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Abstract

In this paper, we propose a new sparsity regularizer for
measuring the low-rank structure underneath a tensor. The
proposed sparsity measure has a natural physical meaning
which is intrinsically the size of the fundamental Kronecker
basis to express the tensor. By embedding the sparsity
measure into the tensor completion and tensor robust PCA
[frameworks, we formulate new models to enhance their ca-
pability in tensor recovery. Through introducing relaxation
forms of the proposed sparsity measure, we also adopt the
alternating direction method of multipliers (ADMM) for
solving the proposed models. Experiments implemented on
synthetic and multispectral image data sets substantiate the
effectiveness of the proposed methods.

1. Introduction

Visual data from real applications are often generated
by the interaction of multiple factors. For example, a hy-
perspectral image consists of a collection of images scat-
tered over various discrete bands and thus includes three
intrinsic constituent factors, i.e., spectrum and spatial width
and height. Beyond the traditional vector or matrix, which
can well address single/binary-factor variability of data, a
higher-order tensor, represented as a multidimensional ar-
ray [24], provides a more faithful representation to deliver
the intrinsic structure underlying data ensembles. Due to
its comprehensive data-structure-preserving capability, the
techniques on tensors have been shown to be very helpful
for enhancing the performance of various computer vision
tasks, such as multispectral image denoising [33| 52], mag-
netic resonance imaging recovery [31], and multichannel
EEG (electroencephalogram) compression [1]].

In real cases, however, due to the acquisition errors con-
ducted by sensor disturbance, photon effects and calibration
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Figure 1. (a) Illustratlon of Tucker decomposition and its Kro-
necker representation; (b) Relationship between the proposed
sparsity measure and the existing lower-order sparsity measures.
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mistake [[1} [31}137], the tensor data always can only be par-
tially acquired from real data acquisition equipment. Also,
some data values could be corrupted by gross noises or out-
liers [49]]. Therefore, recovering tensor from corrupted ob-
servations has become a critical and inevitable challenge for
tensor data analysis. Such a tensor recovery problem can be
formally described in two ways. One is the tensor comple-
tion (TC), which focuses on inferring missing entries of the
entire tensor from partially observed data; the other is the
tensor robust PCA (TRPCA), which corresponds to separat-
ing the clean tensor from the corrupting noise. In the degen-
erated matrix cases, both problems have been thoroughly
investigated for decades [7) [23} |34} 135} 42| |6]. However,
for general higher-order tensors, until very recent years it
begins to attract attention in computer vision and pattern
recognition circle [12} 20,130,311 136l 51} 152, 21]).

The important clue to handle this issue is to utilize the
latent knowledge underlying the tensor structure. The most
commonly utilized one is that the tensor intensities along
each mode are always with evident correlation. For exam-
ple, The images obtained across the spectrum of a multi-
spectral image are generally highly correlated. This implies
that the tensor along each mode resides on a low-rank sub-
space and the entire tensor corresponds to the affiliation of
the subspaces along all the tensor modes. By fully utilizing
such low-rank prior knowledge, the corrupted tensor values
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are expected to be properly regularized and faithfully recov-
ered from known ones. This forms the main methodology
underlying most of the current tensor recovery methods.

In matrix cases, this low-rank prior is rationally mea-
sured by the rank of the training matrix. For practical com-
putation, its relaxations such as the trace norm (also known
as nuclear norm) and Schatten-¢ norm are generally em-
ployed. Most current tensor recovery works directly ex-
tended this term to higher-order cases by easily ameliorat-
ing it as the sum of ranks (or its relaxations) along all ten-
sor modes [30, 31, |9]. Albeit easy to implement, different
from matrix scenarios, this simple rank-sum term is short of
a clear physical meaning for general tensors. Besides, us-
ing same weights to penalize all dimensionality ranks of a
tensor is not always rational. Still taking the multispectral
image data as example, the tensor intensity along the spec-
tral dimensionality is always significantly more highly cor-
related than those along the spatial dimensionalities. This
prior knowledge delivers the information that the rank of a
multispectral image along its spectral dimensionality should
be much lower than that along its spatial dimensionali-
ties. We thus should more largely penalize the spectral rank
rather than spatial ones.

In this paper, our main argument is that instead of using
the sum of tensor ranks along all its modes as conventional,
we should more rationally use the multiplication of them to
encode the low-rank prior inside the tensor data. This sim-
ple measurement can well ameliorate the limitations of the
currently utilized ones. Specifically, we can mainly con-
clude its advantages as follows.

