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Abstract

Video segmentation is a stepping stone to understand-

ing video context. Video segmentation enables one to repre-

sent a video by decomposing it into coherent regions which

comprise whole or parts of objects. However, the challenge

originates from the fact that most of the video segmentation

algorithms are based on unsupervised learning due to ex-

pensive cost of pixelwise video annotation and intra-class

variability within similar unconstrained video classes. We

propose a Markov Random Field model for unconstrained

video segmentation that relies on tight integration of mul-

tiple cues: vertices are defined from contour based super-

pixels, unary potentials from temporally smooth label like-

lihood and pairwise potentials from global structure of a

video. Multi-cue structure is a breakthrough to extracting

coherent object regions for unconstrained videos in absence

of supervision. Our experiments on VSB100 dataset show

that the proposed model significantly outperforms compet-

ing state-of-the-art algorithms. Qualitative analysis illus-

trates that video segmentation result of the proposed model

is consistent with human perception of objects.

1. Introduction

Video segmentation is one of the important problems in

video understanding. A video may contain a set of objects,

from stationary to those undergoing dependent or indepen-

dent motion. Human understands a video by recognizing

objects and infers the video context(i.e. what is happening

in the video) by observing their motion. Depending on the

video context, parts or whole objects will have structured

motion correlation. However, there may be unrelated enti-

ties such as background or auxiliary objects which form ad-

ditional structures as well. Holistic representation of a video

cannot effectively decompose and extract meaningful struc-

ture and it may increase intra-variability of a video class.

The goal of video segmentation is to obtain coherent object

regions over frames so that a video can be represented as a

set of objects and a meaningful structure can be extracted.

Ideally, the ultimate goal of video segmentation is to ob-

tain pixelwise semantic segmentation of videos, where the

objective is not only to partition a video into object regions

but to infer object label of each region. Semantic segmenta-

tion is actively investigated in urban driving scene under-

standing [2, 3, 6, 25]. However, the urban scene videos

contain rigid objects such as buildings, cars or road with

typically smooth motion. In general, it is more challeng-

ing to segment and classify object regions in unconstrained

videos due to the labor cost and intra-class variability.

Another fundamental challenge in video segmentation

is that the inherent video object hierarchy may be highly

subjective. Annotations of multiple human annotators may

vary significantly. For example, one annotator may assign

a single label to the whole human body, whereas another

annotator will label torso and leg part separately. Further-

more, some objects may not have strong correlation to one

feature alone. For example, an object may have parts that

show different color patterns but move consistently. Hence,

in practice, one may induce a video segmentation with dif-

ferent levels of granularity from aggregated information of

multi-cue feature channels.

In this paper, we propose a novel video segmenta-

tion model which integrates temporally smooth labels with

global structure consistency with preserving object bound-

aries. Our contributions are as follows:

• We propose a video segmentation model that integrates

temporally smooth but potentially weak video segmen-

tation proposals with strong static object cues and low-

level spatio-temporal cues of color, flow, texture and

long trajectories.

• A video segmentation at different granularity levels is

inferred through the process of graph edge consistency,

which is computationally efficient compared to tradi-

tional hierarchy induction approaches.

• The proposed method infers precise coarse grained

segmentation, where a segment may represent one

whole object.
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Figure 1: Overview of the framework. (a) temporally smooth pixelwise labels. (b ∼ e) Multi-cue spatial edge potentials. (f)

Superpixels for corresponding vertices in the frame f are illustrated by object contours. Best viewed in color.

The remainder of this paper is organized as follows. Sec-

tion 2 describes a set of related work and their limitations.

Our proposed model is introduced in Section 3. Experi-

ments set up and results are described in Section 4, followed

by concluding remarks in Section 5.

