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Abstract

We address a new partial person re-identification (re-

id) problem, where only a partial observation of a person

is available for matching across different non-overlapping

camera views. This differs significantly from the conven-

tional person re-id setting where it is assumed that the

full body of a person is detected and aligned. To solve

this more challenging and realistic re-id problem without

the implicit assumption of manual body-parts alignment,

we propose a matching framework consisting of 1) a lo-

cal patch-level matching model based on a novel sparse

representation classification formulation with explicit patch

ambiguity modelling, and 2) a global part-based matching

model providing complementary spatial layout information.

Our framework is evaluated on a new partial person re-id

dataset as well as two existing datasets modified to include

partial person images. The results show that the proposed

method outperforms significantly existing re-id methods as

well as other partial visual matching methods.

1. Introduction

Person re-identification (re-id) has been studied exten-

sively in the past five years [5, 30, 4, 37, 10, 20, 36]. It aims

to re-identify a target person in a new view after he/she dis-

appears from another view in a large public space covered

by multiple non-overlapping (disjoint) cameras. Solving the

re-id problem has many applications in video surveillance

for public security and safety.

To match a person across views, one has to deal with

large appearance changes of the person caused by a variety

of condition changes including lighting, view angle, pose,

and occlusion. Among these challenges, occlusion is one

of the hardest to tackle because the information loss is irre-

versible. Occlusions are commonplace in a crowded public
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Figure 1. An illustration of the partial person re-id problem. Here,

an operator wishes to know who the person is stealing in an office.

The only visible cue is the upper body clothing. The operator may

crop manually the visible parts and uses an automated re-id system

to match against a set of observations from elsewhere.

space with background clutters, where they can be caused

by other people in the scene, or static obstacles such as wall-

s/pillars. Sometimes occlusions can be caused deliberately.

For example, when a crime has been reported, the police

or CCTV operator who examines the surveillance footage

often discovers that only partial body of the suspect is visi-

ble at the crime scene because one deliberately tried to hide

one’s appearance (see Fig. 1). The goal is to find the same

person in full body appearance in other camera views given

only a partial probe image. We call this the partial person

re-identification problem.

There are two computational challenges for solving the

partial person re-id problem (see examples in Fig. 2). First,

with only partial information it is less discriminative thus

more likely to be mismatched to the wrong person. For ex-

ample if only a pair of blue jeans are visible, it is difficult

to use them to distinguish people as so many other people

may also wear similar jeans, whilst other more distinct body

parts were occluded. Second, it is difficult to determine a-

gainst which part of the full body the partial observation

should be matched. The partial appearance can be a ran-

dom part of a person and which body part it belongs to can
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Figure 2. Examples of partial person images (first row), and the

input partial part annotated by an operator for recognition (second

row) and the corresponding non-partial images (third row) in the

new Partial REID dataset introduced in this paper.

be ambiguous. For example if only a small part of a clothing

article is observed, it is extremely hard to tell whether it is

part of the upper or bottom garment. Manual part alignment

is a solution but it is unscalable. A perfect body part detec-

tor may also solve the problem but such a detector does not

exist under severe occlusions.

Existing person re-id approaches cannot solve the par-

tial person re-id problem. Regardless whether they are de-

signed for computing either cross-view invariant features or

distance metrics [4, 5, 30, 10, 20, 38, 14, 9, 26, 42, 22, 27,

25, 15, 37, 36, 33, 21, 18], the existing models all assume

that a full body appearance of each person is available. This

is also reflected in the existing benchmarking re-id datasets,

most of which consist of no occlusion or negligible occlu-

sions with carefully (manually) cropped full body images.

None of them is designed to test/evaluate re-id given severe

partial observations as probe images without manual align-

ment against fully observed images in a gallery.

To address the partial person re-id problem without man-

ual alignment of partial observation, we formulate a new

re-id framework consisting of two matching components.

The first component is based on patch-level local-to-local

matching. Specifically, we decompose the probe partial im-

age and the gallery images into small local patches. To

tackle the ambiguous nature of patch appearance during

the patch-based matching, we introduce a novel Ambiguity-

sensitive Matching Classifier (AMC) which computes an

ambiguity score at the patch-level between a probe and each

gallery patch. In order to perform gallery patch selection

during the matching, AMC is formulated in the context of

sparse representation classification. Specifically, the am-

biguity scores are used in the sparse modelling to guide a

selective search of similar gallery patches for each probe

patch in order to reduce the risk of mismatch. The sec-

ond component of our model is based on a global-to-local

matching by a detection-based matching model that treats

the visible part as an object and slides it exhaustively over

a gallery person image in order to provide the complemen-

tary matching information to the local-patch based model.