Firstly, it has a natural physical interpretation. As shown
in Fig. [I| when the rank of a d-order tensor along its n'®
mode is 7, this tensor can be finely represented by at most
Hi:l r, Kronecker bases [25, 38 This means that the
multiplication of tensor ranks along all its dimensions can
be well explained as a reasonable proxy for measuring the
capacity of tensor space, in which the entire tensor located,
by taking Kronecker basis as the fundamental representa-
tion component.

Secondly, it provides a possibly unified way to inter-
pret the sparsity measures throughout vector to matrix. The
sparsity of a vector is conventionally measured by the num-
ber of the bases (from a predefined dictionary) that can rep-
resent the vector as a linear combination of them [8| [14].
Since in vector case, a Kronecker basis is just a common
vector, this measurement is just the number of Kronecker
bases required to represent the vector, which complies with
our proposed sparsity measure. The sparsity of a matrix is
conventionally assessed by its rank [7) 134} 42]. Actually
there are the following results [[15]: (1) if the ranks of a

'A Kronecker basis is the simplest rank-1 tensor in the tensor space
[SL124]. For example, in a 2-D case, a Kronecker basis is a rank-1 matrix
expressed as the outer product uv” of two vectors u and v [13].

matrix along its two dimensions are r; and rs, respectively,
then ;1 = ro = r; (2) if the matrix is with rank r, then it
can be represented as r Kronecker bases. The former re-
sult means that the proposed measure (by eliminating the
square) is proportional to the conventional one, and the lat-
ter indicates that this measure also complies with our phys-
ical interpretation.

Thirdly, it provides an insightful understanding for rank
weighting mechanism in the traditional rank-sum frame-
work. In specific, since the proposed sparsity measure can
be equivalently reformulated as:

d d 1 y—d
Hn:lrn - Zn:lwnrn’ Wn = a Hl:l,l#nrl,

where d is the number of tensor dimensions. In this way,
it is easy to see that the subspace located in the tensor di-
mensionality with lower rank will have a relatively larger
weight, and vice versa. E.g., for a hyperspectral image, de-
note 74 the rank of its spectral dimension and r,, and 7,
as ranks of its spatial width and height dimensions. Since
generally r,,, 7, > rs in this case, our regularization will
more largely penalize r; (with weight 7,7, /3) than r,, and
rp,. This finely accords with the prior knowledge underlying
this tensor kind.

In this paper, by embedding this sparsity measure into
the TC and TRPCA frameworks, we formulate new models
for both issues to enhance their capability in tensor recov-
ery. Throughout the paper, we denote scalars, vectors, ma-
trices and tensors by the non-bold letters, bold lower case
letters, bold upper case letters and calligraphic upper case
letters, respectively.

2. Related work

Matrix recovery: There are mainly two kinds of matrix
recovery problems, i.e., matrix completion (MC) and robust
PCA (RPCA), both of which have been extensively studied.

MC problem arises in machine learning scenarios, like
collaborative filtering and latent semantic analysis [35]. In
2009, Candes and Recht [7] prompted a new surge for this
problem by showing that the matrix can be exactly recov-
ered from an incomplete set of entries through solving a
convex semidefinite programming. Similar exact-recovery
theory was simultaneously presented by Recht et al. [34],
under a certain restricted isometry property, for the linear
transformation defined constraints. To alleviate the heavy
computational cost, various methods have been proposed to
solve the trace norm minimization problem induced by the
MC model [4} 23] 126| 28]]. Due to the development of these
efficient algorithms, MC has been readily applied to com-
puter vision and pattern recognition problems, such as the
depth enhancement [32] and image tag completion [18].

RPCA model was initially formulated by Wright et al.
[42], with the theoretical guarantee to be able to recover
the ground truth tensor from grossly corrupted one under
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certain assumptions [6]. Some variants have been further
proposed, e.g., Xu et al. [43]] used the L; o-norm to han-
dle data corrupted by column. The iterative thresholding
method can be used to solve the RPCA model [6], but is
generally slow. To speed up the computation, Lin et al.
proposed the accelerated proximal gradient (APG) [27] and
the augmented Lagrangian multiplier (ALM) [26] methods.
ALM leads to state-of-the-art performance in terms of both
speed and accuracy. Bayesian approaches to RPCA have
also been investigated. Ding et al. [13] modeled the sin-
gular values of the low-rank matrix and the entries of the
sparse matrix with beta-Bernoulli priors, and used a Markov
chain Monte Carlo (MCMC) sampling scheme to perform
inference. Babacan et al. [2] adopted the automatic rele-
vance determination (ARD) approach to RPCA modeling,
and utilized the variational Bayes method to do inference.