2. Related Work

The problem of video segmentation is driven by several

underlying goals. Some studies [15, 19, 23, 26] focus on ob-

ject segmentation, whose aim is to detect, segment out, and

track a few objects of interest along the video frames. On

the other hand, [7, 8, 9, 10, 12, 13, 18, 24] seek to construct

full pixelwise segmentation, where every pixel is assigned

one of several labels. Xu and Corso [24] evaluated a set of

pixelwise video segmentation algorithms where a video is

represented as a graph and partition the graph according to

several criteria. In this work, we specifically focus on the

latter problem of pixelwise segmentation.

One of the main objectives of video segmentation is

to obtain spatio-temporal smoothness of the region labels.

Grundmann et al. [10] proposed a greedy agglomerative

clustering algorithm that merges two adjacent superpixels

if their color difference is smaller than internal variance of

each superpixel. This results in smooth spatio-temporal seg-

ments. In addition, it implicitly detects new objects through

the agglomerative clustering process. However, they only

focus on color information without spatio-temporal struc-

ture. As a consequence, parts of one objects may merge

with another object or with background, particularly in the

coarse grained segmentation. Furthermore, the approach

does not extract object boundaries effectively because the

algorithm does not make use of the spatial structure from

image gradients or edge detectors.

Object boundary contour defines spatial structure for im-

age data. Arbelaez et al. [1] introduced a hierarchical con-

tour detector for image segmentation. The contour strength

provides a cue to understand this spatial structure. It is

likely that a strong contour separates an object from other

objects, while a weak contour only separates two parts in-

side of an object. However, the approach only works on

static images and is not amenable to direct generalization to

video data. Hence, applying this approach to videos would

require matching of regions across subsequent frames, a

nontrivial task.

Galasso et al. [9] aim to obtain correspondence of su-

perpixels across video frames by propagating labels from a

source frame along the optical flow. However, the quality

of propagated labels typically decays due to flow estima-

tion errors as the distance from the source frame increases.

In motion segmentation, Elqursh and Elgammal [5] resolve

the issue by splitting a group of trajectories if their dissim-

ilarity becomes dominant. However, the robustness of this

approach depends highly on the choice of a threshold pa-

rameter, which needs to be tuned for each video.

On the other hand, robust temporal structure informa-

tion can be extracted from long-term trajectories. Ochs et

al. [18] introduce a video segmentation framework that de-

pends on long-term point trajectories from large displace-

ment optical flow [4]. Although the proposed approach

attains robust temporal consistency, it cannot distinguish

objects of identical motion patterns because the trajectory
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label only depends on motion. Nonetheless, the long tra-

jectories offer a good cue to inferring long range temporal

structure in a video. For instance, two superpixels in distant

frames can be hypothesized to have common identity if they

share sufficiently many trajectories.

Galasso et al. [7] aggregate a set of pairwise affinities in

color, optical flow direction, long trajectory correspondence

and adjacent object boundary. With aggregated pairwise

affinity, they adopt spectral clustering to infer segment la-

bels. However, Nadler and Galun [17] illustrate cases where

spectral clustering fails when the dataset contains structures

at different scales of size and density for different clusters.

We propose a Markov Random Field(MRF) model

whose vertices are defined on object contour based regions.

The model takes temporally smooth label likelihood as node

potentials and global spatio-temporal structure information

is incorporated as edge potentials in multi-modal feature

channels, such as color, motion, object boundary, texture

and long trajectories. Since the proposed model takes con-

tour based superpixels as vertices, the inferred segmentation

preserves strong object boundaries. In addition, the model

enhances long range temporal consistency over label propa-

gation by incorporating global structure. Moreover, we ag-

gregate multi-modal features in the video so that the model

can distinguish objects of identical motion. Finally, MRF

inference with unary and pairwise potential results in ac-

curate segmentation compared to spectral clustering which

only relies on pairwise relationship. As a result, the pro-

posed model infers video segmentation labels by preserving

accurate object boundaries which are locally smooth and

consistent to global spatio-temporal structure of the video.

