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Abstract

The emergence of modern, affordable and accurate

RGB-D sensors increases the need for single view ap-

proaches to estimate 3-dimensional motion, also known as

scene flow. In this paper we propose a coarse-to-fine,

dense, correspondence-based scene flow formulation that

relies on explicit geometric reasoning to account for the ef-

fects of large displacements and to model occlusion. Our

methodology enforces local motion rigidity at the level of

the 3d point cloud without explicitly smoothing the param-

eters of adjacent neighborhoods. By integrating all ge-

ometric and photometric components in a single, consis-

tent, occlusion-aware energy model, defined over overlap-

ping, image-adaptive neighborhoods, our method can pro-

cess fast motions and large occlusions areas, as present

in challenging datasets like the MPI Sintel Flow Dataset,

recently augmented with depth information. By explicitly

modeling large displacements and occlusion, we can han-

dle difficult sequences which cannot be currently processed

by state of the art scene flow methods. We also show that by

integrating depth information into the model, we can ob-

tain correspondence fields with improved spatial support

and sharper boundaries compared to the state of the art,

large-displacement optical flow methods.

1. Introduction

The scene flow is a 3-dimensional translation field of an

observed scene, and can be predicted from a variety of in-

puts which encode depth and color information: RGB and

depth from stereo or multiple cameras, depth from sensors

(structured light, time-of-flight) or even synthetic depth.

Computing a 3d motion field is useful for several com-

puter vision applications such as 3d segmentation, naviga-

tion, scene understanding and interaction[16, 1, 7, 32, 21].

The idea of estimating a 3d motion field is relatively new

in contrast with considerably more work focused on esti-

mating an optical flow field[10, 3, 30, 15, 23, 31, 13, 29].

An open question raised by the emergence of sensors cap-

turing appearance augmented with depth is how to effi-

ciently exploit this additional source of information.

In this paper, we show that by reasoning based on a 3d

point cloud representation, we can produce physically plau-

sible explanations of the scene motion across successive

RGB-D frames separated by large displacements and under

significant occlusion. Instead of linearizing infinitesimal

motion explicitly, which may be difficult or invalid, we ini-

tially estimate large-displacement correspondences that act

as anchors. We then rely on local rigidity by constraining

3d point cloud neighborhoods to individually follow rigid

transformations. In order to explain the observed data, the

anchors and the geometric terms based on local rigidity are

augmented with constraints on the appearance of the point

cloud. Appearance is used such that points in correspon-

dence match, whereas depth alignment constraints are used

to prevent the estimated solution from drifting away from

the target point cloud. Traditionally, the entire 3d motion

field has been regularized to obtain smooth solutions, but

we show that by just using rigid, geometric constraints on

overlapping, large and image-adaptive neighborhoods, reli-

able results can be obtained. The links between neighbors

are based on depth and occlusion estimates in order to pre-

serve structure and correctly pass or block information.

The main contribution of this work is the design of

a scene flow solver that can handle large displacements,

uses explicit 3d occlusion reasoning, and integrates large-

displacement and geometric terms. The model is distinct

with respect to classical state of the art approaches in both

variational optical flow and scene flow optimization. By es-

tablishing correspondences constrained by local rigid trans-

formation, and without explicitly enforcing the smoothness

of the motion field, we can obtain reliable scene flows with

good consistency with the RGB-D input data.

2. Related Work

The scene flow was introduced in the seminal work of

Vedula [25] as the 3d motion field of the scene. Since

then, several computational approaches have been devel-

oped. Whenever a stereo or a multi-view camera system is
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available, the scene flow can be computed by imposing con-

sistency with the observed optical flow [25], by decoupled

[28] or joint [11, 28] estimation of structure and motion, or

by relying on local scene rigidity [26], [27]. In this work we

assume that a depth sensor is available, therefore estimating

the 3d structure is not needed.