Tensor recovery: In recent years, tensor recovery have
been attracting much attention. Generalized from matrix
case, tensor recovery can also be categorized into two lines
of researches: tensor completion (TC) and tensor robust
PCA (TRPCA). Different from the natural sparsity measure
(rank) for matrices, it is more complicated to construct a
rational sparsity measure to describe the intrinsic correla-
tions along various tensor modes. By measuring sparsity
of a tensor with the sum of the ranks of all unfolding ma-
trices along all modes and relaxing with trace norms, Liu
et al. [30] firstly extended the MC model to TC cases and
designed efficient HaLRTC algorithm by applying ADMM
to solve it [31]. Goldfarb and Qin [21]] applied the same
sparsity measure to TRPCA problem and also solved it
by ADMM. Romera-Paredes and Pontil [36] promoted this
“sum of ranks” measure by relaxing it to a tighter con-
vex form. Recently, Zhang et al. [51] proposed a worst
case measure, i.e., measuring the sparsity of a tensor by its
largest rank of all unfolding matrices, and relaxed it with
a sum of exponential forms. Designed mainly for videos,
Zhang et al. [52] developed a tensor-SVD based sparsity
measure for both TC and TRPCA problems. Xu et al. [44]
investigated factorization based method for TC problem.

It can be seen that most of the currently utilized tensor
sparsity measures can be recognized as certain relaxations
of the sum of the unfolding matrices ranks along all modes.
They on one hand lack a clear physical interpretation, and
on the other hand have not a consistent relationship with
previous defined sparsity measures for vector/matrix. We
thus propose a new measure to alleviate this issue.

3. Notions and preliminaries

A tensor corresponds to a multi-dimensional data array.
A tensor of order d is denoted as A € RI1x[2xx1a_Ele-
ments of A are denoted as a;, ;,...i,, where 1 <4, <I,,, 1<
n < d. For a d-order tensor A, its nt? unfolding matrix is
denoted by A,y = unfold, (A) € RI»*Tn—alugala),

1 < n < d, whose columns compose of all I,,-dimensional
vectors along the n'" mode of A. Conversely, the unfolding
matrix along the n*" mode can be transformed back to the
tensor by A = fold,,(A (), 1 < n < d. The n-rank of A,
denoted as ,, is the dimension of the vector space spanned
by all columns of A ).

The product of two matrices can be generalized to the
product of a tensor and a matrix. The mode-n prod-
uct of a tensor A € RIXxInxX-la by 3 matrix B €
R7»*In_ denoted by A X, B, is also an d-order tensor
C € RIvxJnxIN "whose entries are computed by

Ciyoovigy—1Jnint1inN — Zin Qg iy 11N bjnin .
One important decomposition for tensors is Tucker decom-
position [25, [38] (see Fig. [I[a) for visualization), by which
any d-order tensor A € RI1*12XxIa can be written as

A=8x1U; xqUy x --- xq Uy, (D

where S € R"*7m2X"XTd jg called the core tensor, and

U, € RI»*™ (1 < n < d) is composed by the r,, or-

thogonal bases along the n*"" mode of A. The Frobenius

norm of a tensor A = (a;,..;,,) € RI>*1a i5 defined
JARI .

as |Allp = (32;17d a2, ;)% and the Ly norm is

Iy, I
defined as [|Ally = 3231702 @iy i

4. New tensor sparsity measure

Our sparsity measure is motivated by the Tucker model
of tensors. We know that a d-order tensor X’ € Rt 12xxIa
can be written as (I). It, as illustrated in Fig. [Tfa), can be
further rewritten as

T1,,Td
i1,y ig=1
where 7, is the n-rank of X along its n'" mode, and u;,

is the z';Lh column of U,,. In other words, tensor X can be
represented by at most HZ:1 ryn, Kronecker bases. Thus,

igWi; O Wi, O+ -0 Uy,

HZ:1 ry, provides a natural way to measure the capacity of
the tensor space, by taking Kronecker basis as the funda-
mental representation component. We denote the new ten-
sor sparsity measure as