3. Proposed Model

3.1. Multi­Cue Structure Preserving MRF Model

An overview of our framework for video segmentation

is depicted in Figure 1. A video is represented as a graph

G = (V, E), where a vertex set V = {V1, . . . ,VF } is de-

fined by object contours from all frames f ∈ {1, . . . , F}
in the video. For each frame, an object contour map is ob-

tained from contour detector [1]. A region enclosed by a

contour forms a superpixel. An edge set E = {Es, Et} de-

scribes relationship for each pair of vertices. The edge set

consists of spatial edges eij ∈ E
s where i, j ∈ Vf and tem-

poral edges eij ∈ E
t where i ∈ Vf , j ∈ Vf

′

, f 6= f ′.

Video segmentation is obtained by MAP inference on a

Markov Random Field Y = {yi|i ∈ V , yi ∈ L} on this

graph G, where P (Y ) = 1
Z
exp(−E(Y )) and Z is the par-

tition function. Vertex i is labeled as yi from the label set

L of size L. MAP inference is equivalent to the following

energy minimization problem.

min E(Y ) =
∑

i∈V

φi · pi +
∑

(i,j)∈E

ψij : qij , (1)

s.t.
∑

l∈L

pi(l) = 1, ∀i ∈ V (2)

∑

l′∈L

qij(l, l
′) = pi(l), ∀(i, j) ∈ E , l ∈ L (3)

pi ∈ {0, 1}
L, ∀i ∈ V (4)

qij ∈ {0, 1}
L×L, ∀(i, j) ∈ E (5)

In (1), φi represents node potentials for a vertex i ∈ V
and ψij is edge potentials for an edge eij ∈ E . As with

the edge set E , edge potentials are decomposed into spatial

and temporal edge potentials, ψ = {ψs,ψt}. The vector

pi indicates label yi and qij is the label pair indicator ma-

trix for yi and yj . Operators · and : represent inner product

and Frobenius product, respectively. Spatial edge potentials

are defined for each edge which connects the vertices in the

same frame i, j ∈ Vf . In contrast, temporal edge poten-

tials are defined for each pair of vertices in the different

frames i ∈ Vf , j ∈ Vf
′

, f 6= f ′. It is worth noting that the

proposed model includes spatial edges between two vertices

that are not spatially adjacent and, similarly, temporal edges

are not limited to consecutive frames.

A set of vertices of the graph is defined from contour

based superpixels such that the inferred region labels will

preserve accurate object boundaries. Node potential param-

eters are obtained from temporally smooth label likelihood.

Edge potential parameters aggregate appearance and mo-

tion features to represent global spatio-temporal structure

of the video. MAP inference of the proposed Markov Ran-

dom Field(MRF) model will infer the region labels which

preserve object boundary, attain temporal smoothness and

are consistent to global structure. Details are described in

the following sections.

3.2. Node Potentials

As described in Section 3.1, a vertex or a node is de-

fined by an object contour proposal. Arbelaez et al. [1]

extract hierarchical object contours so that taking differ-

ent threshold values on the contours will produce different

granularity levels of the enclosed regions. In our proposed

model, we construct a set of vertices Vf from a video frame

f by a single threshold on contours which results in fine-

grained(oversegmented) superpixels.

Within each frame f , unary node potential parameters

φi ∈ R
L represent the cost of labeling vertex i ∈ V with

labels l ∈ L = {1, . . . , L}. In a typical video segmentation

MRF, node potentials define dependence of l on local ap-

pearance features, while the edges impose spatio-temporal

smoothness. However, temporal edges depend on motion
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estimation that can often be imprecise. Therefore, we rede-

fine the role of node potentials to impose auxiliary smooth-

ness based on weak but temporally smooth oversegmenta-

tion, as described below.

Consider a weak video segmentation based on the set

of labels L. This segmentation creates a set of superpixels

proposals in frame f . Let hi(l) be the number of pixels with

label l within the contour-defined node i, as proposed by the

weak superpixels. Then, we define the node potential as:

φi = −
[hi(1), . . . , hi(L)]

∑L

l=1 hi(l)
. (6)

In this work, we use [10] to create these weak but tempo-

rally smooth proposals. Figure 1 (a) illustrates that a vertex

has a mixture of weak pixelwise labels because the unstruc-

tured segmentation proposal of [10] is not aligned with ob-

ject contours. The roles of nodes in our MSP-MRF model

will be to enforce this missing contour smoothness.