Spies et al. [22] combine intensity and depth informa-

tion by extending the optical flow formulation of Horn and

Schunck [10] to take advantage of depth information, in-

tegrated as an additional channel in the variational frame-

work. The depth flow is estimated based on the observed

data with a smoothness prior. However, the camera is as-

sumed to be orthographic and there is no explicit connection

between the optical and depth (range) flow. Consistency is-

sues are addressed in [14], where the scene flow is directly

solved based on the range data. This constrains the 3d mo-

tion in image space, although the method still does not use

range constraints.

Quiroga et al. [18] define a 2d warping function to cou-

ple apparent and 3d motion, through a joint local scene flow

constraint on both intensity and depth data. Although the

method is able to handle large displacements, it fails on un-

textured regions and more complex motions, such as rota-

tions. In order to solve for dense scene flow, a regulariza-

tion procedure is required. Usually, the 3d motion field is

assumed to be piecewise smooth and total variation (TV) is

used as regularizer, resulting in a better handling of discon-

tinuities.

A rigid over-parametrization of the scene flow is further

introduced in [17], but the used neighborhoods are small,

thus offering limited information during drastic appearance

changes which are frequent with fast motions. We differ

from their approach in the handling of large displacements,

in relying on both anchors and (re-estimated) geometric cor-

respondences and in constructing an energy model that is

occlusion-aware. Our model operates over large, image-

adaptive neighborhoods, under local rigidity assumptions

but without smoothness priors. The potential drift is com-

pensated by aligning and matching, followed by snapping

using the point cloud grid, and not by modeling the residual

motion of the camera as performed in [17]. To deal with

large displacements, [14] use SIFT matching to initialize

their optimizer, in spirit similar to [3], by fixing anchors in

the flow and setting a corresponding energy in their formu-

lation. While we also rely on initial anchors and continu-

ously estimating correspondences, we additionally provide

a complete occlusion-aware energy formulation which en-

forces both geometric and appearance consistency.

Herbst [9] relies on a scene flow adaption of [4] with

robust penalty terms and gradient constancy assumptions.

To avoid smoothing across motion boundaries, they use a

neighborhood structure that weights connected points ac-

cording to color, normal and depth similarities, but do not

infer occlusion. In [19], a novel variational extension of

[18] is presented. A weighted TV is applied on each com-

ponent of the 3d motion field in order to preserve motion

discontinuities across depth edges.

In an alternative approach, Hadfield and Bowden [8] esti-

mate the scene flow using particle filtering and a 3d colored

point cloud representation of the scene. In their method,

a large set of motion hypotheses are generated and tested,

offering a beneficial degree of robustness, as multiple so-

lutions are propagated consistently over time, at additional

computational cost.

3. Model Formulation

We work with RGB-D images represented using their

RGB and depth components, I and Z, respectively. Specif-

ically, I : (Ω ⊂ R
2) → R

3 and Z : (Ω ⊂ R
2) → R.

For two-frame modeling, we use images It, It+1 with cor-

responding depth maps Zt, Zt+1, but time indexes will be

dropped whenever unambiguous. Given calibrated cameras

and a projection function Π : R
3 → R

2, our goal is to

align the two point-clouds describing the scene at two close

moments in time in a way that is consistent with the given

RGB-D input and physically plausible at multiple scales l,
in the sense of local rigidity. The function Π projects a 3d

point onto the image domain Ω:

Π(x = (x, y, z)) =
(
fx

x
z
+ cx, fy

y
z
+ cy

)⊤
(1)

where fx and fy are the focal lengths of the camera and

(cx, cy) its principal point. We also consider the function

z(x) = z⊤x = z, where the vector z = [0, 0, 1]⊤ iso-

lates the depth component of the argument. Notice that

for a virtual 3d point y, placed (or predicted) within the

point cloud measured by the sensor, it can happen that

z(y) 6= Z(Π(y)).
The inverse projection function Π−1

Z : R2 → R
3 back-

projects a point from the image plane to the corresponding

3d location, given a map of depths:

Π−1
Z (x, y) =

(
Z(x, y)x−cx

fx
, Z(x, y)

y−cy
fy

, Z(x, y)
)⊤

(2)

We define the point-cloud associated with It, Zt, as X ,

the matrix containing the 3d locations of N points in the

first frame. Scene flow estimation addresses the problem of

finding the corresponding 3d locations in the second frame

Y , or more precisely, the displacement field ∆X:

