
Zero-Shot Learning via Semantic Similarity Embedding

Ziming Zhang and Venkatesh Saligrama

Department of Electrical & Computer Engineering, Boston University

{zzhang14, srv}@bu.edu

Abstract

In this paper we consider a version of the zero-shot

learning problem where seen class source and target do-

main data are provided. The goal during test-time is to ac-

curately predict the class label of an unseen target domain

instance based on revealed source domain side information

(e.g. attributes) for unseen classes. Our method is based on

viewing each source or target data as a mixture of seen class

proportions and we postulate that the mixture patterns have

to be similar if the two instances belong to the same unseen

class. This perspective leads us to learning source/target

embedding functions that map an arbitrary source/target

domain data into a same semantic space where similarity

can be readily measured. We develop a max-margin frame-

work to learn these similarity functions and jointly opti-

mize parameters by means of cross validation. Our test re-

sults are compelling, leading to significant improvement in

terms of accuracy on most benchmark datasets for zero-shot

recognition.

1. Introduction

While there has been significant progress in large-scale

classification in recent years [31], lack of sufficient training

data for every class and the increasing difficulty in finding

annotations for a large fraction of data might impact further

improvements.

Zero-shot learning is being increasingly recognized as

a way to deal with these difficulties. One version of zero

shot learning is based on so-called source and target do-

mains. Source domain is described by a single vector cor-

responding to each class based on side information such

as attributes [8, 16, 21, 25, 29], language words/phrases

[4, 9, 34], or even learned classifiers [42], which we as-

sume can be collected easily. The target domain is described

by a joint distribution of images/videos and labels [16, 41].

During training time, we are given source domain attributes

and target domain data corresponding to only a subset of

classes, which we call seen classes. During test time, source

domain attributes for unseen (i.e. no training data provided)

DOG

CAT

TRUCK
CAR

TREE

HORSE

BOAT

C
A
T

T
R
U
C
K

T
R
E
E

H
O
R
S
E

B
O
A
T

C
A
T

T
R
U
C
K

T
R
E
E

H
O
R
S
E

B
O
A
T

C
A
T

T
R
U
C
K

T
R
E
E

H
O
R
S
E

B
O
A
T

DOG

CAR

Histogram of Unseen
Source Mixtures

Mixture Es=mate for
Unseen Test Instance

Figure 1. Proposed method with source/target domain data displayed on

the leftmost/rightmost figures respectively. Light blue corresponds to un-

seen classes and other colors depict seen class data. Light-blue data is

unavailable during training. During test-time unseen source domain data

is revealed along with an arbitrary unseen instance from target domain

(light-blue) is presented and we are to identify its unseen class label. Each

unseen class source domain data is expressed as a histograms of seen class

proportions. Seen class proportions are estimated for the target instance

and compared with each of the source domain histograms.

classes are revealed. The goal during test time is to predict

for each target domain instance which of the seen/unseen

classes it is associated with.

Key Idea: Our proposed method is depicted in Fig. 1. We

view target data instances as arising from seen instances and

attempt to express source/target data as a mixture of seen

class proportions. Our algorithm is based on the postulate

that if the mixture proportion from target domain is similar

to that from source domain, they must arise from the same

class. This leads us to learning source and target domain

embedding functions using seen class data that map arbi-

trary source and target domain data into mixture proportions

of seen classes.

We propose parameterized-optimization problems for

learning semantic similarity embedding (SSE) functions

from training data and jointly optimize predefined param-

eters using cross validation on held-out seen class data. Our

method necessitates fundamentally new design choices re-

quiring us to learn class-dependent feature transforms be-

cause components of our embedding must account for con-

tribution of each seen class. Our source domain embed-

ding is based on subspace clustering literature [37] that

are known to be resilient to noise. Our target domain

embedding is based on a margin-based framework using

the intersection function or the rectified linear unit (ReLU)

4166

[22], which attempts to align seen class source domain data

with their corresponding seen class target domain data in-

stances. Finally, we employ a cross validation technique

based on holding out seen class data and matching held-out

seen classes to optimize parameters used in the optimiza-

tion problems for source and target domain. In this way we

jointly optimize parameters to best align mixture propor-

tions for held-out seen classes and provide a basis for gen-

eralizing to unseen classes. Results on several benchmark

datasets for zero-shot learning demonstrate that our method

significantly improves the current state-of-the-art results.

Related Work: Most existing zero-shot learning methods

rely on predicting side information for further classification.

[24] proposed a semantic (i.e. attribute) output code classi-

fier which utilizes a knowledge base of semantic properties.

[16, 39] proposed several probabilistic attribute prediction

methods. [42] proposed designing discriminative category-

level attributes. [18] proposed an optimization formulation

to learn source domain attribute classifiers and attribute vec-

tors jointly. [20] proposed learning the classifiers for un-

seen classes by linearly combining the classifiers for seen

classes. [1] proposed a label embedding method to embed

each class into an attribute vector space. [2, 9, 23, 34] di-

rectly learned the mapping functions between the feature

vectors in source and target domains with deep learning.

Such methods may suffer from noisy (e.g. missing or incor-

rectly annotated) side information or data bias, leading to

unreliable prediction.

Some recent work has been proposed to overcome some

issues above. [28] proposed a propagated semantic transfer

method by exploiting unlabeled instances. [10] discussed

the projection domain shift problem and proposed a trans-

ductive multi-view embedding method. [14] investigated

the attribute unreliability issue and proposed a random for-

est approach. [30] proposed a simple method by introducing

a better regularizer.