S(X) = Hizl rank (X)) - )

Note that rank (X)) will lead to combinatorial opti-
mization problems in applications. Therefore, relaxation for
S(X) is needed. In matrix case, the tightest convex relax-
ation for rank is the trace norm, defined as

X[ = 37 0u(X),

where o;(X) is the n'" singular value of the matrix X.
Thus, it is natural to relax rank (X)) to || X[+, and ob-
tain the following relaxation for S(X):

d
Slrace(X) = anl ”X(n)H* (3)
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Nonconvex relaxations for sparsity measures have also
been investigated in literatures [[16} 45, [11} 48, [17]. Among
them, the so-called folded-concave penalties, such as SCAD
[16] and MCP [48]] have been shown to have nice statistical
properties, and have been successfully applied to matrix or
tensor recovery problems [40l 29} [9]. Motivated by these,
we also relax the proposed tensor sparsity measure using
two folded-concave penalties as follows:

S @) =TI, P (%) @
and

Sieaa®) = T Prsa (X)) )
where

Pay (X) = 3 ey (04(X)), Paaa (X) = 3 tcas(0(X)),

with )
o () = At — L&, if [¢] < aA
" aX?/2,  if[t| > a),
and
Alt], if [t < A
Yoaa (£) = { HZOSUED iy gy < g0
M (a?-1) if |t > a),

2(a—1) °
respectively. Here, A and a are the parameters involved of
the folded concave penalties, and are empirically specified
as 1 and 6 in our experiments.

4.1. Relation to lower-order sparsity measures

Here we briefly discuss the relationship between the pro-
posed tensor sparsity measure and the existing lower-order
sparsity measures, as illustrated in Fig. [T{b).

We know that a one-order tensor, i.e., a vector X, can
be represented as a linear combination of atoms (one-order
Kronecker bases) from a dictionary:

x=Da =) ad, (6)
where D = (d4,--- ,d,,) is the predefined dictionary and
a = (a1, ,a,)T is the coefficients to represent x. In

applications, we often seek the a with least sparsity || c||o,
i.e., with the least non-zero elements, which corresponds to
the least Kronecker bases used to represent x.

A two-order tensor, i.e., a matrix, can be represented as
the following singular value decomposition (SVD) form:

X =UxV" =) suv/, @

where U and V are orthogonal matrices, and 3 = diag(o)
with o = (01, ,0,)T being the singular values of X.
The sparsity measure of X is known as its rank, i.e., the
number of non-zero elements of o. This sparsity intrin-
sically corresponds to the number of two-order Kronecker
bases u;v! used to represent X, and thus also complies
with our definition for general tensors.

From the above discussion, we can see that our tensor
sparsity measure provides a possibly unified way to inter-
pret the sparsity measures throughout vector to matrix.

It should be noted that the atomic norm [10] provides a
similar unification in a more mathematically rigorous way.
However, it corresponds to the conventional rank for ten-
sors, which is generally intractable in practice. In con-
trast, the proposed sparsity measure is based on the Tucker
model, and thus can be easily computed.

S. Application to tensor recovery
5.1. Tensor completion

Tensor completion (TC) aims to recover the tensor cor-
rupted by missing values from incomplete observations.
Using the proposed sparsity measure, we can mathemati-
cally formulate the TC model as

miny S(X), s.t. Xo=Ta, )

where X, T € RI1xI2xX1Ia gre the reconstructed and ob-
served tensors, respectively, and the elements of 7 indexed
by 2 are given while the remaining are missing; S(-) is the
tensor sparsity measure as defined in (2). We refer to the
model as rank product tensor completion or RP-TC.

In practice, we do not directly adopt model (8), since
S(X) makes the optimization difficult to solve. Instead, ap-
plying relaxations (3)-(5) to S(X'), we can get the following
three TC models:

miny C%SIMCC(X), s.t. Xo =Taq, )]
min y Ciszcp(X), s.it. Xa ="Ta, (10)
miny CiBSscad(X), s.t. Xo = Ta, (11)

where C; (i = 1,2,3) are taken for computational conve-
nience (we will discuss this later). We denote the three mod-
els as RP-TCyyce, RP-TCpyp and RP-TC,.q, respectively.