Y = X +∆X (3)

We formulate the solution as a dense correspondence

problem, solving for Y while making assumptions about

the local rigidity of the displacement field, by ensuring ap-

pearance consistency and by geometrically reasoning about

occlusion.
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3.1. Local Rigidity Assumption

We enforce neighboring points on the same object sur-

face to obey, as truthfully as possible, a rigid 3d geomet-

ric transformation, by relying on techniques of point-cloud

registration. A rigid transformation D applied to a 3d point

x ∈ R
3, consists of a rotation matrix R(v) ∈ SO(3), the

3d rotation group, and a translation vector t = [tx, ty, tz]
⊤,

such that:

D(x;v, t) = R(v)x+ t (4)

Parametrization of rotations: We rely on standard rigid

representations, e.g. [6, 17], in order to define the param-

eter v as a vector in R
3 describing the axis of rotation

v̂ = v/‖v‖, and φ = ‖v‖ the angle of rotation around

that axis. To build R(v) we use an exponential map from

R
3 to the 3-sphere S3, q ∈ S3, and a quaternion-to-matrix

transformation for conversion to SO(3), i.e. R(q(v)). The

exponential map is defined as:

e[0,0,0]
⊤

= [0, 0, 0, 1]⊤

ev =
∞∑

i=0

(
1

2
ṽ

)i

=

[
sin(

1

2
φ)v̂, cos(

1

2
φ)

]⊤
= q,v 6= 0

(5)

where ṽ is a quaternion created by extending the vector v

with a scalar component 0, q is the resulting quaternion, and

[0, 0, 0, 1]⊤ is the quaternion corresponding to the identity

rotation. The exponentiation ṽi is performed by quaternion

multiplication. For numerical stability, (5) is rewritten as:

ev =

[
sin( 12φ)

φ
v, cos(

1

2
φ)

]⊤
(6)

3.2. Neighborhood Link Structure

We encode the neighborhood by means of matrices Wg

and Wa. These measure the likelihood of connected neigh-

bors, capturing how likely xi and each one of its neighbors

are to obey the same local rigid motion (in case of Wg), as

well as, additionally, if they also remain visible in the sec-

ond image (in case of Wa). The distinction is made by inte-

grating occlusion estimates: the data term becomes invalid

for points that lose visibility, unlike the geometric term, that

continuously constrains the motion.

W
g
ij =

{
exp(−τg‖xi − xj‖22), j ∈ N (i).

0, otherwise.
(7)

Wa
ij = W

g
ij exp(−τo · Occ(Π(xj)) (8)

where τg, τo are parameters with values found by validation.

The occlusion map Occ is a function of the motion field and

can be queried at a specific position, as detailed next.

3.3. Occlusion Reasoning

The availability of depth information allows better rea-

soning about image locations where occlusions may occur,

based on the current model estimates. Using the correspon-

dences Y (inferred at processing level l, dropped here for

simplicity), we present two approaches to integrate 3d ge-

ometric cues for occlusion estimation. These are presented

in Algorithms 1 and 2. If we denote the two occlusion maps

O1 and O2 produced, respectively, by each algorithm, we

define the occlusion term Occ:

Occ← max(O1, O2) (9)

where max is applied element-wise on the values in O1, O2

to produce the final Occ visibility map. Algorithm 1 aims

to identify those points that are moving behind or in front

of a previously occupied location. Our inference is based

on the depth at frame t. If, initially, the end points in cor-

respondence have different depths (i.e. we can view them

in layers of constant depth that are nearer or further away

from the camera), the depth disparity is used as a cue for

occlusion: either the first point shifts ’under’ an occluding

layer or the second point is occluded by the movement of

the initial layer.

