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Abstract

Social relation defines the association, e.g., warm,

friendliness, and dominance, between two or more people.

Motivated by psychological studies, we investigate if

such fine-grained and high-level relation traits can be

characterised and quantified from face images in the wild.

To address this challenging problem we propose a deep

model that learns a rich face representation to capture

gender, expression, head pose, and age-related attributes,

and then performs pairwise-face reasoning for relation

prediction. To learn from heterogeneous attribute sources,

we formulate a new network architecture with a bridging

layer to leverage the inherent correspondences among these

datasets. It can also cope with missing target attribute

labels. Extensive experiments show that our approach is

effective for fine-grained social relation learning in images

and videos.

1. Introduction

Social relation manifests when we establish, reciprocate,

or deepen relationships with one another in either physical

or virtual world. Studies have shown that implicit social

relations can be discovered from texts and microblogs [7].

Images and videos are becoming the mainstream medium to

share information, which capture individuals with different

social connections. Effectively exploiting such socially-rich

sources can provide social facts other than the conventional

medium like text (Fig. 1).

The aim of this study is to characterise and quantify

social relation traits from computer vision point of view.

Inspired by extensive psychological studies [9, 11, 13, 18],

which show that face emotional expressions can serve

as social predictive functions, we wish to automatically

recognise fine-grained and high-level social relation traits

(e.g., friendliness, warm, and dominance) from face images.

Such a capability promises a wide spectrum of applications.

For instance, automatic social relation inference allows for

relation mining from image collection in social network,

personal album, and films.

Figure 1. The image is given a caption ‘German Chancellor

Angela Merkel and U.S. President Barack Obama inspect a

military honor guard in Baden-Baden on April 3.’ (source:

www.rferl.org). Nevertheless, when we examine the face images

jointly, we could observe far more rich social facts that are

different from that expressed in the text.

Profiling unscripted social relation from face images is

non-trivial. Among the most significant challenges are: (1)

as suggested by psychological studies [9, 11, 13], relations

of face images are related to high-level facial factors. Thus

we need a rich face representation that captures various

attributes such as expression and head pose; (2) no single

dataset is presently available, which encompasses all the

required facial attribute annotations to learn such a rich

representation. In particular, some datasets only contain

face expression labels, whilst other datasets may only

contain the gender label. Moreover, these datasets are

collected from different environments and exhibit different

statistical distributions. How to effectively train a model on

such heterogeneous data remains an open problem.

To this end, we carefully formulate a deep model to learn

a face representation for social relation prediction, driven

by rich facial attributes such as expression, head pose,

gender, and age. We devise a new deep architecture that

is capable of (1) dealing with missing attribute labels from

different datasets, and (2) bridging the gap of heterogeneous

datasets by weak constraints derived from the association

of face part appearances. This allows the model to learn

more effectively from heterogeneous datasets with different

annotations and statistical distributions. Unlike existing

face analyses that mostly consider single subject, our

network is formulated with a Siamese-like architecture [2],

it is thus capable of jointly considering pairwise faces for

relation reasoning, where each face serves as the mutual
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Table 1. Descriptions of social relation traits based on [17].
Relation Trait Descriptions Example Pair

Dominant one leads, directs, or controls the other / dominates the conversation / gives advices to the other teacher & student

Competitive hard and unsmiling / contest for advancement in power, fame, or wealth people in a debate

Trusting sincerely look at each other / no frowning or showing doubtful expression / not-on-guard about harm from each other partners

Warm speak in a gentle way / look relaxed / readily to show tender feelings mother & baby

Friendly work or act together / express sunny face / act in a polite way / be helpful host & guest

Attached engaged in physical interaction / involved with each other / not being alone or separated lovers

Demonstrative talk freely being unreserved in speech / readily to express the thoughts instead of keep silent / act emotionally friends in a party

Assured express to each other a feeling of bright and positive self-concept, instead of depressed or helpless teammates

context to the other.

The contributions of this study are three-fold: (1) to

our knowledge, this is the first work that investigates face-

driven social relation inference, of which the relation traits

are defined based on psychological study [17]. We carefully

investigate the detectability and quantification of such traits

from a pair of face images. (2) we carefully construct a new

social relation dataset labeled with pairwise relation traits

supported by psychological studies [17, 18], which can

facilitate future research on high-level face interpretation.