The above TC models are not convex, and therefore more
difficult to solve. Fortunately, we can apply the alternating
direction method of multipliers (ADMM) [3| 28] to them.
By virtue of ADMM, the original models can be divided
into simpler subproblems with closed-form solutions, and
thus be effectively solved. To do this, taking RP-TCec
model @) as an example, we need to first introduce d auxil-
iary tensors M,, (1 < n < d) and equivalently reformulate
the problem as follows:

1 d
e sy oy 1 Mol (12)
sk, Xg=Mq, X=M,, 1<n<d,
where M, (,,) = unfold,, (M,). Then we consider the aug-

mented Lagrangian function for as:
Lo(X, My, s Ma, Y1, Va)

1 P
=g [LIMaalla4d_ (X =Ma Yu) 453 1= Mallf,
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where V,, (1 < n < d) are the Lagrange multipliers and p
is a positive scalar. Now we can solve the problem within
the ADMM framework. With M; (I # n) fixed, M,, can
be updated by solving the following problem:

minMan(X7M17“' 7Md7y17“' 7yd)7 (13)

which has the closed-form solution:
1
M,, = fold, <Dan (unfold, (X + yn))) o (4)
p P

where D,(X) = UX, V7T is a shrinkage operator with
¥, = diag(max(c;(X) — 7,0)), and

1 d
[ — <
=z 1L, L, Mol 1=n<d(5)
Similarly, with M,,s fixed, X can be updated by solving
m)én LP(X,Ml,”' ,Md,yl,"' ,yd), (16)

which also has the closed-form solution:
1 d
X = od anl (pMy — V). (17)
Then the Lagrangian multipliers are updated by
Yy = yn_p(Mn_X)a 1§n§da (18)

and p is increased to pp with some constant ;¢ > 1. Note
that the above procedure and its derivation are similar to
HaLLRTC in [31]. The main difference is that the «; in
our algorithm can be varied during the iterations instead of
fixed, and thus adaptively give proper penalizations along
each mode. This, from the algorithm point of view, explains
the advantage of our method beyond previous work.

For models (I0) and (IT), the general ADMM frame-
work can also be applied. However, due to the more com-
plex folded-concave penalties, we need to slightly modify
the algorithm. We leave details in supplementary material.
Since models @I)—@ are not convex, the algorithm can not
be guaranteed to achieve global optima, but empirically per-
form well in all our experiments.

5.2. Tensor robust PCA

Tensor robust PCA (TRPCA) aims to recover the tensor
from grossly corrupted observations. The observed tensor
can then be written in the following form:

T =L+E€, (19)

where £ is the main tensor with higher-order sparsity, and
& corresponds the sparse noise/outliers embedded in data.
Using the proposed tensor sparsity measure, we can get the
following TRPCA model:

ming g S(L) + A|€|l1, st. T=L+E  (20)

where ) is a tuning parameter compromising the recovery
tensor and noise terms.

However, for real data such as hyperspectral image [49],
the embedded noise is always not solely sparse, but proba-
bly a mixture of sparse and Gaussian. We thus ameliorate
the observation expression as:

T=L+E+N, (21)

where N denotes the Gaussian noise. We then propose the
following TRPCA model, called rank product TRPCA (RP-
TRPCA):

ming,e S(L) + A€+ T = (L+E)F 22

where ~y is the tuning parameter related to the intensity of
Gaussian noise. Replacing S(£) with the three relaxations
proposed in Section ] we obtain the following TRPCA
models:

ming ¢ C%Strace(‘c)+)“|g”1+'7||T_(£+5)||%7 (23)
ming e &= Smep(L)+AIENL T = (L+E)F, 24)
ming e g Seead (L) FAEN1 AT = (L+E)[F, 25)

which are referred as RP-TRPCA e, RP-TRPCA ¢, and
RP-TRPCA .4, respectively.

Similar to the TC case, we also apply the ADMM to
solving these models. Taking RP-TRPCA;,. model @])
as an example, by introducing auxiliary tensors M,, (1 <
n < d), we can equivalently reformulate it as:

d
. 1 2
e e, LM -+ #2140
st, L=M,, 1 <n<d.

(26)

Then the augmented Lagrangian function for becomes
Lo(L, &, M1, , Mg, V1, , Va)

1
= & TL, Moo e+ X+ T = (£4€) I
+30 (K= M Ya)+ 537 X Mu .