Finally, the outputs of the two complementary components

are fused in order to make the whole framework more robust

against occlusion and background clutter.

The main contributions of this work are: (1) it is the first

work that defines the partial matching problem for person

re-id, and (2) it proposes an effective computer vision mod-

el to fully address this problem. Extensive experiments are

conducted for evaluation. In particular, since the existing

benchmarks largely ignored this partial re-id problem, we

contribute a new dataset called Partial REID dataset, which

is specifically designed for this problem with a great deal

more partial instances (see Fig. 2). Moreover, modifica-

tion on two existing datasets are also carried out to simu-

late the partial re-id problem. Experimental results on all

three datasets show that the proposed model is effective in

addressing the partial person re-id problem, achieving sig-

nificant improvement over representative re-id methods ap-

plied to the same problem (at least 12% increase on Rank 1

matching accuracy). It also outperforms a number of alter-

native models designed for other partial matching problems

such as the less challenging partial face recognition.

2. Related Works

Person re-id remains an unsolved problem due to large

intra-class and inter-class variations caused by lighting

change, pose/view change, and (self-)occlusion. To ad-

dress these challenges, most of recent works can be cat-

egorised into two groups: methods that extract invariant

and discriminant features [5, 30, 4, 10, 20, 38, 14] and

methods that learn robust metrics or subspace for match-

ing [5, 9, 26, 42, 22, 27, 25, 15, 37, 36, 33, 21, 18]. There

are also works on the generalisation of re-id, e.g., transfer-

based [13], post-rank based [19], watch-list based for the

more realistic open-set setting [41], and spatial-temporal

based [16] re-id methods. Recently, deep learning [14] and

video-based modelling [29] are also introduced for person

re-id. However, all these works either explicitly or implic-

itly assume matching of full-body appearances with negli-

gible missing parts between the probe and gallery images.

They are thus ineffective for solving the partial re-id prob-

lem as shown in our experiments.

A number of existing person re-id methods consider a

part-based model which offers a partial solution to the oc-

clusion problem in re-id. A pictorial model was employed

for part-to-part matching for person re-id in [3]. Xu et

al. [34] introduced a cluster sampling based composition-

al part-based template method. However, these models rely

on prior knowledge about the part-based templates. In a

practical scenario, the observed part of a person may not be

a regular part defined by the templates. Lian et al. [16] in-

troduced a spatial-temporal Bayesian model which is able

to handle occlusions caused by multiple people walking
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Figure 3. Our partial person re-identification framework.

together and Zheng et al. [39] proposed group context to

overcome self-occlusion. 3D model [2] is also considered.

However, these methods still assume that the full body of a

person is detected (manually cropped). Under severe occlu-

sions, such full body detection is not obtainable even man-

ually. Although sparse model [8] is used for solving the

occlusion problem, it assumes that the alignment is given.

Beyond person re-id, occlusion has been studied exten-

sively in other computer vision problems. It is an especially

important topic in face recognition, since faces are often

occluded or self-occluded [12]. Recently, sparse represen-

tation or dictionary learning has been utilised for solving

the occlusion problem in face recognition [32, 43, 6, 35].

Liao et al. [17] proposed a multi-task sparse representation

for solving the partial face recognition problem. In order

to further take the structure of occlusion as prior knowl-

edge into consideration, Min et al. [23] proposed to first de-

tect the occlusion parts. Meng and Zhang [35] proposed

to use an occlusion dictionary to describe the occlusion,

and further improvements were reported in [24, 1]. Weng

et al. [31] proposed a robust feature matching method and

Hu et al. [7] proposed an instance-to-class metric for par-

tial face recognition. Our method is related to them in that

our local patch matching model is also based on a sparse

representation framework. However, the partial person re-

id problem has two unique characteristics that distinguish

it from the occlusion modelling in these methods for face

recognition. (1) The occlusion problem in person re-id is

much more unstructured since a person’s body appearance

(e.g. clothing) and deformation are much more diverse than

those of face. (2) The observed part of a person is also much

more diverse, with different sizes and resolutions, and thus

more ambiguous (see Fig. 2), compared with partial face,

since face has more uniform structure. Due to the above t-

wo reasons, the occlusion types on a body are more varied,

not only in texture but also in the resolution. Consequent-

ly it is much harder to detect what is the occluded part and

also construct an occlusion dictionary that describe all the

possible occlusion cases on body.