An important conceptual difference that distinguishes

our method from other existing works such as [1, 2], is that

these methods can be interpreted as learning relationships

between source attributes and target feature components (in

the encoded space), while our method is based on leverag-

ing similar class relationships (semantic affinities) in source

and target domains, requiring class dependent feature trans-

form. This leads to complex scoring functions, which can-

not be simplified to linear or bilinear forms as in [1, 2].

Semantic similarity embedding (SSE) is widely used to

model the relationships among classes, which is quite in-

sensitive to instance level noise. [40] proposed learning

mapping functions to embed input vectors and classes into a

low dimensional common space based on class taxonomies.

[3] proposed a label embedding tree method for large multi-

class tasks, which also embeds class labels in a low dimen-

sional space. [12] proposed an analogy-preserving semantic

Notation Definition

S (U) Set of seen (unseen) classes

|S| Number of seen classes

s (or y) & u Indexes for seen and unseen classes

∆|S| Simplex in R
|S| dimensional space

{cy} Source domain attribute vector cy ∈ R
ds for class y

with ℓ2 normalization, i.e. ‖cy‖ = 1.

{(xi, yi)} Training data: xi ∈ R
dt - target feature, yi - class

N(Ny) Number of training samples (for class y ∈ S)

ψ, π Source/Target domain feature embedding functions

φy Target domain class dependent feature transformation

(·)m,n The nth entry in vector (·)m
zy = ψ(cy) Learned source domain embedded histogram zy ∈

∆|S| for class y.

V = {vy} Learned target domain reference vector vy ∈ R
dt

for class y, one vector per seen class

w Learned target domain weight vector

f(x, y) Learned structured scoring function relating the tar-

get domain sample x and class label y.

Table 1. Some notation used in our method.

embedding method for multi-class classification. Later [13]

proposed a unified semantic embedding method to incorpo-

rate different semantic information into learning. Recently

[23] proposed a semantic embedding method for zero-shot

learning to embed an unseen class as a convex combination

of seen classes with heuristic weights. [11] proposed a se-

mantic ranking representation based on semantic similarity

to aggregate semantic information from multiple heteroge-

neous sources. Our embedding is to represent each class as

a mixture of seen classes in both domains.

2. Zero-Shot Learning and Prediction

Our notation is summarized in Table 1 for future reference.

2.1. Overview

Our method is based on expressing source/target data as a

mixture of seen class proportions (see Fig. 1). Using seen

class data we learn source and target domain embedding

functions, ψ, π respectively. Our aim is to construct func-

tions that take an arbitrary source vectors c and target vec-

tors x as inputs and embed them into ∆|S| (histograms).

Observe that components, πy(x), ψy(c) of π(x), ψ(c),
corresponding to seen class y ∈ S , denote the proportion

of class y in the instance x, c. During test-time source do-

main vectors cu ∈ C for all the unseen classes are revealed.

We are then presented with an arbitrary target instance x.

We predict an unseen label for x by maximizing the seman-

tic similarity between the histograms. Letting zu = ψ(cu),
then our zero-shot recognition rule is defined as follows:

u∗ = argmax
u∈U

f(x, u) = argmax
u∈U

〈π(x), zu〉, (1)

where 〈·, ·〉 denotes the inner product of two vectors.

We propose parameterized-optimization problems to

learn embedding functions from seen class data. We then

4167

optimize these parameters globally using held-out seen

class data. We summarize our learning scheme below.

(A) Source Domain Embedding Function (ψ): Our embed-

ding function is realized by means of a parameterized opti-

mization problem, which is related to sparse coding.

(B) Target Domain Embedding Function (π): We model

πy(x) as 〈w, φy(x)〉. This consists of a constant weight

vector w and a class dependent feature transformation

φy(x). We propose a margin-based optimization problem to

jointly learn both the weight vector and the feature transfor-

mation. Note that our parameterization may yield negative

values and may not be normalized, which can be incorpo-

rated as additional constraints but we ignore this issue in our

optimization objectives.

(C) Cross Validation: Our embedding functions are param-

eter dependent. We choose these parameters by employing

a cross validation technique based on holding out seen class

data. First, we learn embedding functions (see (A) and (B))

on the remaining (not held-out) seen class data with differ-

ent values of the predefined parameters. We then jointly op-

timize parameters of source/target embedding functions to

minimize the prediction error on held-out seen classes. In

the end we re-train the embedding functions over the entire

seen class data.

Salient Aspects of Proposed Method:

(a) Decomposition: Our method seeks to decompose source

and target domain instances into mixture proportions of

seen classes. In contrast much of the existing work can

be interpreted as learning cross-domain similarity between

source domain attributes and target feature components.

(b) Class Dependent Feature Transformation πy(x): The

decomposition perspective necessitates fundamentally new

design choices. For instance, πy(x), the component corre-

sponding to class y must be dependent on y, which implies

that we must choose a class dependent feature transform

φy(x) because w is a constant vector and agnostic to class.

(c) Joint Optimization and Generalization to Unseen

Classes: Our method jointly optimizes parameters of the

embedding functions to best align source and target domain

histograms for held-out seen classes, thus providing a basis

for generalizing to unseen classes. Even for fixed param-

eters, embedding functions ψ, π are nonlinear maps and

since the parameters are jointly optimized our learned scor-

ing function f(x, y) couples seen source and target domain

together in a rather complex way. So we cannot reduce

f(·, ·) to a linear or bilinear setting as in [2].