Data: X,Y , Zt

Result: Occlusion states O1 for all image points

O1 ← 0;

for each point xi in X do

if Π(yi) /∈ Ωt then

O1(Π(xi)) = 1;

end

∆Z = Zt(Π(yi))− z(xi);
if ∆Z < 0 then

O1(Π(xi)) = min(1, O1(Π(xi)) + εZ |∆Z|);
else

O1(Π(yi)) = min(1, O1(Π(yi)) + εZ |∆Z|);
end

end

Algorithm 1: Geometric occlusion reasoning algorithm

based on Zt and correspondences estimates X in frame

t and Y in frame t+1. The parameter εZ is set by valida-

tion.

Algorithm 2 integrates both data and estimates, by con-

sidering the initial and measured depths at the correspond-

ing target location. The differences from the first algorithm

are: it does not take into consideration the initial depth or-

dering of end-points and it only predicts the occlusion state

for the initial location. If a point ends up with a depth

value higher than it had initially, we obtain an occlusion

cue, assuming points are at equal depth. Notice that dif-

ferently from advanced 2d optical flow models[24], we do
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Figure 1. Occlusion maps generated by our Alg. 1 (first row) and

Alg. 2 (second row) as well as their max operator, c.f . §3.3. In

practice we found that combining both estimates provides robust-

ness and complementarity: the first estimate (Alg. 1) tends to

be effective in the case of foreground motions against quasi-static

backgrounds, whereas the latter (Alg. 2) is adequate in cases when

the entire scene, or the camera, is moving.

not work with object support hypotheses or explicit planar

layers: instead we reason based on the real depth values

and the hypothesized 3d inter-frame point displacements.

While the use of relative depth cues and geometric reason-

ing has proven effective in our case (§5), in practice, train-

ing an occlusion classifier based on such features, and other

appearance-based ones, can also be effective and we are ex-

ploring such options in ongoing work.

Data: X,Y , Zt, Zt+1

Result: Occlusion states O2 for all image points

O2 ← 0;

for each point xi in X do

if Π(yi) /∈ Ωt+1 then

O2(Π(xi)) = 1;

end

∆Z = z(xi)− Zt+1(Π(yi));
O2(Π(xi)) =
min(1,max[0, O2(Π(xi)) + εZ∆Z]);

end

Algorithm 2: Geometric occlusion reasoning algorithm

based on Zt, Zt+1 and correspondences estimates X in

frame t and Y in frame t+ 1.

3.4. Energy Components

We design a dense energy model that can handle large

displacement and occlusion. The model is expressed in

terms of several energy sub-components. It relies on ge-

ometric large-displacement correspondence anchors, local

rigidity assumptions defined over large neighborhoods con-

structed using the RGB-D point cloud, on appearance con-

sistency, and depth constancy terms. Geometric occlusion

estimates are used in order to control the strength of the

neighborhood connections and automatically mask regions

for which correspondences cannot be established. In this

section, we review each component of the energy. The

complete scene-flow algorithm appears in §4. Detail on our

coarse-to-fine second-order optimization scheme is given in

the Appendix.

Rigid Parameter Fields. Our geometric model links Y

to X by assuming an underlying field of rigid parame-

ters Θ = [θ⊤
1 ,θ

⊤
2 , ...,θ

⊤
N ]⊤ , where θi = [v⊤

i , t
⊤
i ]

⊤ are

rigid parameters that constrain each neighborhood N (i) of

a point xi ∈ X . A neighborhood represents the closest

K points to xi in 3d, where K is chosen appropriately, ac-

cording to the pyramid level. The neighborhoods are large

in both 3d and 2d: in practice we use 150-250 neighbors,

which can extend to 60-80 cm in 3d and, depending on

viewpoint, between 20-200 pixels radius, or up to 1/4 of

the image diagonal. This creates interesting long range con-

nections in the image plane, as e.g. an isolated part of the

background will still link with its neighbours on other parts

of the background even though a foreground object might

interpose.