Within the ADMM framework, the original problem can be
solved via alternatively solving a sequence of subproblems
with respect to L,. Besides, all the subproblems involved
can be efficiently solved similar to solving RP-TC models.
We omit the details due to space limitations

5.3. Discussion for setting C;

Now we briefly discuss how to determine the parameter
C; involved in the proposed TC and TRPCA models. For
the TC models, since there is only one term in the objective
function, C; mainly guarantees the computation stability.
Therefore, we can fix it as a relative large constant. In the
TRPCA models, the situation is more complicated, since
there are three terms in the objective function, and Cj, to-
gether with A and ~, balances these terms. We empirically
found that the algorithm performs consistently well under
the setting C; = 3 30 T] .., P(Ly). A to be with order
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of 1/y/max{I;}¢_, and v = 0.1/, where L is the [*"
unfolding matrix of the ground truth tensor £, P(-) corre-
sponds to the matrix sparsity measure and o is the stan-
dard deviation of the Gaussian noise. Since the ground
truth tensor £ is unknown, we first run another easy-to-
be-implemented TRPCA method, such as that proposed in
[21]], to initialize C; based on the obtained result, and then
implement our algorithms under such initialization. This
strategy performs well throughout our experiments.

6. Experiments

In this section, we evaluate the effectiveness of the pro-
posed sparsity measure for tensor recovery problems, in-
cluding TC and TRPCA, on both synthetic and real data.
All experiments were implemented in Matlab 8.4(R2014b)
on a PC with 3.50GHz CPU and 32GB RAM.

6.1. Tensor completion experiments

Synthetic tensor completion. The synthetic data were
generated as follows: first, the ground truth tensor was
yielded from the Tucker model, i.e., T = S x; Uy X3g
U, x3 Usz, where the core tensor S € R"*"2X"3 wag ran-
domly generated from the standard Gaussian distribution,
and all U,, € R»*"» were randomly generated column-
orthogonal matrices; then a portion of elements was ran-
domly sampled as observed data while the rest were left
as missing components. We set I, (n = 1,---,3) to
50, respectively, resulting the ground truth tensor with size
50 x 50 x 50. For the rank parameters r,, along each mode,
we considered two settings, (10,20,40) and (20, 40, 40).
These settings are designed to simulate the ranks along dif-
ferent modes with diversity, which is always encountered
in practice, e.g., for multispectral image, the rank along the
spectral mode is always much lower than those along the
spatial mode We then varied the percentage of sampled
elements from 20% to 80% and reconstructed the tensor
using the proposed methods and the state-of-the-arts along
this line, including ALM based matrix completion (denoted
as MC-ALM) [26], HaLRTC [31], McpLRTC [9], ScadL-
RTC [9], tensor-SVD based TC method (t-SVD) [52]] and
factorization based TC method (TMac) [44]. The perfor-
mance in terms of relative reconstruction error (RREﬂ av-
eraged over 20 realizations, was summarized in Table For
matrix-based method MC-ALM, we applied it to the un-
folded matrix along each mode of the tensor, obtaining 3
RREs, and report the best one. The average computation
time are also listed.

2We have also tried the setting that all the modes are with the same
rank as mostly investigated in previous work [20} |30l [31], while most of
the methods, including ours, perform similarly well. Therefore, we do not
include the results to save space.

3Defined as RRE = ||X — T||g/||T ||, where T and X denote the
ground truth and reconstructed tensors, respectively.

Table 1. Performance comparison of 9 competing TC methods on
synthetic data with rank setting (10, 20, 40) (upper) and (20, 40,
40) (lower). The best and the second best results in terms of RRE
are highlighted in bold with and without underline, respectively.