2.2. Intuitive Justification of Proposed Method

Recall that our method is based on viewing unseen source

and target instances as a histogram of seen classes propor-

tions. Fig. 1 suggests that a target instance can be viewed

as arising from a mixture of seen classes with mixture com-

ponents dependent on the location of the instance. More

precisely, letting P and Py be the unseen and seen class-

conditional target feature distributions respectively, we can

a priori approximate P as a mixture of the Py’s, i.e. P =
∑

y∈S π̄yPy+Perror (see [5] for various approaches in this

context), where π̄y denotes the mixture weight for class y.

Analogously, we can also decompose source domain data

as a mixture of source domain seen classes. This leads us

to associate mixture proportion vector zu with unseen class

u, and represent attribute vector cu as cu ≈
∑

y∈S zu,ycy ,

with zu = (zu,y)y∈S ∈ ∆|S|.

Key Postulate: The target domain instance, x, must have

on average a similar mixture pattern as the source domain

pattern if they both correspond to the same unseen label,

u ∈ U , namely, on average π(x) is equal to zu.

This postulate is essentially Eq. 1. This postulate also

motivates our margin-based approach for learning w. Note

that since we only have a single source domain vector for

each class, a natural constraint is to require that the empiri-

cal mean of the mixture corresponding to each example per

class in target domain aligns well with the source domain

mixture. This is empirically consistent with our postulate.

Letting y, y′ be seen class labels with y 6= y′ and π̄y de-

note the average mixture for class y in target domain, our

requirement is to guarantee that

〈π̄y, zy〉 ≥ 〈π̄y, zy′〉 (2)

⇔
∑

s∈S

〈

w,
1

Ns

N∑

i=1

I{yi=s}φs(xi)

︸ ︷︷ ︸

Emp. Mean Embedding

〉
(

zy,s − zy′,s

)

≥ 0,

where I{·} denotes a binary indicator function returning 1

if the condition holds, otherwise 0. Note that the empirical

mean embedding corresponds to a kernel empirical mean

embedding [33] if φs is a valid (characteristic) RKHS ker-

nel, but we do not pursue this point further in this paper.

Nevertheless this alignment constraint is generally insuffi-

cient, because it does not capture the shape of the underly-

ing sample distribution. We augment misclassification con-

straints for each seen sample in SVMs to account for shape.

2.3. Source Domain Embedding

Recall from Fig. 1 and (B) in Sec. 2.1 that our embed-

ding aims to map source domain attribute vectors c to his-

tograms of seen class proportions, i.e. ψ : Rds → ∆|S|. We

propose a parameterized optimization problem inspired by

sparse coding as follows, given a source domain vector c:

ψ(c) = argmin
α∈∆|S|







γ

2
‖α‖2 +

1

2
‖c−

∑

y∈S

cyαy‖
2






, (3)

where γ ≥ 0 is a predefined regularization parameter, ‖ · ‖
denotes the ℓ2 norm of a vector, and α = (αy)y∈S de-

scribes contributions of different seen classes. Note that

4168

(a) Seen classes in training (b) Unseen classes in testing

Figure 2. Cosine similarity matrices among (a) seen and (b) unseen

classes on aPascal & aYahoo [8] dataset. Brighter color depicts larger val-

ues. The type of data used to compute the matrix is shown above the corre-

sponding matrix. Observe that in training/testing our source/target domain

embedding preserves the inter-class relationships originally defined by the

source domain attribute vectors. This also indicates that our target domain

embeddings manage to align well the target domain distributions with the

source domain attribute vectors.

even though c may not be on the simplex, the embeddings

ψ(c) are always. Note that the embedding ψ is in general a

nonlinear function. Indeed on account of simplex constraint

small values in α vector are zeroed out (i.e. “water-filling”).

To solve Eq. 3, we use quadratic programming. For

large-scale cases, we adopt efficient proximal gradient de-

scent methods. Note that there are many alternate ways of

embedding such as similarity rescaling, subspace clustering

[27], sparse learning [7], and low rank representation [17],

as long as the embedding is on the simplex. We tried these

different methods with the simplex constraint to learn the

embeddings, and our current solution in Eq. 3 works best.

We believe that it is probably because the goal in these other

methods is subspace clustering, while our goal is to find a

noise resilient embedding which has good generalization to

unseen class classification.

We optimize the parameter, γ, globally by cross vali-

dation. Once the γ parameter is identified, all of the seen

classes are used in our embedding function. Note that when

γ = 0 or small, ψ(cy) will be a coordinate vector, which

essentially amounts to coding for multi-class classification

but is not useful for unseen class generalization. Concep-

tually, because we learn tuning parameters to predict well

on held-out seen classes, γ is in general not close to zero.

We demonstrate class affinity matrices before and after em-

bedding for both seen and unseen classes in Fig. 2. Here

γ = 10 is obtained by cross validation. We see that in both

training and testing source domain embeddings preserve the

affinities among classes in the attribute space.

During test-time when unseen class attribute vectors cu
are revealed, we obtain zu as the embeddings using Eq. 3

with the learned γ.

2.4. Target Domain Embedding

In this paper we define our target domain class depen-

dent mapping function φy based on (1) intersection function

(INT) [19], or (2) rectified linear unit (ReLU) [22]. That is,

INT: φy(x) = min(x,vy), (4)

ReLU: φy(x) = max(0,x− vy), (5)

where min and max are the entry-wise operators. Note that

intersection function captures the data patterns in x below

the thresholds in each vy , while ReLU captures the data pat-

terns above the thresholds. In this sense, the features gen-

erated from these two functions are complementary. This is

the reason that we choose the two functions to demonstrate

the robustness of our method.

