 20× 120

cuboids, and the final representation is the average of the representations

from these perturbed video clips.
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Table 1. Performance of different variants of the model on the Youtube2Text and DVS datasets.
Youtube2Text DVS

Model BLEU METEOR CIDEr Perplexity BLEU METEOR CIDEr Perplexity

Enc-Dec (Basic) 0.3869 0.2868 0.4478 33.09 0.003 0.044 0.044 88.28

+ Local (3-D CNN) 0.3875 0.2832 0.5087 33.42 0.004 0.051 0.050 84.41

+ Global (Temporal Attention) 0.4028 0.2900 0.4801 27.89 0.003 0.040 0.047 66.63

+ Local + Global 0.4192 0.2960 0.5167 27.55 0.007 0.057 0.061 65.44

Venugopalan et al. [38] 0.3119 0.2687 - - - - - -

+ Extra Data (Flickr30k, COCO) 0.3329 0.2907 - - - - - -

Thomason et al. [34] 0.1368 0.2390 - - - - - -

Training For all video description generation models, we

estimated the parameters by maximizing the log-likelihood:

L(θ) =
1

N

N
∑

n=1

tn
∑

i=1

log p(yni | yn<i,x
n,θ),

where there areN training video-description pairs (xn, yn),
and each description yn is tn words long.

We used Adadelta [43] with the gradient computed by

the backpropagation algorithm. We optimized the hyper-

parameters (e.g. number of LSTM units and the word em-

bedding dimensionality) using random search to maximize

the log-probability of the validation set. 5 Training contin-

ued until the validation log-probability stopped increasing

for 5,000 updates. As mentioned earlier in Sec. 3.1, the 3-

D CNN was trained on activity recognition datasets. Due

to space limitation, details regarding the training and eval-

uation of the 3-D CNN on activity recognition datasets are

provided in the Supplementary Material.

Evaluation We report the performance of our proposed

method using test set perplexity and three model-free au-

tomatic evaluation metrics. These are BLEU [23], ME-

TEOR [10] and CIDEr [37]. We use the evaluation script

prepared and introduced in [7].

5.3. Quantitative Analysis

In the first block of Table 1, we present the performance

of the four different variants of the model using all four met-

rics: BLEU, METEOR, CIDEr and perplexity. Subsequent

lines in the table give comparisons with prior work. The first

three rows (Enc-Dec (Basic), +Local and +Global), show

that it is generally beneficial to exploit some type of tempo-

ral structure underlying the video. Although this benefit is

most evident with perplexity (especially with the temporal

attention mechanism exploiting global temporal structure),

we observe a similar trend with the other model-free metrics

and across both Youtube2Text and DVS datasets.

We observe, however, that the biggest gain can be

achieved by letting the model exploit both local and global

5 Refer to the Supplementary Material for the selected hyperparame-

ters.

temporal structure (the fourth row in Table 1). We observed

this gain consistently across both datasets as well as using

all four automatic evaluation metrics.

5.4. Qualitative Analysis

Although the model-free evaluation metrics such as the

ones we used in this paper (BLEU, METEOR, CIDEr) were

designed to reflect the agreement level between reference

and generated descriptions, it is not intuitively clear how

well those numbers (see Table 1) reflect the quality of the

actual generated descriptions. Therefore, we present some

of the video clips and their corresponding descriptions, both

generated and reference, from the test set of each dataset.

Unless otherwise labeled, the visualizations in this section

are from the best model which exploits both global and local

temporal structure (the fourth row of Table 1).

In Fig. 4, two video clips from the test set of

Youtube2Text are shown. We can clearly see that the gen-

erated descriptions correspond well with the video clips. In

Fig. 4, we show also two sample video clips from the DVS

dataset. Clearly, the model does not perform as well on the

DVS dataset as it did on Youtube2Text, which was already

evident from the quantitative analysis in Sec. 5.3. However,

we still observe that the model often focuses correctly on

a subset of frames according to the word to be generated.

For instance, in the left pane, when the model is about to

generate the second “SOMEONE”, it focuses mostly on the

first frame. Also, on the right panel, the model correctly at-

tends to the second frame when the word “types” is about to

be generated. As for the 3-D CNN local temporal features,

we see that they allowed to correctly identify the action as

“frying”, as opposed to simply “cooking”.

More samples of the video clips and the gener-

ated/reference descriptions can be found in the Supplemen-

tary Material, including visualizations from the global tem-

poral attention model alone (see the third row in Table 1).

6. Conclusion

In this work, we address the challenging problem of pro-

ducing natural language descriptions of videos. We iden-

tify and underscore the importance of capturing both lo-
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 +Local+Global:  A man and a woman are talking on the road

                    Ref:  A man and a woman ride a motorcycle

+Local+Global:  the girl grins at him

                   Ref:  SOMEONE and SOMEONE swap a look

+Local+Global:  Someone is frying a fish in a pot

             +Local:  Someone is frying something

           +Global:  The person is cooking

               Basic:  A man cooking its kitchen

                   Ref:  A woman is frying food

+Local+Global: as SOMEONE sits on the table,

                    SOMEONE shifts his gaze to SOMEONE

             +Local:  with a smile SOMEONE arrives

           +Global:  SOMEONE sits at a table

               Basic:  now, SOMEONE grins

                   Ref:  SOMEONE gaze at SOMEONE

Figure 4. Four sample videos and their corresponding generated and ground-truth descriptions from Youtube2Text (Left Column) and

DVS (Right Column). The bar plot under each frame corresponds to the attention weight αt

i for the frame when the corresponding word

(color-coded) was generated. From the top left panel, we can see that when the word “road” is about to be generated, the model focuses

highly on the third frame where the road is clearly visible. Similarly, on the bottom left panel, we can see that the model attends to the

second frame when it was about to generate the word “Someone”. The bottom row includes alternate descriptions generated by the other

model variations.

cal and global temporal structure in addition to frame-wise

appearance information. To this end, we propose a novel

3-D convolutional neural network that is designed to cap-

ture local fine-grained motion information from consecutive

frames. In order to capture global temporal structure, we

propose the use of a temporal attentional mechanism that

learns the ability to focus on subsets of frames. Finally,

the two proposed approaches fit naturally together into an

encoder-decoder neural video caption generator.

We have empirically validated each approach on both

Youtube2Text and DVS datasets on four standard evalua-

tion metrics. Experiments indicate that models using ei-

ther approach improve over the baseline model. Further-

more, combining the two approaches gives the best perfor-

mance. In fact, we achieved the state-of-the-art results on

Youtube2Text with the combination.

Given the challenging nature of the task, we hypothesize

that the performance on the DVS dataset could be signifi-

cantly improved by incoporating another recently proposed

dataset [25] similar to the DVS data used here. In addition,

we have some preliminary experimental results that indicate

that further performance gains are possible by leveraging

image caption generation datasets such as MS COCO [7]

and Flickr [14]. We intend to more fully explore this direc-

tion in future work.
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