Method 20% 30% 40% 80% Avg. Time (s)
MC-ALM [26]  0.567 0.306 5.54e-2 1.76e-8 1.18
HaLRTC [31] 0.835 0.704 0.543 2.46e-8 1.42
t-SVD [52] 0.815 0.628 0.427 1.48¢e-4 21.5
TMac [44] 4.05e-3  1.44e-3  6.95e-4 1.80e-4 1.58
McpLRTC [9]  2.93e-5 2.26e-8 7.85e-12  5.23e-16 14.43
ScadLRTC [9] 2.94e-5 2.26e-8 7.85e-12  5.23e-16 14.46
RP-TCfrace 0.833 0.697 0.517 1.52e-8 5.70
RP-TCpnep 9.30e-6 4.70e-9  1.89%e-12  5.20e-16 18.23
RP-TCycaa 9.28e-6 4.28¢-9  9.78e-13  5.18e-16 18.07
Method 20% 30% 40% 80% Avg. Time (S)
MC-ALM [26]  0.783 0.646 0.503 1.36e-7 0.72
HaLRTC [31] 0.875 0.794 0.703 0.160 0.73
t-SVD [52] 0.937 0.838 0.726 9.72e-2 7.51
TMac [44] 0.943 0.192 5.55¢-3 3.31e4 2.83
MCcpLRTC [9] 0.973 0.498 1.85e-4  2.57e-14 10.63
ScadLRTC [9] 0.973 0.498 1.85e-4  2.57e-14 10.59
RP-TClace 0.875 0.793 0.701 0.119 2.89
RP-TCep 0.836  7.05e-4  6.86e-5 1.70e-14 12.86
RP-TCycad 0.833  5.23e-4 6.85e-5 1.74e-14 12.85

It can be seen from Table E] that, compared with other
competing methods, the proposed RP-TC ¢, and RP-TCypg
methods can accurately recover the tensor with very few ob-
servations (20% or 30%). Specifically, under the rank set-
ting (10, 20, 40), the proposed methods, together with three
other methods can recover the tensor with 20% observa-
tions, and the proposed methods perform slightly better than
the methods in [9]. Under the more challenging rank set-
ting (20, 40, 40), all methods failed with 20% observations,
while only the proposed methods can accurately recover the
ground truth tensor with 30% elements observed. It is also
observed that RP-TC,.. does not perform very well in this
tensor completion task. This is due to the fact that, as a re-
laxation for the rank of the unfolding matrix, trace norm is
not so tight, and thus makes the relaxation for the proposed
sparsity measure even looser.

As for computational cost, we can see that the pro-
posed methods with folded-concave relaxations have sim-
ilar amount of running time as the methods in [9], which
also used folded-concave penalties. Considering their bet-
ter performance, the cost is acceptable.

Multispectral image completion. Then we test the per-
formance of the proposed methods using multispectral im-
age data. Two well-known data sets, Natural Scenes 2002
[19f] and Columbia Multispectral Image Database [46
were considered. The former contains multispectral images
captured from 8 scenes, with 31 bands (varying wavelength
from 410nm to 710nm in 10nm steps) and spatial resolu-
tion 820 x 820 natural scene; the latter contains 32 real-
world scenes, each with spatial resolution 512 X 512 and 31
bands (varying from 400nm to 700nm in 10nm steps).

We used 2 images from Natural Scenes 2002 (Scene 4

4http://personalpages.manchester.ac.uk/staff/d.
h.foster/

°http://wwwl.cs.columbia.edu/CAVE/databases/
multispectral/
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Table 2. The average performance comparison of 9 competing TC methods with different sampling rates on 8 multispectral images.

Method 10% 20% 50% Avg. Time (5)
PSNR_SSIM_FSIM_ERGAS SAM | PSNR_SSIM_FSIM_ERGAS _SAM |PSNR_SSIM_FSIM_ERGAS _SAM | Columbia Natural Scenes
MC-ALM [26] | 2546 0.650 0.817 2757 0253|2872 0.776 0.882 1954 0.190 | 35.51 0936 0963 91.0 0.0999 | 30.1 123.1
HaLRTC [31] | 26.58 0710 0.824 2584 0210]30.98 0836 0905 1639 0.147 [ 39.98 0968 0981 613 00686 | 359.6 246.6
tSVD[52] | 3191 0.849 0919 1372 0.188]3696 0935 0964 80.0  0.126 | 4642 0989 0994 288 0.0515| 736.6 2075.1
TMac [44] 30.83 0752 0.879 1716 0239|3438 0846 0918 1224  0.183 [ 4097 0958 0976 548 00832 | 86.7 174.7
McpLRTC [9] | 31.55 0.803 0.894 154.1 0.191|3569 0.897 0943 988  0.134 | 44.01 0980 0989 39.1 0.0574 | 303.2 908.9
ScadLRTC [9] | 31.11 0774 0.882 172.1 0.224[3523 0873 0931 1114 0.59 | 4372 0977 0987 407 00622 | 3142 916.0
RP-TCyrace 2676 0.728 0.835 2512 0218 |31.80 0.864 0920 147.8 0.144 | 4245 0983 0990 43.6 0.0532| 1129 4832
RP-TCpep 3580 0936 0962 814 0.105| 4107 0976 0986 46.1 0.0629 | 51.74 0.998 0.999 13.6 0.0219 | 3419 1117.9
RP-TCyead 3570 0933 0961 819  0.107 | 4048 0.973 0984 486  0.0650 | 5140 0.998 0999 142  0.0229 | 390.6 1126.3
the proposed methods take similar time as methods in [9],
O O while much faster than t-SVD, which has the best perfor-
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() RP-TC,, ()RP-TC,,,