Based on Eq. 1 and 2 in Section 2.1, we define the fol-

lowing structured scoring function f(x, y) as follows:

f(x, y) =
∑

s∈S

〈w, φs(x)〉 zy,s. (6)

In test-time for target instance x, we can compute f(x, u)
for an arbitrary unseen label u because the source attribute

vector is revealed for u. Note that f is highly non-convex,

and it cannot reduce to bilinear functions used in existing

works such as [1, 2].

2.4.1 Max-Margin Formulation

Based on Eq. 6, we propose the following parameter-

ized learning formulation for zero-shot learning as follows,

which learns the embedding function π, and thus f :

min
V,w,ξ,ǫ

1

2
‖w‖2 +

λ1

2

∑

v∈V

‖v‖2 + λ2
∑

y,s

ǫys + λ3
∑

i,y

ξiy

(7)

s.t. ∀i ∈ {1, · · · , N}, ∀y ∈ S, ∀s ∈ S,

N∑

i=1

I{yi=y}

Ny

[

f(xi, y)− f(xi, s)
]

≥ ∆(y, s)− ǫys, (8)

f(xi, yi)− f(xi, y) ≥ ∆(yi, y)− ξiy, (9)

ǫys ≥ 0, ξiy ≥ 0, ∀v ∈ V,v ≥ 0,

where ∆(·, ·) denotes a structural loss between the ground-

truth class and the predicted class, λ1 ≥ 0, λ2 ≥ 0, and

λ3 ≥ 0 are the predefined regularization parameters, ξ =
{ξiy} and ǫ = {ǫys} are slack variables, and 0 is a vector

of 0’s. In this paper, we define ∆(yi, y) = 1 − c
T
yi
cy and

∆(y, s) = 1− c
T
y cs, respectively. Note that in learning we

only access and utilize the data from seen classes.

In fact, Eq. 8 measures the alignment loss for each seen

class distribution, and Eq. 9 measures the classification loss

for each target domain training instance, respectively, which

4169

(a) Distr. alignment (b) Inst. classification (c) Our method

Figure 3. Illustration of three different constraints for learning the target

domain semantic embedding function. Different shapes denote differnt

classes, fill-in shapes denote the source domain embeddings, and green

crosses denote the empirical means of target domain data embeddings. Our

method takes into account the zero-shot learning based on both distribution

alignment and instance classification.

correspond to the discussion in Sec. 2.2. On one hand, if

we only care about the alignment condition, it is likely that

there may be many misclassified training data samples (i.e.

loose shape) as illustrated in Fig. 3(a). On the other hand,

conventional classification methods only consider separat-

ing data instances with tight shape, but are unable to align

distributions due to lack of such constraint in training (see

Fig. 3(b)). By introducing these two constraints into Eq. 7,

we are able to learn the target domain embedding function

as well as the scoring function to produce the clusters which

are well aligned and separated, as illustrated in Fig. 3(c).

Similarly, we learn the predefined parameters λ1, λ2, λ3
through a cross validation step that optimizes the prediction

for held-out seen classes. Then once the parameters are de-

termined we re-learn the classifier on all of the seen data.

Fig. 2 depicts class affinity matrices before and after tar-

get domain semantic embedding on real data. Our method

manages to align source/target domain data distributions.

2.4.2 Alternating Optimization Scheme

To solve Eq. 7, we propose the following alternating opti-

mization algorithm, as seen in Alg. 1.

Algorithm 1 Learning Embedding Functions

Input : {xi, yi}, {cy}y∈S , {zy}y∈S , λ1, λ2, λ3, learning rate η ≥ 0

Initialize ν(0) with feature means of seen classes in target domain;

for t = 0 to τ do

(w, ǫ, ξ)← linearSVM solver({xi, yi},ν
(t), λ2, λ3);

ν(t+1) ← max{0,ν(t) − η∇h(ν(t))} ; // using Eq.11

Check monotonic decreasing condition on the objective in Eq. 7;

end

Output: w,ν

(i) Learning w by fixing V: In this step, we can col-

lect all the constraints in Eq. 8 and Eq. 9 by plugging

in {(xi, yi)},V, {cy}y∈S , and then solve a linear SVM to

learn w, ǫ, ξ, respectively.

(ii) Learning V by fixing w using Concave-Convex pro-

cedure (CCCP) [43]: Note that the constraints in Eq. 8 and

Eq. 9 consist of difference-of-convex (DoC) functions. To

see this, we can rewrite f(xi, y)−f(xi, yi) as a summation

of convex and concave functions as follows:

f(xi, y)− f(xi, yi) =
∑

m,s

wm(zy,n − zyi,n)φs,m(xi),

(10)

where wm and φs,m(·) denote the mth entries in vectors w

and φs(·), respectively. Let ν ∈ R
dt|S| be a vector con-

catenation of all v’s, g1(ν)
∆
= g1(xi, y,ν) and g2(ν)

∆
=

g2(xi, y,ν) denote the summations of all the convex and

all the concave terms in Eq. 10, respectively. Then we have

f(xi, y) − f(xi, yi) = g1(ν) − (−g2(ν)), i.e. DoC func-

tions. Using CCCP we can relax the constraint in Eq. 9 as

ξiy ≥ ∆(yi, y)+g1(ν)+g2(ν
(t))+∇g2(ν

(t))T (ν−ν(t)),
where ν(t) denotes the solution for ν in iteration t, and ∇
denotes the subgradient operator. Similarly we can perform