Large-Displacement Anchors. If initial correspondences

Y0 from a large-displacement matching process are avail-

able, we define an energy term that constrains (biases) the

solution around Y0:

EM (Θ) =
∑

i

∑

j∈N (i)

W a
ijΨ(∆D0

ij) (10)

where for brevity, we use ∆Dij = Dji − yj , Dji =
D(xj ;θi), and parameters θi ∈ Θ. The robust error

penalty Ψ is defined as Ψ(x) =
√
x⊤x+ ǫ2.1

Locally Rigid Geometric Constraint. We define an en-

ergy component that penalizes the deviation of each neigh-

borhood from a rigid transformation:

EG(Y,Θ) =
∑

i

∑

j∈N (i)

W g
ijΨ(∆Dij) (11)

Notice that we do not enforce smoothness across the

rigid parameters of neighboring points [17]. Instead, our

neighborhoods are large and overlapping, so a degree of

smoothness, as well as robustness to large displacements,

are achieved implicitly. However, we will also need ad-

ditional appearance and depth constancy terms in order to

obtain solutions that match all the observed data, 2d and 3d,

as described next.

Appearance Term. Rather than directly enforcing sim-

ilar appearance between points in correspondence, i.e.

xi and yi, we place a constraint on the underlying

matched 3d regions. The projections Π of neighborhoods

in the two images, and their disparity are integrated into the

following term:

EA(Θ) =
∑

i

∑

j∈N (i)

Wa
ij

3∑

c=1

Ψ(∆Icij) (12)

1A specific noise sensor model can be estimated from data and seam-

lessly included with the robust error penalty in our formulation.
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where we abbreviate ∆Icij = Ict+1(Π ◦Dji) − Ict (Π(xj)),
‘◦’ denotes function composition, and c indexes the color

channel in RGB data.

This energy constraint derives from our assumption that

regions are locally rigid. If that assumption is correct, warp-

ing the local appearance through the rigid displacement

D(x;θ) is valid with respect to all measurements and not

only consistent with a subset of the matches. Therefore,

we impose that the projection of a region in the first im-

age (plane) must remain coherent, in terms of color and/or

gradient information, with the projection of the rigid trans-

formation of the same region, in the second image.

Depth Constancy Term. The point cloud associated to the

scene in one frame, moving under the estimated local ro-

tations and translations needs to match the point cloud in

the other frame, as estimates can otherwise drift if left un-

constrained. The appearance penalty is not sufficient, as it

only partially constrains the projection. We therefore in-

troduce an energy component that integrates the disparity

between the expected (model predicted) depth and the mea-

sured depth, obtained from the sensor:

EZ(Θ) =
∑

i

∑

j∈N (i)

Wa
ijΨ(∆Zij) (13)

where we abbreviate ∆Zij = Zt+1(Π◦Dji)−z⊤Dji, with

z = [0, 0, 1]⊤ isolating the depth component of a point dis-

placed by the rigid transformation. The point xj ∈ X in

frame t is transformed by the appropriate local rigid trans-

formation, gets projected onto the image plane in frame t+1
and we compare it to the value read from the depth map

Zt+1 at that location. This guarantees that xj remains close

to the point cloud, after the transformation.

4. Scene Flow Optimization

Our complete energy model (§4.1) measures the consis-

tency of the solution with respect to the observed data and

locally penalizes non-rigid displacements. After each en-

ergy minimization iteration, we update an occlusion esti-

mate that is used by the energy model (c.f . §3.3). Similarly

in spirit to ICP methods [2], we ‘snap’ our predicted visible

points to their nearest neighbour in the cloud Π−1
Zt+1

(Ω) in

the target frame. The algorithm is presented in Alg. 3.

4.1. Dense Energy

The full energy model to optimize can be written as:

E(Y,Θ) = EA + αEZ + βEM + λEG (14)

where α, β and λ are weights estimated by validation.

Minimization. We solve (14) over the parameter fields

Y,Θ by alternating variable optimization:

Θk+1 ← argmin
Θ

E(Yk,Θk) (15)

Yk+1 ← argmin
Y

E(Yk,Θk+1) (16)

where k is the iteration index. We run the optimization to

convergence. See Appendix A for derivations.

4.2. Complete Scene Flow Algorithm

Ingredients are now in place to describe the complete

scene flow algorithm, Alg. 3. We rely on a coarse to fine

scheme based on 3 processing levels, where the image do-

main Ω is sampled every nl pixels, with l ∈ {0, 1, 2}, on

both the x and y dimensions. Let Ωl be the regular grid at

processing level l. We define the 3d locations Xl and the

parameter fields Yl,Θl associated with Ωl.