3.3. Spatial Edge Potentials

Binary edge potential parameters ψ consist of two differ-

ent types; spatial and temporal edge potentials, ψs and ψt,
respectively . Spatial edge potentials ψsij model pairwise

relationship of two vertices i and j within a single video

frame f . We define these pairwise potentials as follows:

ψsij(l, l
′) =

{

ψb
ij+ψ

c
ij+ψ

o
ij+ψ

x
ij

4 if l 6= l′, ψsij ≥ τ ,
0 otherwise

(7)

A spatial edge potential parameter ψsij(l, l
′) is the (l, l′) el-

ement of RL×L matrix which represents the cost of labeling

a pair of vertices i and j as l and l′, respectively. It takes

Potts energy where all different pairs of label take homoge-

neous cost ψsij . Spatial edge potentials ψs are decomposed

into ψb, ψc, ψo, ψx, which represent pairwise potentials in

the channel of object boundary, color, optical flow direction

and texture. Pairwise cost of having different labels is high

if the two vertices i and j have high affinity in the corre-

sponding channel. As a result, edge potentials increase the

likelihood of assigning the same label to vertices i and j
during energy minimization.

The edge potentials take equal weights on all channels.

Importance of each channel may depend on video context

and different videos have dissimilar contexts. Learning

weights of each channel is challenging and it is prone to

overfitting due to high variability of video context and lim-

ited number of labeled video samples in the dataset. Hence,

the propose model equally weights all channels.

The model controls the granularity of segmentation by

a threshold τ . Section 3.5 discusses how MSP-MRF ob-

tains segmentation in different granularity in detail. We next

Algorithm 1 Minimum Max-edge Path Weight

1: procedure MMPW(V, E)

2: d←∞
3: for v ∈ V do

4: d[v][v]← 0

5: for (u, v) ∈ E do

6: d[u][v]← b(euv) ⊲ assign boundary score

7: for k ∈ V do

8: for i ∈ V do

9: for j ∈ V do

10: if d[i][j] > max(d[i][k], d[k][j]) then

11: d[i][j]← max(d[i][k], d[k][j])

12: return dMMPW ← d

discuss each individual potential type in the context of our

video segmentation model.

Object Boundary Potentials ψb. Object boundary poten-

tials ψbij evaluate cost of two vertices i and j in the same

frame assigned to different labels in terms of object bound-

ary information. The potential parameters are defined as

follows:

ψbij = exp(−dMMPW(i, j)/γb). (8)

where dMMPW(i, j) represents the minimum boundary path

weight among all possible paths from a vertex i to j.
The potentials ψb are obtained from Gaussian Radial Basis

Function(RBF) of dMMPW(i, j) with γb which is the mean

of dMMPW(i, j) as a normalization term.

If the two superpixels i and j are adjacent, their object

boundary potentials are decided by the shared object con-

tour strength b(eij), where eij is the edge connects vertices

i and j and the boundary strength is estimated from contour

detector [1]. The boundary potentials can be extended to

non-adjacent vertices i and j by evaluating a path weight

from vertex i to j. The algorithm to calculate dMMPW(i, j)
is described in Algorithm 1, which modifies Floyd-Warshall

shortest path algorithm.

Typically, a path in a graph is evaluated by sum of

edge weights along the path. However, in case of bound-

ary strength between the two non-adjacent vertices in the

graph, total sum of the edge weights along the path is not

an effective measurement because the sum of weights is bi-

ased toward the number of edges in the path. For example,

a path consists edges of weak contour strength may have

the higher path weight than another path which consists of

smaller number of edges with strong contour. Therefore, we

evaluate a path by the maximum edge weight along the path

and the path weight is govern by an edge of the strongest

contour strength.