(3) we formulate a new deep architecture for learning face

representation driven by multiple tasks, bridging the gap

from heterogeneous sources with potentially missing target

attribute labels. It is also demonstrated that the model can

be extended to utilize additional cues such as the faces’

relative location, besides face images.

2. Related Work

Social signal processing. Understanding social relation is

an important research topic in social signal processing [4,

29, 30, 36, 37], an important multidisciplinary problem

that has attracted a surge of interest from computer vision

community. Social signal processing mainly involves

facial expression recognition [23] and affective behaviour

analysis [28]. On the other hand, there exists a number

of studies that aim to infer social relation from images and

videos [5, 6, 8, 32, 39]. Many of these studies focus on the

coarser level of social connection other than the one defined

by Kiesler in the interpersonal circle [17]. For instance,

Ding and Yilmaz [5] only discover social group without

inferring relation between individuals. Fathi et al. [8]

only detect three social interaction classes, i.e., ‘dialogue,

monologue and discussion’. Wang et al. [38] define

social relation by several social roles, such as ‘father-

child’ and ‘husband-wife’. Other related problems also

include image communicative intents prediction [16] and

social role inference [22], usually applied on news and talks

shows [31], or meetings to infer dominance [15].

Our work differs significantly from the aforementioned

studies. Firstly, most affective analysis approaches are

based on single person therefore cannot be directly

employed for interpersonal relation inference. In addition,

these studies mostly focus on recognizing prototypical

expressions (happy, angry, sad, disgust, surprise, fear).

Social relation is far more complex involving many factors

such as age and gender. Thus, we need to consider more

attributes jointly in our problem. Secondly, in comparison

to the existing social relation studies [5, 8], our work

aims to recognize fine-grained and high-level social relation

traits [17]. Thirdly, many of the social relation studies

did not use face images directly for relation inference, but

visual concepts [6] discovered by detectors or people spatial

proximity in 2D or 3D space [3]. All these information

sources are valuable for learning human interactions but

social relation is fundamentally limited by the input sources.

Human interaction and group behavior analysis.

Existing group behavior studies [14, 19] mainly recognize

action-oriented behaviors such as hugging, handshaking

or walking, but not social relations. Often, group spatial

configuration and actions are exploited for the recognition.

Our study differs in that we aim to recognize abstract

relation traits from faces.

Deep learning. Deep learning has achieved remarkable

success in many tasks of face analysis, e.g. face parsing

[25], face landmark detection [42], face attribute prediction

[24, 26], and face recognition [33, 43]. However, deep

learning has not yet been adopted for face-driven social

relation mining that requires joint reasoning from multiple

subjects. In this work, we propose a deep model to cope

with complex facial attributes from heterogeneous datasets,

and joint learning from face pair.

3. Social Relation Prediction from Face Images

3.1. Definitions of Social Relation Traits

We define the social relation traits based on the

interpersonal circle proposed by Kiesler [17], where human

relations are divided into 16 segments as shown in Fig. 2.

Each segment has its opposite side in the circle, such as

“friendly and hostile”. Therefore, the 16 segments can

be considered as eight binary relations, whose descriptions

and examples are given in Table 1. More detailed

descriptions are provided in the supplementary material.

We also provide positive and negative visual samples for

each relation in Fig. 2, showing that they are visually

perceptible. For instance, “friendly” and “competitive”
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Figure 2. The 1982 Interpersonal Circle (upper left) is proposed by Donald J. Kiesle, and commonly used in psychological studies [17].

The 16 segments in the circle can be grouped into 8 relation traits. The traits are non-exclusive therefore can co-occur in an image. In this

study, we investigate the detectability and quantification of these traits from computer vision point of view. (A)-(H) illustrate positive and

negative examples of the eight relation traits. More detailed definition can be found in the supplementary material.

are easily separable because of the conflicting meanings.

However, some relations are close such as “friendly” and

“trusting”, implying that a pair of faces can have more than

one social relation.