CCCP to relax the constraint in Eq. 8. Letting h(ν) denote

the minimization problem in Eq. 7, 8, and 9, using CCCP

we can further write down the subgradient ∇h(ν(t)) in iter-

ation t+ 1 as follows:

∇h(ν(t)) = λ1ν
(t)

+ λ2
∑

y,s,i

I{ǫys>0,yi=y}

[

∇g1(ν
(t)) +∇g2(ν

(t))
]

+ λ3
∑

yi,y

I{ξiy>0}

[

∇g1(ν
(t)) +∇g2(ν

(t))
]

. (11)

Then we use subgradient descent to update ν, equivalently

learning V . With simple algebra, we can show that the mth

entry for class n in ∇g1(ν
(t)) +∇g2(ν

(t)) is equivalent to

the mth entry in
∂f(xi,y)

∂vs

∣
∣
∣
ν(t)

− ∂f(xi,yi)
∂vs

∣
∣
∣
ν(t)

. In order to

guarantee the monotonic decrease of the objective in Eq. 7,

we add an extra checking step in each iteration.

2.5. Cross Validation on Seen Class Data

The scoring function in Eq. 6 is obtained by solving

Eq. 3 and 7, which in turn depend on parameters θ =
(γ, λ1, λ2, λ3). We propose learning these parameters by

means of cross validation using held-out seen class data.

Specifically, define Sℓ ⊂ S and the held-out set Sh = S\Sℓ.

We learn a collection of embedding functions for source and

target domains using Eq. 3 and 7 over a range of parame-

ters θ suitably discretized in 4D space. For each parameter

choice θ we obtain a scoring function, which depends on

training subset as well as the parameter choice. We then

compute the prediction error, namely, the number of times

that a held-out target domain sample is misclassified for this

parameter choice. We repeat this procedure for different

randomly selected subsets Sℓ and choose parameters with

the minimum average prediction error. Once these parame-

ters are obtained we then plug it back into Eq. 3 and 7, and

re-learn the scoring function using all the seen classes.

4170

3. Experiments

We test our method on five benchmark image datasets

for zero-shot recognition, i.e. CIFAR-10 [15], aPascal &

aYahoo (aP&Y) [8], Animals with Attributes (AwA) [15],

Caltech-UCSD Birds-200-2011 (CUB-200-2011) [38], and

SUN Attribute [26]. For all the datasets, we utilize MatCon-

vNet [36] with the “imagenet-vgg-verydeep-19” pretrained

model [32] to extract a 4096-dim CNN feature vector (i.e.

the top layer hidden unit activations of the network) for

each image (or bounding box). Verydeep features work well

since they lead to good class separation, which is required

for our class dependent transform (see Fig. 5). Similar CNN

features were used in previous work [2] for zero-shot learn-

ing. We denote the two variants of our general method as

SSE-INT and SSE-ReLU, respectively. Note that in terms

of experimental settings, the main difference between our

method and the competitors is the features. We report the

top-1 recognition accuracy averaged over 3 trials.

We set γ, λ2, λ3 ∈ {0, 10−3, 10−2, 10−1, 1, 10, 102} in

Eq. 3 and 7 for cross validation. In each iteration, we ran-

domly choose two seen classes for validation, and fix ν in

Alg. 1 to its initialization for speeding up computation. For

λ1, we simply set it to a small number 10−4 because it is

much less important than the others for recognition.

3.1. CIFAR­10

This dataset consists of 60000 color images with reso-

lution of 32 × 32 pixels (50000 for training and 10000 for

testing) from 10 classes. [34] enriched it with 25 binary

attributes and 50-dim semantic word vectors with real num-

bers for each class. We follow the settings in [34]. Precisely,

we take cat-dog, plane-auto, auto-deer, deer-ship, and cat-

truck as test categories for zero-shot recognition, respec-

tively, and use the rest 8 classes as seen class data. Our

training and testing is performed on the split of training and

test data provided in the dataset, respectively.

We first summarize the accuracy of [34] and our method

in Table 2. Clearly our method outperforms [34] signifi-

cantly, and SSE-INT and SSE-ReLU perform similarly. We

observe that for cat-dog our method performs similarly as

[34], while for others our method can easily achieve very

high accuracy. We show the class affinity matrix in Fig.

4(a) using the binary attribute vectors, and it turns out that

cat and dog have a very high similarity. Similarly the word

vectors between cat and dog provide more discrimination

than attribute vectors but still much less than others.

To better understand our SSE learning method, we visu-

alize the target domain CNN features as well as the learned

SSE features using t-SNE [35] in Fig. 4(b-d). Due to dif-

ferent seen classes, the learned functions and embeddings

for Fig. 4(c) and Fig. 4(d) are different. In Fig. 4(b),

CNN features seem to form clusters for different classes

with some overlaps, and there is a small gap between “an-

(a) Cosine similarity matrix (b) CNN features

(c) SSE embeddings (auto-deer) (d) SSE embeddings (cat-dog)

Figure 4. (a) Class affinities for the 10 classes using source domain binary

attribute vectors. (b-d) t-SNE visualization of different features with 25 at-

tributes, where 100 samples per class in the test set are selected randomly

and the same color denotes the same class. (b) shows the 4096-dim original

target domain CNN features. (c) and (d) show the 8-dim learned SSE fea-

tures by SSE-INT and tested on auto-deer and cat-dog, respectively. The

embeddings produced by SSE-ReLU have similar patterns.

imals” and “artifacts”. In contrast, our SSE features are

guided by source domain attribute vectors, and indeed pre-

serve the affinities between classes in the attribute space. In

other words, our learning algorithm manages to align the

target domain distributions with their corresponding source

domain embeddings in SSE space, as well as discriminating

each target domain instance from wrong classes. As we see,

the gaps between animals and artifacts are much clearer in

Fig. 4(c) and Fig. 4(d) than that in Fig. 4(b). For cat and

dog, however, there is still a large overlap in SSE space,

leading to poor recognition. The overall sample distribu-

tions in Fig. 4(c) and Fig. 4(d) are similar, because they

both preserve the same class affinities.