Figure 2 illustrates two different path weight models of

the max edge weight and the sum edge weight. Figure 2

(a) illustrates contour strength where red color represents
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high strength. Two vertices indicated by white arrows are

selected in an airplane. In Figure 2 (b), two paths are dis-

played. Path 2 consists of less number of edges but it inter-

sects with a strong contour that represents boundary of the

airplane. If we evaluate object boundary score between the

two vertices, Path 1 should be considered since it connects

vertices within the airplane. Figure 2 (c) shows segmen-

tation result thresholded on edge sum path weight from a

vertex at tail to all the other vertices. It displays that the

minimum path weight between the two vertices are evalu-

ated on Path 2. On the other hand, Figure 2 (d) illustrates

that max edge path weight takes Path 1 as minimum path

weight which conveys human perception of object hierar-

chy.

Color Potentials ψc. Color feature for each vertex is rep-

resented by a histogram of CIELab color space in the corre-

sponding superpixel. Color potential ψcij between the vertex

i and j is evaluated on two color histograms hci and hcj :

ψcij = exp(−dEMD(h
c
i ,h

c
j)/γc). (9)

where dEMD(h
c
i ,h

c
j) is Earth Mover’s Distance(EMD) be-

tween hci and hcj of vertices i and j and γc is the normaliza-

tion parameter.

Earth Mover’s Distance [20] is a distance measurement

between two probability distributions. EMD is typically

more accurate over χ2 distance in color space of super-

pixels. An issue with χ2 distance is that if the two his-

tograms on simplex do not share non-zero color bins, the

two histogram are evaluated with the maximum distance of

1. Therefore, distance of vertices i and j is the same as the

distance between i and k, if i, j, k do not share any color

bins. This occurs often when we compare color feature of

superpixels because superpixel is intended to exhibit coher-

ent color especially in the fine grained level. Superpixels

on different objects or different parts of an object may have

different colors. For example, if we use χ2 distance to mea-

sure color difference of superpixels, distance between su-

perpixels of red and orange will have the same distance of

red and blue because they do not share color bins. However,

this is not intuitive to human perception. In contrast, EMD

considers distance among each color bin, hence it is able to

distinguish non overlapping color histograms.

Optical Flow Direction Potentials ψo. In each video

frame, motion direction feature of ith vertex can be obtained

from a histogram of optical flow direction hoi . As with the

case of color potentials, we use EMD between the two his-

tograms ioi and ioj to accurately estimate difference direction

in motion:

ψoij = exp(−dEMD(h
o
i ,h

o
j)/γo) (10)

where γo is the mean EMD distance on optical flow his-

togram.

Texture Potentials ψx. Dense SIFT features are extracted

for each superpixel and Bag-of-Words(BoW) model is ob-

tained from K-means clustering on D-SIFT features. We

evaluate SIFT feature on multiple dictionaries of different

K. Texture potentials ψx are calculated from RBF on χ2

distance of two BoW histograms hxi and hxj , which is a typ-

ical choice of distance measurement for BoW model:

ψxij = exp(−dχ2(hxi ,h
x
j )/γx) (11)

where parameter γx is the mean χ2 distance on D-SIFT

word histogram.

3.4. Temporal Edge Potentials

Temporal edge potentials define correspondence of ver-

tices at different frames. It relies on long trajectories which

convey long range temporal dependencies and more robust

than optical flow.

ψtij(l, l
′) =

{

ψr
ij+ψ

c
ij

2 if l 6= l′, ψtij ≥ τ ,
0 otherwise

, (12)

ψrij =
|Ti ∩ Tj |

|Ti ∪ Tj |
, (13)

ψcij = exp(−dEMD(h
c
i ,h

c
j)/γc). (14)

where Ti is a set of long trajectories which pass through ver-

tex i. Pairwise potential ψrij represents temporal correspon-

dence of two vertices from overlapping ratio of long trajec-

tories that vertices i and j shares, where i ∈ Vf , j ∈ Vf
′

and f 6= f ′. In order to distinguish two different objects of

the same motion, we integrate color potentials ψc between

two vertices. Long trajectories are extracted from [22].