To overcome these unique challenges in person re-id,

in this work, we propose an Ambiguity-sensitive Matching

Classifier (AMC) in order to model explicitly the diversi-

ty and ambiguity of the occlusion patterns in partial person

re-id in our new sparse representation classification formu-

lation. Deploying the AMC to compute an ambiguity score

enables our model to learn a more robust sparse represen-

tation against measurement noise and intrinsic appearance

ambiguity. Unable to cope with these person re-id specific

challenges, some existing models for handling the occlusion

in face recognition such as [23, 35, 24, 1] cannot be directly

applied for the partial person re-id problem. Others yield in-

ferior performance compared to our model as demonstrated

in our experiments. Note that although the local modelling

adopted in [28] is related to the ambiguity score modelling

in our proposed AMC model, it does not result in sparse

coding. In addition, the method of [28] requires to compute

the inverse of a dictionary size matrix, which becomes too

costly for a large scale patch-based dictionary (e.g., larger

than 104), which is typical in re-id.

3. Methodology

In this work, we assume that in partial person re-id a

probe image contains only partial body of a person and the

task is to match this partial observation with a gallery con-

sisting of full-body images. This is based on a practical sce-

nario where a human operator has manually cropped the ob-

served body part and sent a query to a re-id system to search

for the same person in another camera view with full-body

images. Note that we do not assume the body part has been

named/labelled in the probe image, e.g. legs, left part of a

torso. This is challenging even for human operators.

As shown in Fig. 3, our partial person re-id framework

has two main matching components: a local-to-local re-id

model and global-to-local re-id model. Using the local-to-

local matching model, we decompose the partial observa-

tion into small patches, and perform matching at the patch

level. In contrast, using the global-to-local matching model,

we take the partial observation as a whole and search it in

each gallery image using a sliding window search strategy.

Both models have clear pros and cons: Local patch is less

affected by view/pose changes and non-rigid deformations

of human body. However, it contains less information than

the whole part, and the spatial layout information of differ-

ent patches is ignored during matching, thus incurring the

mis-alignment problem. In contrast, using the whole partial

observation as a searching unit enforces spatial layout con-

sistency, but suffers greatly from the view/pose changes and

body deformations. Therefore in our framework, the two

models are combined to produce the final matching model.

3.1. Local-to-Local Matching

The local-to-local matching model is based on pairwise

patch-based matching by sparse coding. After decompos-

ing both gallery and probe images into regular grid patch-
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es, we first construct multiple sets of patch level descriptors

from gallery images to form a dictionary. More specifically,

multi-patch features are first extracted for each image. Sup-

pose kc patches, pc1 , pc2 , · · · , pckc
, are obtained for class

(person) c in the gallery. If class c has multiple person im-

ages, we collect the patches from all of them. Next, for each

patch pci , we generate a M-dimensional feature vector dci

for representation (see Sec. 4.1 for details). Then, we have

kc patch feature vectors dc1 ,dc2 , · · · ,dckc
. Let

Dc = [dc1 ,dc2 , · · · ,dckc
] . (1)

So the gallery dictionary is built as

D = [D1,D2, · · · ,DC ] . (2)

D has a total of K =
∑C

c=1 kc patches, resulting in an M×K

dictionary, where C is the number of classes in the gallery.

Ambiguity-sensitive Matching. In order to achieve the

patch-based matching without manual alignment, we wish

to compute an ambiguity-sensitive coding of each probe

patch feature yi with respect to the gallery dictionary D,

and we denote such a coding as xi. We can estimate xi by

minimising a reconstruction error using the dictionary:

min
xi

‖yi −Dxi‖
2
2, (3)

That is, we aim to associate the probe partial image with a

person class label from the gallery images that contributes

the highest number of dictionary patches selected for the

reconstruction of the probe. However, there is a flaw in the

above reconstruction process – for each patch of the probe

image, as the dictionary consists of a pool of all the patch-

es from all the gallery images, it is free to use any patch

from any class/person. In other words, for reconstructing

each probe patch, there is no constraint on the selection of

gallery patches such that those patches similar to the probe

are more likely to be selected for the reconstruction. As

a result, some visually distinct patches can and will be se-

lected because a linear combination could yield the best re-

construction. Critically, this cannot be addressed explicitly

by a sparsity constraint on the coding xi (introduced later).