3.2. Other Benchmark Comparison

For the detail of each dataset, please refer to its origi-

nal paper. For aP&Y, CUB-200-2011, and SUN Attribute

datasets, we take the means of attribute vectors from the

same classes to generate source domain data. For AwA

dataset, we utilize the real-number attribute vectors since

they are more discriminative.

We utilize the same training/testing splits for zero-shot

recognition on aP&Y and AwA as others. For CUB-200-

2011, we follow [1] to use the same 150 bird spices as seen

classes for training and the left 50 spices as unseen classes

for testing. For SUN Attribute, we follow [14] to use the

4171

Table 2. Zero-shot recognition accuracy comparison (%, mean±standard deviation) on CIFAR-10. The compared numbers are best estimated from Fig. 3

in [34]. Notice that all the methods here utilize deep features to represent images in target domain.

Method cat-dog plane-auto auto-deer deer-ship cat-truck Average

Socher et al. [34] (50 words) 50 65 76 83 90 72.8

SSE-INT (50 words) 59.00±0.57 91.62±0.19 97.95±0.13 95.73±0.08 97.20±0.05 88.30

SSE-ReLU (50 words) 58.78±1.60 91.33±0.53 97.33±0.28 95.37±0.29 97.32±0.12 88.03

SSE-INT (25-dim binary vectors) 48.47±0.08 93.93±0.59 99.07±0.18 96.03±0.03 96.92±0.14 86.88

SSE-ReLU (25-dim binary vectors) 48.52±0.13 93.68±0.73 98.48±0.15 95.32±0.25 96.43±0.06 86.49

Table 3. Zero-shot recognition accuracy comparison (%) on aP&Y, AwA, CUB-200-2011, and SUN Attribute, respectively, in the form of mean±standard

deviation. Here except our results, the rest numbers are cited from their original papers. Note that some experimental settings may differ from ours.

Feature Method aPascal & aYahoo Animals with Attributes CUB-200-2011 SUN Attribute

Non-CNN

Farhadi et al. [8] 32.5

Mahajan et al. [18] 37.93

Wang and Ji [39] 45.05 42.78

Rohrbach et al. [28] 42.7

Yu et al. [42] 48.30

Akata et al. [1] 43.5 18.0

Fu et al. [10] 47.1

Mensink et al. [20] 14.4

Lampert et al. [16] 19.1 40.5 52.50

Jayaraman and Grauman [14] 26.02±0.05 43.01±0.07 56.18±0.27

Romera-Paredes and Torr [30] 27.27±1.62 49.30±0.21 65.75±0.51

AlexNet Akata et al. [2]a 61.9 40.3

vgg-verydeep-19

Lampert et al. [16] 38.16 57.23 72.00

Romera-Paredes and Torr [30] 24.22±2.89 75.32±2.28 82.10±0.32

SSE-INT 44.15±0.34 71.52±0.79 30.19±0.59 82.17±0.76

SSE-ReLU 46.23±0.53 76.33±0.83 30.41±0.20 82.50±1.32

aThe results listed here are the ones with 4096-dim CNN features and the continuous attribute vectors provided in the datasets for fair comparison.

(a) decaf (b) verydeep-19

Figure 5. t-SNE visualization comparison of SSE distributions using the

two CNN features on AwA testing data. Our method works well if there is

good separation for classes and verydeep features are particularly useful.

same 10 classes as unseen classes for testing (see their sup-

plementary file) and take the rest as seen classes for training.

We summarize our comparison in Table 3, where the

blank spaces indicate that the proposed methods were not

tested on the datasets in their original papers. Still there is

no big performance difference between our SSE-INT and

SSE-ReLU. On 4 out of the 5 datasets, our method works

best except for CUB-200-2011. On one hand, [2] specif-

ically targets at fine-grained zero-shot recognition such as

this dataset, while ours aims for general zero-shot learning.

On the other hand, we suspect that the source domain pro-

jection function may not work well in fine-grained recogni-

tion, and we will investigate more on it in our future work.

To understand our method better with different features,

we test 7 features on AwA dataset1. We show the SSE dis-

tribution comparison using decaf CNN features and vgg-

verydeep-19 CNN features in Fig. 5. There is a large dif-

ference between the two distributions: (a) while with decaf

features clusters are slightly separated they are still cluttered

with overlaps among different classes. (b) vgg-verydeep-19

features, in contrast, form crisp clusters for different classes,

which is useful for zero-shot recognition. Also we plot the

cosine similarity matrices created using different features

in Fig. 6. As we see, the matrix from vgg-verydeep-19 fea-

tures (i.e. the last) is the most similar to that from the source

domain attribute vectors (i.e. the first). This demonstrates

that our learning method with vgg-verydeep-19 features can

align the target domain distribution with the source domain

attribute vectors. We can attribute this to the fact that we

need a class dependent feature transform φy(x) that has

good separation on seen classes.