3.5. Segmentation Label Inference with Variable
Granularity

The proposed model initially forms a complete graph.

Before the inference stage, the threshold τ in (7), (12) con-

trols the number of edges in the graph. An edge potential

ψij in (1) penalizes assigning different labels to two ver-

tices, with the inference algorithm assigning the same la-

bel if the overall energy decreases. Intuitively, lowering τ
adds edges, which then strongly enforces similar vertices

to be labeled identically in the MRF energy minimization.

Hence, the model infers coarse-grained segmentation. This

process resembles hierarchical segmentation. Although our

approach does not guarantee hierarchical segmentation, it

typically results in one that is controlled by τ , as evidenced

by the smooth PR curve in Figure 5.

A conventional approach that enables hierarchical seg-

mentation is to define a hierarchical vertex set in a graph

as in the Hierarchical MRF(HMRF) [11, 27]. It introduces

another set of vertices at different levels of hierarchy and
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(a) Contour strength (b) Two contour paths (c) Edge sum path weight (d) Max edge path weight

Figure 2: Comparison of two types of path weight models.

edges which connect them. The large size of HMRFs typi-

cally makes the inference computationally infeasible.

Our proposed approach to obtain inference on differ-

ent granularity labels takes computational advantages over

graph representation with a hierarchical vertex set. The time

complexity of computing node and edge potentials for a

complete graph G = (V, E) are O(|V||L|) and O(|V|2), re-

spectively. However, in practice, edges in the initial graph

can be pruned away in the following way. For spatial edge

potentials, one may compute the potential if the graph path

length of two vertices in a frame is shorter than a threshold.

For temporal edge potentials, one computes the potential of

two vertices in different frames if they are overlapping by

trajectories or optical flows. Once we construct the initial

graph, we further threshold on different τ to get the seg-

mentation inference of different granularities.

This paper focuses on constructing a graph that inte-

grates temporally smooth labels with global structures in

order to obtain precise video segmentation. However, one

can further improve computational complexity for a very

long video sequence by running inference on video clips

of sliding windows with frame overlaps as in [10, 16, 24].

There will be a trade-off between preserving long term de-

pendency and computational efficiency.

4. Experimental Evaluation

4.1. Dataset

We evaluate the proposed model on VSB100 video seg-

mentation benchmark data provided by Galasso et al. [9].

There are a few additional video datasets which have pixel-

wise annotation. FBMS-59 dataset [18] consists of 59 video

sequences and SegTrack v2 dataset [15] consists of 14 se-

quences. However, the both datasets annotate on a few ma-

jor objects leaving whole background area as one label. It

is more appropriate for object tracking or background sub-

traction task. On the other hand, VSB100 consists of 60

test video sequences of maximum 121 frames. For each

video, every 20 frame is annotated with pixelwise segmen-

tation labels by four annotators. The dataset contains the

largest number of video sequences annotated with pixel-

wise label, which allows quantitative analysis. The dataset

provides evaluation measurements in Boundary Precision-

Recall(BPR) and Volume Precision-Recall(VPR), which

evaluate overlap ratio of the object boundary and volume.

4.2. MSP­MRF Setup

In this section, we present the detailed setup of our

Multi-Cue Structure Preserving Markov Random Field

(MSP-MRF) model for unconstrained video segmentation

problem. As described in Section 3.2, we take a single

threshold on image contour, so that each frame contains ap-

proximately 100 superpixels. We assume that this granular-

ity level is fine enough such that no superpixel at this level

will overlay on multiple ground truth regions. Node po-

tential (6) is evaluated for each superpixel with temporally

smooth label obtained with agglomerative clustering [10].