3.2. Social Relation Dataset

To investigate the detectability of social relations from

a pair of face images, we build a new dataset1, containing

8, 306 images chosen from web and movies. Each image

is labelled with faces’ bounding boxes and their pairwise

relations. This is the first face dataset measuring social

relation traits and it is challenging because of large face

variations including poses, occlusions, and illuminations.

We carefully built this dataset. Five performing arts

students were asked to label each relation for each face

image independently. Thus, each label has five annotations.

A label is accepted if more than three annotations are

consistent. The inconsistent samples were presented again

to the five annotators to seek consensus2. To facilitate

the annotation task, we also provide multiple cues to the

annotators. First, to help them understand the social

relations, we list ten related adjectives defined by [17]

for the positive and negative samples on each relation trait,

respectively. Multiple example images are also provided.

Second, for the image frames selected from the movies, the

annotators were asked to get familiar with the stories. The

subtitles were presented during labelling.

1http://mmlab.ie.cuhk.edu.hk/projects/

socialrelation/index.html
2The average Fleiss’ kappa of the eight relation traits’ annotation is

0.62, indicating substantial inter-rater agreement.

3.3. Baseline Method

To predict social relations from face images, we first

introduce a strong baseline method by using a Siamese-

like deep convolutional network (DCN), which learns

an end-to-end mapping from raw pixels of a pair of

face images to relation traits. DCN is effective for

learning shared representations as demonstrated in [34].

As shown in Fig.3(a), given an image of social relation,

we detect a pair of face images, denoted as Ir and Il,

from which we extract high-level features xr and xl using

two DCNs respectively, ∀xr, xl ∈ R
2048×1. These two

DCNs have identical network structures, where Kr and Kl

denote the network parameters, which are tied to increase

generalization ability. A weight matrix, W ∈ R
4096×256,

projects the concatenated feature vectors to a space of

shared representation xt, which is utilised to predict a set

of relation traits, g = {gi}
8
i=1

, ∀gi ∈ {0, 1}. Each

relation is modeled as a single binary classification task,

parameterized by a weight vector, wgi ∈ R
256×1.

To improve the baseline method, we incorporate

some spatial cues to train the deep network as shown

in Fig.3(a), which includes 1) two faces’ positions

{xl, yl, wl, hl, xr, yr, wr, hr}, representing the x-,y-

coordinates of the upper-left corner, width, and height of

the bounding boxes; wl and wr are normalized by the

image width. Similar for hl and hr; 2) the relative faces’

positions: xl
−xr

wl , yl
−yr

hl , and 3) the ratio between the faces’

scales: wl

wr . The above spatial cues are concatenated as a

vector, xs, and combined with the shared representation xt

for learning relation traits.

As the above description, each binary variable gi can be

predicted by linear regression,

gi = wT

gi
[xs; xt] + ε, (1)
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Figure 3. (a) Overview of the network for interpersonal relation learning. (b) The new deep architecture we propose to learn a rich face

representation driven by sematic attributes. This network is used as the initialization for the DCN in (a) for relation learning. The operation

of “CONV”, “MAX”, “LRN” and “FC” denote convolution, max-pooling, local response normalization and fully-connected, respectively.

The numbers following the operations are the parameters for kernel size.

where ε is an additive error random variable, which

is distributed following a standard logistic distribution,

ε ∼ Logistic(0, 1). [·; ·] indicates the column-wise

concatenation of two vectors. Therefore, the probability of

gi given xt and xs can be written as a sigmoid function,

p(gi = 1|xt, xs) = 1/(1 + exp{−wT

gi
[xs; xt]}), indicating

that p(gi|xt, xs) is a Bernoulli distribution, p(gi|xt, xs) =

p(gi = 1|xt, xs)
gi
(
1− p(gi = 1|xt, xs)

)1−gi
.

In addition, the probabilities of wgi , W, Kl, and Kr

can be modeled by the standard normal distributions. For

example, suppose K contains K filters, then p(K) =∏K

j=1
p(kj) =

∏K

j=1
N (0, I), where 0 and I are an all-

zero vector and an identity matrix respectively, implying

that the K filters are independent. Similarly, we have

p(wgi) = N (0, I). Furthermore, W can be initialized by

a standard matrix normal distribution [12], i.e. p(W) ∝
exp{− 1

2
tr(WWT)}, where tr(·) indicates the trace of a

matrix.