(f) McpLRTC
Figure 2. (a) The original images located in two bands of jelly-
beans and cloth; (b)-(j) The recovered images by MC-ALM [26],
HaLRTC [31], t-SVD [52], TMac [44], McpLRTC [9], ScadLRTC
[9], RP-TClrace, RP-TCiyep and RP-TCycaq, respectively.

(g) ScadLRTC (h) RP-TG ...

P d

and Scene 8) and 6 images from Columbia Multispectral
Image Database (balloons, beads, cloth, jelleybeans, pep-
pers and watercolors) in our experiments, and each image
was downsampled with half length and width of the original
one. Then we varied the sampling rate from 10% to 50%,
and applied TC methods to recovering the images. Similar
to the performance evaluation utilized by Peng et al. [33],
we employ the following five quantitative picture quality in-
dices (PQI) to assess the performance of a TC method: peak
signal-to-noise ratio (PSNR), structure similarity (SSIM)
[41], feature similarity (FSIM) [50], erreur relative glob-
ale adimensionnelle de synthese (ERGAS) [39] and spec-
tral angle mapper (SAM) [47]. Good completion results
correspond to larger values in PSNR, SSIM and FSIM, and
smaller values in ERGAS and SAM.

The averaged performances of each method over the 8
images under different sampling rates are summarized in
Table 2 (detailed results on each image are presented in sup-
plementary material). It can be seen that, in all cases, the
proposed RP-TCp,¢, and RP-TC,,q outperform other meth-
ods in terms of all the PQIs. Even at very low sampling
rate (10%), our methods can obtain good recovery of the
ground truth images. For running time, similar conclusion
can be made as in synthetic tensor completion. Specifically,

mance excluding our methods.

For visually comparison, we use two bands of jellybeans
and cloth images with 20% sampling rate to demonstrate the
completion results by the 9 competing methods, as shown
in Fig. 2. We can see that RP-TCy,¢, and RP-TCy,q get
evidently better recovery. Specifically, more details of the
texture, edge and surface are recovered by our methods.

6.2. Tensor robust PCA

Simulated multispectral image restoration. We first
test the proposed TRPCA models by restoring multispec-
tral images corrupted by artificially added noise. The idea
is motivated by the application of low-rank matrix based
method to image denoising [22]. In [22], Gu et al. pro-
posed an image denoising method by exploiting the low-
rank property of the matrix formed by nonlocal similar
patches. Compared with gray image studied there, multi-
spectral image has an additional spectral dimension. Be-
sides, the different spectral bands are generally highly cor-
related. Therefore, we can generalize the matrix based de-
noising method to tensor case using the proposed TRPCA
models. The idea is as follows: for a 3D tensor patch, we
search for its nonlocal similar patches across the multispec-
tral image, and reshape these patches to matrices; these ma-
trices are then stacked into a new 3D tensor, which is the
input of our TRPCA methods for denoising; we further ex-
tract the cleaned patches from the output of TRPCA and
aggregate them to restore the whole multispectral image.

We used 10 images from Columbia Multispectral Im-
age Database, including balloons, beads, chart and stuffed
toy, cloth, egyptian statue, feathers, flowers, photo and face,
pompoms and watercolors, for testing (more results are pre-
sented in supplementary material). Each image is resized
to 256 x 256 for all spectral bands, and rescale to [0, 1].
Gaussian noise with standard deviation o = 0.1 was added,
and 10% of the pixels were further randomly chosen and
added to salt-and-pepper noise. Mixing the two kinds of
noises aims to simulate real noise that can be found in re-
mote hyperspectral images [49]. We implemented the pro-
posed RP-TRPCA methods, and 3 competing methods, in-
cluding RPCA [26], HoRPCA [21] and t-SVD [52]. For
matrix based RPCA, we only considered the low-rank prop-

277