Our implementation2 is based on unoptimized MATLAB

code. However, it can return the prediction results on any of

these 5 datasets within 30 minutes using a multi-thread CPU

(Xeon E5-2696 v2), starting from loading CNN features.

For instance, on CIFAR-10 we manage to finish running the

code less than 5 minutes.

1We downloaded these features from http://attributes.kyb.

tuebingen.mpg.de/
2Our code is available at https://zimingzhang.wordpress.

com/source-code/.

4172

http://attributes.kyb.tuebingen.mpg.de/
http://attributes.kyb.tuebingen.mpg.de/
https://zimingzhang.wordpress.com/source-code/
https://zimingzhang.wordpress.com/source-code/

(a) attributes (b) cq-hist (31.5) (c) lss-hist (30.3) (d) rgsift-hist (33.6) (e) sift-hist (29.8) (f) surf-hist (36.5) (g) decaf (52.0) (h) verydeep-19 (71.5)

Figure 6. Cosine similarity matrices created using different features on AwA testing data. The numbers in the brackets are the mean accuray (%) achieved

using the corresponding features. Our learning method performs the best with vgg-verydeep-19 features. We can attribute this to the fact that we need a

class dependent feature transform φy(x) that has good separation on seen classes.

(a) Recognition on unseen classes (b) Recognition on all classes

Figure 7. Large-scale zero-shot recognition on SUN Attribute.

3.3. Towards Large­Scale Zero­Shot Recognition

We test the generalization ability of our method on the

SUN Attribute dataset for large-scale zero-shot recognition.

We design two experimental settings: (1) Like in bench-

mark comparison, we randomly select M classes as seen

classes for training, and then among the rest 717 − M

classes, we also randomly select 10, 20, · · · , 717 − M

classes as unseen classes for testing; (2) We randomly select

10, 20, · · · , 700 classes as seen classes for training, and cat-

egorize each data sample from the rest unseen classes into

one of the 717 classes. Fig. 7 shows our results, where (a)

and (b) correspond to the settings (1) and (2), respectively.

In Fig. 7(a), we can see that with very few seen classes,

we can achieve reasonably good performance when unseen

classes are a few. However, with the increase of the number

of unseen classes, the curve drops rapidly and then changes

slowly when the number is large. From 200 to 700 unseen

classes, our performance is reduced from 8.62% to 2.85%.

With the increase of the number of seen classes, our perfor-

mance is improving, especially when the number of unseen

classes is small. With 10 unseen classes, our performance

increases from 61.00% to 87.17% using 17 and 317 seen

classes, respectively. But such improvement is marginal

when there are already a sufficient number of seen classes,

for instance from 217 to 317 seen classes.

In Fig. 7(b), generally speaking, with more seen classes

our performance will be better, because there will be bet-

ter chance to preserve the semantic affinities among classes

in source domain. With only 10 seen classes, our method

can achieve 1.59% mean accuracy, which is much better

than the random chance 0.14%. Notice that even though we

use all the 717 classes as seen classes, we cannot guaran-

tee that the testing results are similar to those of traditional

classification methods, because the source domain attribute

vectors will guide our method for learning. If they are less

discriminative, e.g. the attribute vectors for cat and dog in

CIFAR-10, the recognition performance may be worse.

To summarize, our method performs well and stably on

SUN Attribute with a small set of seen classes and a rela-

tively large set of unseen classes. Therefore, we believe that

our method is suitable for large-scale zero-shot recognition.

4. Conclusion

We proposed learning a semantic similarity embedding

(SSE) method for zero-shot recognition. We label the se-

mantic meanings using seen classes, and project all the

source domain attribute vectors onto the simplex in SSE

space, so that each class can be represented as a proba-

bilistic mixture of seen classes. Then we learn similarity

functions to embed target domain data into the same se-

mantic space as source domain, so that not only the empir-

ical mean embeddings of the seen class data distributions

are aligned with their corresponding source domain embed-

dings, but also the data instance itself can be classified cor-

rectly. We propose learning two variants using intersection

function and rectified linear unit (ReLU). Our method on

five benchmark datasets including the large-scale SUN At-

tribute dataset significantly outperforms other state-of-art

methods. As future work, we would like to explore other

applications for our method such as person re-identification

[44, 45, 46] and zero-shot activity retrieval [6].

Acknowledgement

We thank the anonymous reviewers for their very use-

ful comments. This material is based upon work supported

in part by the U.S. Department of Homeland Security, Sci-

ence and Technology Directorate, Office of University Pro-

grams, under Grant Award 2013-ST-061-ED0001, by ONR

Grant 50202168 and US AF contract FA8650-14-C-1728.

The views and conclusions contained in this document are

those of the authors and should not be interpreted as nec-

essarily representing the social policies, either expressed or

implied, of the U.S. DHS, ONR or AF.