Combining the above probabilistic definitions, the deep

network is trained by maximising a posterior probability,

argmax
Ω

p({wgi}
8

i=1,W,Kl,Kr|g, xt, xs, Ir, Il) ∝

( 8∏

i=1

p(gi|xt, xs)p(wgi)
)( K∏

j=1

p(kl
j)p(k

r
j)
)
p(W),

s.t. Kr = Kl

(2)

where Ω = {{wgi}
8
i=1

,W,Kl,Kr} and the constraint

means the filters are tied. Note that xt and xs represent the

hidden features and the spatial cues extracted from the left

and right face images, respectively. Thus, the variable gi is

independent with Il and Ir, given xt and xs.

By taking the negative logarithm of Eqn.(2), it is

equivalent to minimising the following loss function

argmin
Ω

8∑

i=1

{
wT

gi
wgi − (1− gi) ln

(
1− p(gi = 1|xt, xs)

)
−

gi ln p(gi = 1|xt, xs)
}
+

K∑

j=1

(kr
j
T

kr
j + kl

j

T

kl
j) + tr(WWT),

s.t. kr
j = kl

j , j = 1...K

(3)

where the second and the third terms correspond to the

traditional cross-entropy loss, while the remaining terms

indicate the weight decays [27] of the parameters. Eqn.(3) is

defined over single training sample and is a highly nonlinear

function because of the hidden features xt. It can be

efficiently solved by stochastic gradient descent [21].

3.4. A Cross-Dataset Approach

As investigated by the psychological studies [9, 11, 13],

the social relations of face images are strongly related to

some hidden high-level factors, such as emotion. Learning

these semantic concepts implicitly from raw image pixels

imposes great challenge. To explicitly learn these factors,

an ideal solution is to introduce two additional loss

functions on top of xl and xr respectively, representing that

not only the concatenation of xl and xr learns the relation

traits, but each of them also learns the high-level factors

of its corresponding face image. However, this solution

is impractical, because labelling both social relations and

emotions of face images is too expensive.

To overcome this limitation, we extend the baseline

model by pre-training the DCN with face attributes, which

are borrowed from existing face databases. These attributes

capture the high-level factors, guiding the predictions of

relation traits. The advantages are three folds: 1) face
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attributes, such as age, gender, and expressions, are highly

correlated with the high-level factors of social relations, as

supported by the psychological studies [9, 11, 13, 18]; 2)

leveraging the existing face databases not only improves

generalized capacity but also make data preparation much

easier; and 3) the face representation induced by semantic

attributes can bridge the gap between the high-level relation

traits and low-level image pixels.

In particular, we make use of data from three public

datasets, including AFLW [20], CelebFaces [33], and

Kaggle [10]. Different datasets have been labelled with

different sets of face attributes. A summary is given

in Table 2, where the attributes are partitioned into four

groups.

It is clear that the training datasets are from multiple

heterogenous sources and they have been labelled with

different sets of attributes. For instance, AFLW only

contains gender and poses, while Kaggle only has

expressions. In addition, these datasets exhibit different

statistical distributions, causing issues during pre-training.

It can be shown that if we perform joint training directly,

each attribute is trained by the labelled data alone, instead

of benefitting from the existence of the unlabelled data.

Consider a simple example of three datasets, denoted

as A, B, and C, where A and B are labelled with

attribute y1 and y2 respectively, while dataset C is

labelled with y1, y2 and y3. Moreover, xA indicates

a training sample from dataset A. Given three training

samples xA, xB , and xC , attribute classification is to

maximise the joint probability p(y1A, y
2

A, y
3

A, y
1

B , y
2

B , y
3

B ,
y1C , y

2

C , y
3

C |xA, xB , xC). Since the samples are independent

and A and B only contain attributes y1 and y2 respectively,

the joint probability can be factorized as p(y1A, y
2

A, y
3

A|xA)
· p(y1B , y

2

B , y
3

B |xB) · p(y1C , y
2

C , y
3

C |xC) = p(y1A|xA) ·
p(y2B |xB) · p(y1C , y

2

C , y
3

C |xC). For example, we have∑
y2

A
,y3

A

p(y1A, y
2

A, y
3

A|xA) = p(y1A|xA). As the attributes

are also independent, the joint probability can be further

written as p(y1A, y
1

C |xA, xC)p(y
2

B , y
2

C |xB , xC)p(y
3

C |xC),
indicating that each attribute classifier is trained by the

labelled data alone. For instance, the classifier of the first

attribute is trained by data from A and C.