This is essentially an unsolvable problem, because the la-

bel of the probe is assumed unknown. However, it is still

possible to alleviate this problem by avoiding the selection

of a gallery patch that looks nothing like the probe patch,

but when combined with other patches, produces the mini-

mal reconstruction error. To this end, we measure the visual

dissimilarity as matching ambiguity at the patch level, be-

tween the probe patch and each of the gallery patch, so as

to constrain the gallery patch selection for reconstruction.

More specifically, given a probe patch, each gallery

patch’s suitability for reconstructing the probe patch is mea-

sured using a score, which we call ambiguity score. The

ambiguity score is defined by a Gaussian-shaped kernel

Gσ(x) = 1√
2πσ

exp(− x2

2σ2 ), where σ2 is estimated by aver-

aging the Euclidean distance between patches in the train-

ing images. Now, given a probe patch feature yi, for every

patch feature dj from the gallery dictionary (D ∈ RM×K),

the ambiguity score is denoted as

paij = −Gσ(D(yi,dj)) , j = 1, 2, · · · ,K , (4)

where D(·) is Euclidean distance. For a probe image with n

patches, a patch ambiguity score matrix is computed:

pa = [pa1,pa2, · · · ,pan] , (5)

where pai = [pai1 , pai2 , · · · , paiK ]T , i = 1, 2, · · · , n, is a

K-dimensionality vector computed from Eq. (4) and n is

the number of probe patches. pa is a K × n matrix.

We consider that the more ambiguous it is between yi

and dj (i.e. larger paij ), the less likely should dj be selected

for reconstructing yi. Therefore, we wish to find a coding

vector xi such that xi is positively correlated to −pai. This

is formulated by the following sparse coding model:

min
xi

‖yi −Dxi‖
2
2 + αpa

T
i xi, i = 1, · · · , n, (6)

where α ≥ 0. In practice, one can further constrain the spar-

sity of coding vector xi, since few gallery patches should be

used for reconstructing each probe patch. Our sparse repre-

sentation formulation thus becomes:

min
xi

‖yi −Dxi‖
2
2 + αpa

T
i xi + β‖xi‖1, i = 1, · · · , n, (7)

where β ≥ 0 constrains the strength of the sparsity con-

straint. Let Y = [y1, · · · ,yn], columns of which are the

features of the n patches contained in a probe image and

X = [x1, · · · ,xn] ∈ R
K×n is the corresponding ambiguity

coefficient (coding) matrix. Similar to sparse representation

classification, we classify a probe partial person image Y to

class ĉ by

ĉ = argmin
c

rc(Y) =
1

n

n∑

i=1

‖yi −Dcδc(xi)‖
2
2 , (8)

where δc is a function that selects the coefficients associated

with the cth class. The sum of reconstruction residuals of n

patch features is the basis on which we determine the iden-

tity. We call the above classifier as an ambiguity-sensitive

matching classifier (AMC).

Discussions. Our local-to-local model is designed to cope

with severe occlusions, and is intrinsically insensitive to

mis-alignment and the presence of background patches.

In particular, the proposed ambiguity-sensitive matching is

formulated precisely to address the individual local patch

mis-alignment problem and minimise the distraction caused

by the background patches. This is because it essential-

ly does a patch-to-set-of-patches matching, optimised a-

gainst the reconstruction error, thus avoiding the error-prone
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Figure 4. An example of our AMC model used for partial person

matching. From left to right are the partial observation annotated

by operators, the reconstruction error based on gallery patches of

each person, the retrieved more similar gallery patches, and the

matched gallery person image. It shows that our proposed method

(AMC, denoted in red bar) can retrieve more similar patches from

the right gallery person image against clutter background, com-

pared to the standard sparse method without ambiguity modelling

(MTSR [17], denoted in blue) .

patch-to-patch matching. Background patches are automat-

ically excluded due to their low visual similarity and high

ambiguity score. In Fig. 4, an example of local-to-local

matching using our model is shown to demonstrate how our

approach can effectively handle severe occlusions and the

effects of background patches.

Optimisation of Ambiguity-Sensitive Matching. Min-

imising Eq. (7) is equivalent to minimising the following

min
xi

1

2
x
T
i D

T
Dxi − (DT

yi −
α

2
pai)

T
xi +

β

2
‖xi‖1. (9)

Let A = DTD, B = −(DTyi −
α
2 pai), λ = β

2 . Then,

Eq. (9) is rewritten as

x̂i = argmin
xi

1

2
x
T
i Axi +B

T
xi + λ‖xi‖1. (10)

In this work, we utilise the feature-sign search algorithm

[11] to solve the optimisation problem in Eq. (10). The al-

gorithm is summarised in Algorithm 1.