4173

References

[1] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-

embedding for attribute-based classification. In CVPR, pages 819–

826, 2013. 2, 4, 6, 7

[2] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of

output embeddings for fine-grained image classification. In CVPR,

June 2015. 2, 3, 4, 6, 7

[3] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for

large multi-class tasks. In NIPS, pages 163–171, 2010. 2

[4] T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery

and characterization from noisy web data. In ECCV, pages 663–676,

2010. 1

[5] G. Blanchard and C. Scott. Decontamination of mutually contami-

nated models. In AISTATS, 2014. 3

[6] G. D. Castanon, Y. Chen, Z. Zhang, and V. Saligrama. Efficient ac-

tivity retrieval through semantic graph queries. In ACM Multimedia,

2015. 8

[7] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm,

theory, and applications. PAMI, 35(11):2765–2781, 2013. 4

[8] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects

by their attributes. In CVPR, pages 1778–1785, 2009. 1, 4, 6, 7

[9] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. A. Ran-

zato, and T. Mikolov. Devise: A deep visual-semantic embedding

model. In NIPS, pages 2121–2129, 2013. 1, 2

[10] Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive

multi-view embedding for zero-shot recognition and annotation. In

ECCV, 2014. 2, 7

[11] J. Hamm and M. Belkin. Probabilistic zero-shot classification with

semantic rankings. CoRR, abs/1502.08039, 2015. 2

[12] S. J. Hwang, K. Grauman, and F. Sha. Analogy-preserving semantic

embedding for visual object categorization. In ICML, pages 639–

647, 2013. 2

[13] S. J. Hwang and L. Sigal. A unified semantic embedding: Relating

taxonomies and attributes. In NIPS, pages 271–279, 2014. 2

[14] D. Jayaraman and K. Grauman. Zero-shot recognition with unreli-

able attributes. In NIPS, pages 3464–3472, 2014. 2, 6, 7

[15] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Im-

ages. Master’s thesis, 2009. 6

[16] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based

classification for zero-shot visual object categorization. PAMI,

36(3):453–465, 2014. 1, 2, 7

[17] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of

subspace structures by low-rank representation. PAMI, 35(1):171–

184, 2013. 4

[18] D. Mahajan, S. Sellamanickam, and V. Nair. A joint learning frame-

work for attribute models and object descriptions. In ICCV, pages

1227–1234, 2011. 2, 7

[19] S. Maji, A. C. Berg, and J. Malik. Classification using intersection

kernel support vector machines is efficient. In CVPR, pages 1–8,

2008. 4

[20] T. Mensink, E. Gavves, and C. G. M. Snoek. Costa: Co-occurrence

statistics for zero-shot classification. In CVPR, pages 2441–2448,

June 2014. 2, 7

[21] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning

for large scale image classification: Generalizing to new classes at

near-zero cost. In ECCV, pages 488–501. 2012. 1

[22] V. Nair and G. E. Hinton. Rectified linear units improve restricted

boltzmann machines. In ICML, pages 807–814, 2010. 2, 4

[23] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome,

G. S. Corrado, and J. Dean. Zero-Shot Learning by Convex Combi-

nation of Semantic Embeddings. In ICLR, 2014. 2

[24] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell. Zero-

shot learning with semantic output codes. In NIPS, pages 1410–1418,

2009. 2

[25] D. Parikh and K. Grauman. Interactively building a discrimina-

tive vocabulary of nameable attributes. In CVPR, pages 1681–1688,

2011. 1

[26] G. Patterson, C. Xu, H. Su, and J. Hays. The sun attribute database:

Beyond categories for deeper scene understanding. IJCV, 108(1-

2):59–81, 2014. 6

[27] X. Peng, L. Zhang, and Z. Yi. Constructing l2-graph for subspace

learning and segmentation. arXiv preprint arXiv:1209.0841, 2012. 4

[28] M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a trans-

ductive setting. In NIPS, pages 46–54, 2013. 2, 7

[29] M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge trans-

fer and zero-shot learning in a large-scale setting. In CVPR, pages

1641–1648, 2011. 1

[30] B. Romera-Paredes and P. H. S. Torr. An embarrassingly simple

approach to zero-shot learning. In ICML, 2015. 2, 7

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and

L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge,

2014. 1

[32] K. Simonyan and A. Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556,

2014. 6

[33] A. Smola, A. Gretton, L. Song, and B. Schölkopf. A hilbert space

embedding for distributions. In Algorithmic Learning Theory, pages

13–31, 2007. 3

[34] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning

through cross-modal transfer. In NIPS, pages 935–943, 2013. 1, 2,

6, 7

[35] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE.

JMLR, 9(2579-2605):85, 2008. 6

[36] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks

for MATLAB. CoRR, abs/1412.4564, 2014. 6

[37] R. Vidal. A tutorial on subspace clustering. Signal Processing Mag-

azine, pages 52–68, 2010. 1

[38] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The

Caltech-UCSD Birds-200-2011 Dataset. Technical report, 2011. 6

[39] X. Wang and Q. Ji. A unified probabilistic approach modeling rela-

tionships between attributes and objects. In ICCV, pages 2120–2127,

2013. 2, 7

[40] K. Weinberger and O. Chapelle. Large margin taxonomy embedding

for document categorization. In NIPS, pages 1737–1744. 2009. 2

[41] S. Wu, S. Bondugula, F. Luisier, X. Zhuang, and P. Natarajan. Zero-

shot event detection using multi-modal fusion of weakly supervised

concepts. In CVPR, pages 2665–2672, 2014. 1

[42] F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S. F. Chang. Design-

ing category-level attributes for discriminative visual recognition. In

CVPR, pages 771–778, 2013. 1, 2, 7

[43] A. L. Yuille and A. Rangarajan. The concave-convex procedure.

Neural computation, 15(4):915–936, 2003. 5

[44] Z. Zhang, Y. Chen, and V. Saligrama. A novel visual word co-

occurrence model for person re-identification. In ECCV Workshop

on Visual Surveillance and Re-Identification, 2014. 8

[45] Z. Zhang, Y. Chen, and V. Saligrama. Group membership prediction.

In ICCV, 2015. 8

[46] Z. Zhang and V. Saligrama. PRISM: Person re-identification via

structured matching. arXiv preprint arXiv:1406.4444, 2014. 8

4174