Bridging the gaps between multiple datasets. Since

faces from different datasets share similar structure in local

part, such as mouth and eyes, we propose a bridging layer

based on the local correspondence to cope with the different

dataset distributions. In particular, we establish a face

descriptor h based on the mixture of aligned facial parts.

As shown in Fig. 3(b), we build a three-level hierarchy

to partition the facial parts’ shape, where each child node

groups the data of its parents into clusters, such as u1
2,1

and u1
2,10. In the top layer, the faces are divided into 10

clusters by K-means using the landmark locations from the

SDM face alignment algorithm [41]. Each cluster captures

the topological changes due to viewpoints. Fig. 3(b) shows

the mean face of each cluster. In the second layer, for

each node, we perform K-means using the locations of

landmarks in the upper and lower face region, and obtain

10 clusters respectively. These clusters captures the local

shape of the facial parts. Then the mean HOG feature of

the faces in each cluster is regarded as the corresponding

template. Given a new sample, the descriptor h is obtained

by concatenating its L2-distance to each template.

In this case, the descriptor h serves as a correspondence

label for datasets. We use it as additional input in the fully

connected layer for facial feature x (see Fig.3(b)). Thus

the learned face representations for samples from different

datasets are driven to be close if the correspondence labels

are similar. It is worth noting that this bridging layer is

different from the work of [1, 40], where the algorithms

build some clusters from training data as an auxiliary task.

Differently, the proposed method uses the aligned facial part

association, which is well suited for our problem, instead

of simply construct the cluster from the whole image.

Moreover, since the construction of h is unsupervised,

it contains noise and may harm the training if used as

targets. Instead, we use the descriptor as additional input,

which shows better performance than used as output (see

Table. 5). The rest of the DCN structure is described

in Fig.3(b), which includes four convolutional layers,

three max-pooling layers, two local response normalization

layers, and two fully-connected layers. The rectified linear

unit [21] is adopted as the activation function.

Then the DCN objective is to predict a set of attributes

y = {yl}
20

l=1
, ∀yl ∈ {0, 1}. Each relation is modeled

as a single binary classification task, parameterized by a

weight vector, wyl
∈ R

2048×1. The probability of yl can

be computed by a sigmoid function. Similar to Eqn.(3), it

can be formulated as minimising the cross-entropy loss.

Learning procedure. Similar to the relation prediction

network, the training process can be done by back-

propagation (BP) using stochastic gradient descent

(SGD) [21]. The difference is that we have missing

attribute labels in the training set. Specifically, we use

the cross-entropy loss for attribute classification, with an

estimated attribute ỹl, the back-propagation error el is

et =

{
0 if yl is missing,

yl − ỹl otherwise.
(4)

4. Experiments

Facial attribute datasets. To enable accurate social

relation prediction, we employ three datasets to cover

a wide-range of facial attributes: Annotated Facial

Landmarks in the Wild (AFLW) [20] (24,386 faces),

CelebFaces [33] (87,628 faces) and a facial expression

dataset on Kaggle contest [10] (35,887 faces). Table 2
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Table 2. Summary for the labelled attributes in the datasets: AFLW [20], CelebFaces [33] and Kaggle Expression [10].

Attributes

Gender Pose Expression Age
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AFLW
√ √ √ √ √ √

CelebFaces
√ √ √ √ √ √ √ √ √ √ √ √ √

Kaggle
√ √ √ √ √ √ √

Table 3. Statistics of the social relation dataset.