Although we chose the 11th fine grained level of hierarchy,

Section 4.4 illustrates that the proposed method shows sta-

ble performance over different label set size |L| for node

potential. The average |L| on VSB100 video sequence is

355 labels for the chosen hierarchy. We assume the label

size is large enough to encompass true segment labels.

The proposed model requires node potential to be eval-

uated on a temporally smooth segmentation label set L.

We chose [10] for L because their agglomerative cluster-

ing algorithm ensures temporal smoothness. Furthermore,

our study shows that it achieves the-state-of-the-art perfor-

mance among publicly available video segmentation imple-

mentations.

Finally, edge potential is estimated as in (7), (12). For

color histograms, we used 50 bins for each CIELab color

channel. In addition, 50 bins were set for horizontal and

G
T

[1
0

]
O

u
rs

Figure 3: Temporal consistency recovered by MSP-MRF.
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Figure 4: Segmentation comparison on two videos.

vertical motion of optical flow. For D-SIFT Bag-of-Words

model, we used K = 1000 words. Energy minimiza-

tion problem in (1) for MRF inference is optimized using

FastPD algorithm [14].

4.3. Qualitative Analysis

Figure 3 illustrates a segmentation result on an airplane

video sequence. MSP-MRF rectifies temporally inconsis-

tent segmentation result of [10]. For example, in the fourth

column of Figure 3, the red bounding boxes show MSP-

MRF rectified label from Grundmann’s result such that la-

bels across frames become spatio-temporally consistent.

In addition, control parameter τ successfully obtains dif-

ferent granularity level of segmentation. For MSP-MRF, the

number of region labels is decreased as τ decreases. Figure

4 compares video segmentation results of MSP-MRF with

Grundmann’s by displaying segmentation on the same gran-

ularity levels, where the two methods have the same num-

ber of segments in the video frame. MSP-MRF infers spa-

tial smooth object regions, which illustrates the fact that the

proposed model successfully captures spatial structure of

objects. Furthermore, in the buck video sequence of Figure

4, the coarse segmentation result of [10] fails to identify the

foreground object, whereas the proposed MSP-MRF retains

a separate segmentation on the buck object. In addition, the

fine level segmentation of [10] propagates the foreground

segment label to a fragment of the background, which illus-

trates the lack of structural information in [10].

4.4. PR Curve on High recall regions

We specifically consider high recall regions of segmen-

tation since we are typically interested in videos with rel-

atively few objects. Our proposed method improves and

rectifies state-of-the-art video segmentation of greedy ag-

glomerative clustering [10], because we make use of struc-

tural information of object boundary, color, optical flow,

texture and temporal correspondence from long trajectories.

Figure 5 shows that the proposed method achieves signifi-

cant improvement over state-of-the-art algorithms. MSP-

MRF improves in both BPR and VPR scores such that it

is close to Oracle which evaluates contour based superpix-

els on ground truth. Hence, it is worth noting that oracle

is the best accuracy that MSP-MRF could possibly achieve

because MSP-MRF takes contour based superpixels from

[1] as well.

The proposed MSP-MRF model rectifies agglomerative

clustering by merging two different labels of vertices if it re-

duces overall cost defined in (1). By increasing the number

of edges in the graph by lowering threshold value, the model

leads to coarser grained segmentation. As a result, MSP-

MRF only covers higher recall regions from precision-recall

scores of the selected label set size |L| from [10]. A hy-

brid model that covers high precision regions is described

Figure 5: PR curve comparison to other models.

Figure 6: PR curve on different size of label set L.
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Table 1: Performance of MSP-MRF model compared with state-of-the-art video segmentation algorithms on VSB100.