Our computational pipeline starts by estimating large-

displacement correspondences.2 Due to its excellent per-

formance, we use DeepMatching[29] in order to obtain an

initial set of correspondences, which we interpolate (using

bilinear functions on the displacements induced by the four

closest matches) in order to obtain a dense field (§4) for the

initial discrete grid of points Ω0. However, in principle, any

other large-displacement 2d or 3d, sparse or dense match-

ing method can be used. We generically refer to the large-

displacement routine as (LDMatchingInterp). We

transform 2d correspondences to 3d, by inverse projection

in order to obtain Y0. Whenever 2d locations fall out-

side image boundaries, we set the depth from the closest

matched neighbour, and we inverse project using Π−1. The

rigid parameter field Θ0 is initialized by setting all the ex-

ponential parameters to identity rotations, while translations

are set to Y0 −X0.

At each level l, we optimize the energy defined by (14)

using (15) and (16), starting from estimates Yl and Θl,

to obtain solutions Y∗
l and Θ∗

l . We ‘snap’ non-occluded

points in Y∗
l to their nearest neighbours in the point cloud

associated with the target frame t+ 1 by means of function

ICPsnap. To pass the parameter fields Y∗
l as initializa-

tion to the next processing level l + 1, we need to inter-

polate between translations rather than correspondences: if

yi ∈ Yl+1,xi ∈ Xl+1 and yi = xi +∆xi, we need to find

the closest (4) neighbours of xi in Xl, and interpolate be-

tween the corresponding translations to compute the motion

∆xi. We refer to this interpolation routine as Interp3d.

To initialize Θl+1 with the rigid parameter field at the

previous level, Θ∗
l , we select neighbours as we did in the

initialization of Yl+1. For the exponential map components

2Our method can operate without this energy cost EM , with large-

displacements still handled through our large neighborhood matching term

EG. Results provided by such a model are shown in fig. 2.
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v, we pass to a quaternion representation q via the expo-

nential map, use spherical linear interpolation (i.e. function

SLERP), and then map back to the original axis-rotation

representation. For the translational component of the rigid

transformations we also use Interp3d.

Data: It, It+1, Zt, Zt+1

// initialize large-displacement correspondences

({pi,qi)}i ← LDMatchingInterp(It, It+1)

X ← [. . . ,Π−1
Zt

(pi), . . .]

Y 0 ← [. . . ,Π−1
Zt+1

(qi), . . .]

//initialize local rigid parameters θi = (vi, ti)
vi ← [0, 0, 0]⊤, ti ← yi − xi, ∀xi ∈ X,yi ∈ Y0

for each pyramid level l ∈ {0, 1, 2} do

while not converged do
// estimate occlusion

Update Occ,Wa,Wg from (9), (7) ;

Θ∗
l ← Optimize (15);

Y∗
l ← Optimize (16);

Y∗
l ← ICPsnap(Y∗

l );

end

// Pass output to the next level

Yl+1 ← Interp3d(Y∗
l );

vi ← SLERP(v∗
i ), ∀vi ∈ Θl+1, ∀v∗

i ∈ Θ∗
l ;

ti ← Interp3d(ti), ∀ti ∈ Θl+1, ∀t∗i ∈ Θ∗
l ;

end

Algorithm 3: Computational steps of RGB-D scene flow.

5. Experiments

In all our experiments, the image resolution was 640 ×
480, with a 3-level pyramid where each layer samples the

original data at 5, 3, and 1 pixel strides, respectively. The

iterative optimization procedure is run to convergence.

RGB-D Datasets. For training and testing purposes, we

use RGB-D sequences taken from the CAD 120 dataset

[12], with noisy depth captured by a Kinect device, as well

as RGB sequences, newly augmented with accurate depth,

from the MPI Sintel dataset[5]. Parameters are validated

separately, on withheld data, for each dataset as these have

significantly different depth, noise, motion and appearance

statistics.