Relation trait
training testing

#positive #negative #positive #negative

dominant 418 7041 112 735

competitive 538 6921 123 724

trusting 6288 1171 609 238

warm 6224 1235 619 228

friendly 6790 669 734 113

attached 6407 1052 695 152

demonstrative 6555 904 699 148

assured 6595 864 685 162

summarises the data. All the attributes are binary and

labelled manually. To evaluate the performance of the cross

dataset approach, we randomly select 2,000 testing faces

from AFLW and CelebFaces, respectively. For the Kaggle

dataset, we follow the protocol of the expression contest by

using the 7,178 testing faces.

Social relation dataset. We build the social relation dataset

as described in Sec. 3.2. Table 3 presents the statistics of

this dataset. Specially, to reduce the potential effect from

annotators’ subjectivity, we select a subset (522 cases) from

the testing images and build an additional testing set. The

images in this subset are all from movies. As the annotators

know the movies’ story, they can give objective annotation

assisted by the subtitle.

4.1. Social Relation Trait Prediction

Baseline algorithm. In addition to the strong baseline

method in Sec. 3.3, we train an additional baseline classifier

by extracting the HOG features from the given face images.

The features from the two faces are then concatenated and

we use a linear support vector machine (SVM) to train a

binary classifier for each relation trait. For simplicity, we

call this method “HOG+SVM”, and the baseline method in

Sec. 3.3 “Baseline DCN”.

Performance evaluation. We divide the relation dataset

into training and testing partitions of 7,459 and 847 images,

respectively. The face pairs in these two partitions are

mutually exclusive. To account for the imbalance positive

and negative samples, a balanced accuracy is adopted:

accuracy = 0.5(np/Np + nn/Nn), (5)

where Np and Nn are the numbers of positive and negative

samples, whilst np and nn are the numbers of true positive

Table 4. Balanced accuracies (%) on the movie testing subset.

Method HOG+SVM
Baseline DCN

with spatial cue

Full model

with spatial cue

Accuracy 58.92% 63.76% 72.6%

and true negative. We first train the network as Sec. 3.3

(i.e., Baseline DCN). After that, to examine the influences

of different attribute groups, we pre-train four DCN variants

using only one group of attribute (expression, age, gender,

and pose). In addition, we compare the effectiveness

between the full model with and without spatial cue.

Fig. 4 shows the accuracies of the different variants.

All variants of our deep model outperform the baseline

HOG+SVM. We observe that the cross dataset pre-training

is beneficial, since pre-training with any of the attribute

groups improves the overall performance. In particular, pre-

training with expression attributes outperforms other groups

of attributes (improving from 64.0% to 70.6%). This is

not surprising since social relation is largely manifested

from expression. The pose attributes come next in terms of

influence to relation prediction. The result is also expected

since when people are in a close or friendly relation, they

tend to look at the same direction or face each other. Finally,

the spatial cue is shown to be useful for relation prediction.

However, we also observe that not every trait is improved

by the spatial cue and some are degraded. This is because

currently we simply use the face scale and location directly,

of which the distribution is inconsistent in images from

different sources. As for the relation traits, “dominant”

is the most difficult trait to predict as it needs to be

determined by more complicated factors, such as the social

role and environmental context. The trait of “assured” is

also difficult since it is visually subtle compared to other

traits such as “competitive” and “friendly”. In addition, we

conduct analysis on the movie testing subset. Table 4 shows

the average accuracy on the eight relation traits of the two

baseline algorithms and the proposed method. The results

correspond to that of the whole testing set. This supports

the reliability of the proposed dataset.

Some qualitative results are presented in Fig. 5. Positive

relation traits, such as “trusting”, “warm”, “friendly” are

inferred between the US President Barack Obama and his

family members. Interestingly, “dominant” trait is predicted

between him and his daughter (Fig. 5(a)). The upper image
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Figure 5. The relation traits predicted by our full model with spatial cue. The polar graph beside each image indicates the tendency for

each trait to be positive.

in Fig. 5(b) was taken in his election celebration party

with the US Vice President Joe Biden. We can see the

relation is quite different from that of the lower image,

in which Obama was in the presidential election debate.

Fig. 5(c) includes the images for Angela Merkel, Chancellor

of Germany and David Cameron, Prime Minister of UK.

The upper image is usually used in the news articles on US

spying scandal, showing low probability on the “trusting”

trait. More positive and negative results on different relation

traits are shown in Fig. 6 (a). In addition, we show some

false positives in Fig. 6 (b), which are mainly caused by

faces with large occlusions.