BPR VPR Length NCL

Algorithm ODS OSS AP ODS OSS AP µ(δ) µ
Human 0.81 0.81 0.67 0.83 0.83 0.70 83.24(40.04) 11.90

Ochs and Brox [21] 0.17 0.17 0.06 0.25 0.25 0.12 87.85(38.83) 3.73

Spectral Clustering [7] 0.51 0.56 0.45 0.45 0.51 0.42 80.17(37.56) 8.00

Segmentation Propagation [9] 0.61 0.65 0.59 0.59 0.62 0.56 25.50(36.48) 258.05

GQ ≡ G′ SC [8] 0.62 0.66 0.54 0.55 0.59 0.55 61.25(40.87) 80.00

[M(GSC
2)]

NCut-1SC [12] 0.61 0.64 0.51 0.58 0.61 0.58 60.48(43.19) 50.00

Grundmann et al. [10] 0.57 0.62 0.48 0.61 0.65 0.61 51.83(39.91) 117.90

Khoreva et al. [13] 0.64 0.70 0.61 0.63 0.66 0.63 83.41(35.27) 50

MSP-MRF 0.63 0.67 0.60 0.64 0.67 0.65 35.83(38.93) 167.27

Oracle [9] 0.62 0.68 0.61 0.65 0.67 0.68 - 118.56

in Section 4.5.

Figure 6 illustrates the PR curve of MSP-MRF on dif-

ferent granularity levels of label set |L| in node potential

(6). Dashed-green line is the result of greedy agglomerative

clustering [10]. Solid-green line is the result of MSP-MRF

with edge threshold τ set to 1, which leaves no edge in the

graph. The figure shows that results of MSP-MRF are sta-

ble over different size of |L|, particularly in the high recall

regions.

4.5. Quantitative Analysis

The proposed model effectively merges labels of each

pair of nodes according to edge set E . As the number of

edges increases, the size of the inferred label set will de-

crease from |L|, which will cover higher recall regions. Al-

though we are interested in high recall regions, the model

needs to be evaluated on high precision regions of PR curve.

For this purpose, we take a hybrid model that obtains recti-

fied segmentation results from MSP-MRF on the high recall

regions but retains segmentation result of [10] on high pre-

cision regions as an unrectified baseline.

Table 1 shows performance comparison to state-of-the-

art video segmentation algorithms. The proposed MSP-

MRF model outperforms state-of-the-art algorithms on

most of the evaluation metrics. BPR and VPR is described

in Section 4.1. Optimal dataset scale(ODS) aggregates

F-scores on a single fixed scale of PR curve across all

video sequences, while optimal segmentation scale(OSS)

selects the best F-score with different scale for each video

sequence. All the evaluation metrics are followed from

dataset [9].

Khoreva et al. [13] achieves similar performance to

MSP-MRF but it relies on model training over a large fea-

ture set. Our model uses no supervised training. As de-

scribed in Section 4.4, Oracle is a model that evaluates con-

tour based superpixels on ground truth. MSP-MRF infers

segmentation label by integrating object boundary, global

structure and temporal smoothness based on [10]. The re-

sult shows that incorporating boundary and global structure

rectifies [10] by significant margin.

4.6. Contribution of Each Cue in Spatial Edge Po­
tentials

We compare contributions of each cue in the spatial edge

potentials. Table 2 shows the performance comparison of

MSP-MRF on different combinations of cues. Although

most of the combinations result in stable performance, the

result without boundary potential achieves low average pre-

cision suggesting that its contribution is significant com-

pared to other cues.

Table 2: Comparison on different cue combinations.

Multi-cue combination BPR AP VPR AP

All cues 0.60 0.65

Color+Flow+Texture 0.58 0.63

Boundary+Flow+Texture 0.59 0.64

Boundary+Color+Texture 0.59 0.64

Boundary+Color+Flow 0.60 0.64

5. Conclusion

In this paper, we have presented a novel video segmen-

tation model that considers three important aspects of video

segmentation. The model preserves object boundary by

defining vertex set from contour based superpixels. In ad-

dition, temporally smooth label is inferred by providing

unary node potential from agglomerative clustering label

likelihood. Finally, global structure is enforced from pair-

wise edge potential on object boundary, color, optical flow

motion, texture and long trajectory affinities. Experimen-

tal evaluation shows that the proposed model outperforms

state-of-the-art video segmentation algorithm on most of the

metrics.
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