CAD 120 consists of video frames with no camera motion

that are 40 to 50 ms apart, so we sample once every 4 to 5

frames to ensure large displacements. We selected several

challenging sequences for illustration, provided in fig. 2.

Sintel. We use the new MPI Sintel dataset and

benchmark[5], consisting of a test set of 552 image pairs

(12 folders) and 1040 training image pairs (23 folders). The

ground truth used in the evaluation is the actual motion

field in both visible and occluded (unmatched) areas. The

dataset contains computer generated video sequences from

the animated movie Sintel, with extremely difficult cases

of very large displacements, occlusion, motion and defocus

blur, specular reflections and strong atmospheric effects. As

depth data for the test set was unavailable, we used 2 sub-

sets of the training data: Sintel-Train23 with 23 pairs, with

each single pair selected from the middle of its correspond-

ing training folder and Sintel-Test92 with 92 pairs, and each

4 pairs selected similarly, in an uniform fashion. We used

Sintel-Train23 to validate our parameters, and Sintel-Test92

for testing.

Running times. Our method takes roughly 4 minutes to run

for a pair of images, with 2 minutes of preprocessing (ini-

tial matches, image filtering, etc.), on a 3.2Ghz 16-core ma-

chine. The heaviest computational burden is in the energy

minimization, which is linearly dependent on the number of

iterations, the neighborhood size, and image resolution. But

it is also highly parallelizable.

Results. The first set of experiments uses pairs of frames

from CAD120. We analyze the robustness of several meth-

ods w.r.t. articulated human motion observed from a fixed

viewpoint. fig. 2 shows side-by-side results of a large dis-

placement optical flow method [3] and ours, indicating that

the use of 3d information indeed offers gains.

The second set of experiments focuses on Sintel, with

qualitative results for four different state of the art 2d and

3d methods shown in fig. 3 and quantitative results shown

in table 1. Our scene flow and the corresponding occlusion

estimates are accurate in challenging situations where large-

displacements and a variety of other effects occur. While

we expect 3d methods to perform better, this is still non-

trivial as we do not have access to ground truth boundaries.

Although the results are visually compelling, with compara-

tively superior spatial support and sharper boundaries for 3d

models over 2d ones, the error on Sintel can be dominated

by the displacement of structures like hair, which is difficult

to infer, but easy to render accurately based on a synthesis

model, as used to generate the Sintel dataset. Whether a de-

tailed flow and occlusion representation can, or should be,

extracted for such structures remains unclear both in princi-

ple, and in terms of utility.

Algorithms LDOF[3] EpicFlow[20] Ours

Error(in pixels) 7.44 4.82 4.6
Table 1. Quantitative evaluation of state of the art 2d and 3d meth-

ods on the challenging Sintel dataset (Sintel-Test92). Our method

uses 3d information and offers improved accuracy as well as accu-

rate estimates of occlusion.

6. Conclusions

We have presented a new model to compute dense scene

flows from RGB-D images by adopting a matching ap-

proach in conjunction with a consistent coarse to fine for-
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Figure 2. Sample scene flow estimation with results in the x-y plane for image pairs in the Sintel (first three columns) and CAD120 (last

three columns). Displacements are moderate. We show results from 3 different methods: 1st row: 3d scene flow[17]; 2nd row: large-

displacement 2d optical flow[3]; 3rd row: our proposed 3d scene flow method without relying on large-displacement anchors (no EM

component). Displacements for both us and [17] are initialized to 0. Notice the improved results of 3d methods and the good handling of

detail of our model.