4.2. Further Analyses

Facial expression recognition. Given the essential role of

expression attributes, we further evaluate our cross dataset

approach on the challenging Kaggle facial expression

dataset. Following the protocol in [10], we classify each

face into one of the seven expressions, (i.e. angry, disgust,

fear, happy, sad, surprise, and neutral). The Kaggle winning

method [35] reports an accuracy of 71.2% by applying a

CNN with SVM loss function. Our method achieves a better

performance of 75.10%, through fusing data from multiple

sources with the proposed bridging layer.

The effectiveness of bridging layer. We examine the

effectiveness of the bridging layer from two perspectives.

First, we show some clusters discovered by using the face
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Figure 6. (a) Positive and negative prediction results on different

relation traits. (b) False positives on “assured”, “demonstrative”

and “friendly” relation traits (from left to right).

descriptor (Sec. 3.4). It is observed that the proposed

approach successfully divides samples from different

datasets into coherent clusters of similar face patterns.
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Table 5. Balanced accuracies (%) over different attributes with and without bridging layer (BL).
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HOG+SVM 72.6 81.2 86.8 71.7 88.3 74.5 90.1 61.2 63.7 59.2 77.8 60.2 74.8 66.3 83.2 78.9 67.1 60.8 67.8 70.3 67.2

Without BL 78.3 92.4 90.2 69.8 87.8 67.3 88.7 64.5 74.5 55.2 87.9 57.3 80.1 66.7 90.9 92.0 79.1 77.4 88.1 76.5 79.3

BL as output 81.3 92.9 91.7 70.1 90.0 70.6 90.2 69.1 77.0 64.0 91.0 66.1 86.6 73.9 91.5 92.4 83.5 74.5 91.2 79.5 80.6

BL as input 82.4 93.8 92.2 73.4 95.4 72.5 90.4 69.8 79.4 63.3 90.9 65.4 85.3 74.9 92.8 91.7 83.2 82.1 90.3 81.7 80.0
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Figure 7. Prediction for relation traits of “friendly” and “competitive”for the movie Iron Man. The probability indicates the tendency for

the trait to be positive. It shows that the algorithm can capture the friendly talking scene and the moment of confliction.

Kaggle expression AFLW CelebFaces

Figure 8. Test samples from different datasets are automatically

grouped into coherent clusters by the face descriptor of bridging

layer (Sec. 3.4). Each row corresponds to a cluster.

Second, we examine the balanced accuracy (Eqn. (5)) of

attribute classification with and without the bridging layer

(Table 5). It is observed that bridging layer benefits the

recognition of most attributes, especially the expression

attributes. The results suggest the bringing layer an

effective way to combine heterogeneous datasets for visual

learning by deep network. Moreover, treating bridging layer

as input provides higher accuracy than as output.

4.3. Application: Character Relation Profiling

We show an example of application on using our method

to profile the relations among the characters in a movie

automatically. Here we choose the movie Iron Man. We

focus on different interaction patterns, such as conversation

and conflict, of the main roles “Tony Stark” and “Pepper

Potts”. Firstly, we apply a face detector to the movie

and select the frames capturing the two roles. Then, we

apply our algorithm on each frame to infer their relation

traits. The predicted probabilities are averaged across 5

neighbouring frames to obtain a smooth profile. Fig. 7

shows a video segment with the traits of “friendly” and

“competitive”. Our method accurately captures the friendly

talking scene and the moment when Tony and Pepper were

in a conflict (where the “competitive” trait is assigned with

a high probability while the “friendly” trait is low).

5. Conclusion

In this paper we investigate a new problem of predicting

social relation traits from face images. This problem is

challenging in that accurate prediction relies on recognition

of complex facial attributes. We have shown that deep

model with bridging layer is essential to exploit multiple

datasets with potential missing attribute labels. Future

work will integrate face cues with other information such

as environment context and body gesture for relation

prediction. We will also investigate other interesting

applications such as relation mining from image collection

in social network. Moreover, we can also explore

modelling relations of more than two people, which can

be implemented by voting or graphical model, where each

node is a face and edge is relations between faces.
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