Figure 3. Five pairs of images and four methods illustrated on the Sintel dataset: 1st row: input images overlaid, 2nd row: [3], 3rd row:

[17] (N.B. this state of the art 3d scene flow method is not designed to handle large displacements, but produces excellent results for small

to moderate ones), see also fig. 2, 4th row: EpicFlow[20], 5th row: our proposed approach shows sharper boundaries and improved

spatial support estimates, 6th row: ground truth optical flow. On the last two rows we show the ground truth occlusion states and our soft

estimates.
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mulation. Our geometric, locally rigid formulation can ef-

ficiently reqularize the solution, whereas the optimization

scheme, operating on a unique energy formulation, has been

demonstrated to handle large displacements. Explicit 3d ge-

ometric occlusion reasoning, integrated in the energy for-

mulation, offers increased robustness in areas where cor-

respondences cannot be established. By explicitly model-

ing large displacements and occlusion, we can successfully

work with difficult sequences which cannot be processed by

current state of the art 3d scene flow methods. We have also

shown that by using depth information, whenever available,

we can, as expected, obtain superior correspondence fields

compared to those of state of the art large-displacement 2d

optical flow methods.

Appendix A: Optimization Details

A. 1. Optimizing the Rigid Motion Parameters Θ

Expanding (14) yields:

E(Y,Θ) =
∑

i

∑

j∈N (i)

[
Wa

ij

3∑

c=1

Ψ(∆Icij) + αWa
ijΨ(∆Zij)

+ βWa
ijΨ(D0

ij) + λWg
ijΨ(Dij)

]
(17)

Linearization. The non-linearity of our objective function

is handled by means of a 2nd order Taylor expansion around

a current estimate Θk, at iteration k + 1:

E(Y,Θk+∆Θ) =
∑

i

∑

j∈N (i)

[
Wa

ij

3∑

c=1

Ψ(∆Icij)+

+αW a
ijΨ(∆Zij + (JZt+1

− z⊤JT )∆θi)+

+βW g
ijΨ(∆D0

ij + JD∆θi)+

+λW g
ijΨ(∆Dij + JD∆θi)

]
(18)

where

JIc
t+1

= ∇Ict+1JπJD (19)

JZt+1
= ∇Zt+1JπJD (20)

Jπ =

[
fx
z

0 −fx x
z2

0
fy
z
−fy y

z2

]
(21)

JD =

[
(∂R/∂v)x

I3×3

]⊤
(22)

are the Jacobian matrices evaluated at xj , I3×3 is the 3× 3
identity matrix, and ∇ is used to compute the gradient of

the color channels Ict+1 and depth map Zt+1 of the second

frame.

To evaluate the derivatives of R w.r.t. the exponential

map parameters v, we use the chain rule:

∂R

∂v
=

∂R

∂q

∂q

∂v
(23)

where efficient formulas exist for the computation of both

∂R/∂q and ∂q/∂v, using (5) and (6).

Update. Because the vectors θi are independent, we can

optimize them in parallel. Taking the partial derivatives of

(18) and setting them to zero yields:

∆θ
∗
i = −H−1

i gi (24)

where:

Hi =
∑

j∈N (i)

[
Wa

ij

3∑

c=1

Ψ
′

(∆Icij)J
⊤
Ic
t+1

JIc
t+1

+

+αWa
ijΨ

′

(∆Zij)(JZt+1
− z⊤JD)⊤(JZt+1

− z⊤JD)+

+βWg
ijΨ

′

(∆D0
ij)J

⊤
DJD+

+λWg
ijΨ

′

(∆Dij)J
⊤
DJD

]
(25)

is the 6× 6 Hessian matrix and

gi =
∑

j∈N (i)

[
Wa

ij

3∑

c=1

Ψ
′

(∆Icij)J
⊤
Ic
t+1

∆Icij

+αWa
ijΨ

′

(∆Zij)(JZt+1
− z⊤JD)⊤∆Zij

+βWg
ijΨ

′

(∆D0
ij)J

⊤
D∆D0

ij

+λWg
ijΨ

′

(∆Dij)J
⊤
D∆Dij

]
(26)

is the 6× 1 gradient.

We then update:

∆Θ = [∆θ
⊤
1 ,∆θ

⊤
2 , . . . ,∆θ

⊤
N ]⊤

Θk+1 = Θk +∆Θ (27)

A. 2. Optimizing the Correspondence Field Y

This component is straightforward, as we must solve:

Yk+1 = argmin
Y

EG(Y
k,Θk+1) (28)

In practice, this optimization can be performed in paral-

lel for all sites yi ∈ Y. We use a second order, damped

Newton trust-region method.
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