3.2. Global-to-Local Matching

The local patch-based matching model presented above

does not capture the spatial layout information of local

patches. In particular, there is no guarantee that given a par-

tial person probe image, the matched gallery local patches

form a coherent and compact regions corresponding to the

same body parts in the probe. To overcome this limitation,

we further consider a sliding window matching (SWM) pro-

cess to perform global-to-local matching, i.e. the match-

ing between the whole partially observed appearance of a

Algorithm1 : The Optimisation Algorithm for AMC

Initialise: xi = 0, s = 0 where sj ∈ {−1, 0, 1} denotes sign(xij
), and active

set Ω = {}.

1: while 1 do

2: Compute G =
∂( 1

2
x
T
i Axi+B

T
xi)

∂xi
= Axi + B.

3: Select j = argmaxj |Gj | , j ∈ {j|xij
= 0}

4: If Gj > λ, then set sj = −1, Ω = Ω ∪ {j}.

5: If Gj < −λ, then set sj = 1, Ω = Ω ∪ {j}.

6: while 1 do

7: Let Â contain intersections between columns and rows of A correspond-

ing to Ω. Let B̂, x̂i and ŝ be a subvectors of B, xi and s corresponding

to Ω.

8: For the Quadratic Programming(minx̂i
1
2 x̂

T
i Âx̂i+B̂

T
x̂i+λŝT x̂i),

compute the analytical solution x̂
new
i = −Â

−1(B̂ + λŝ).

9: Perform a discrete line search on the closed line segment from x̂i to

x̂
new
i : Check the objective value at x̂new

i and all points where any coef-

ficient changes sign, then update x̂i and the corresponding entries in xi

to the point with the lowest objective value.

10: Remove 0 coefficients of x̂i from Ω, update G and s.

11: If Gl + λsl = 0, l ∈ {l|xil
�= 0}, break.

12: end while

13: If |Gl| ≤ λ, l ∈ {l|xil
= 0}, break and return xi as the solution.

14: end while

probe person image and any local portion of a gallery im-

age. Specifically, given a probe partial image of a person,

we represent it using the same features as used in the last

section. We set up a sliding window of the same size as

the probe image. We then search for the most similar im-

age region within each gallery image by sliding the window

in each of the gallery images (the sliding search step is 5

pixels in our experiments). We use L1-norm to measure

the distance between the probe and the gallery image re-

gion within the sliding window. We compute a minimum

distance lc for the c-th class of gallery images. Therefore a

minimum distance vector for all the C classes is denoted as

Ldist = [l1, l2, · · · , lC ]T . (11)

Subsequently, an unknown probe image can be identified as

class ĉ = argmin
c

lc, c = 1, 2, · · · , C.

3.3. Classification

Given a probe partial person image with n patches, a sum

fusion among reconstruction residuals of all patch features

with respect to each class is calculated from Eq. (8). It can

be denoted as Rdist = [r1, r2, · · · , rC ]T . We combine it

with the distance vector in Eq. (11). The final distance vec-

tor can be written as

Sdist = γRdist + (1− γ)Ldist, (12)

where γ is a weight for regulating the effect of local distance

and global distance. Finally, the identity of the probe image

can be determined by ĉ = argmin
c

sc, where sc is the cth

entry of Sdist. We denote the above fusion model for com-

bining our ambiguity-sensitive matching classifier (AMC)

and sliding window matching (SWM) as AMC-SWM.
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4. Experiments

4.1. Datasets and Settings

New Partial REID Dataset. There is no partial person re-id

dataset publicably available. To fill this gap, we contribute a

new partial person dataset named Partial REID. The dataset

includes 600 images of 60 people, with 5 full-body images

and 5 partial images per person. The images were collect-

ed at an university campus with different viewpoints, back-

ground and different types of severe occlusions (see Fig. 2).

The new dataset will be released on our website soon.

Two Simulated Datasets. Two simulated partial person

datasets named P-iLIDS and P-CAVIAR were also used for

evaluation, which are based on i-LIDS [40] and CAVIAR

[3], respectively. In the i-LIDS dataset, there are 119 peo-

ple with total 476 person images captured by multiple non-

overlapping cameras. Different from most other datasets,

the original images have fair amount of occlusion, some-

times rather severe, caused by people and luggage. For each

person, we generated its partial observation by selecting the

most occluded image of that person and then manually crop

the un-occluded part of the same person image to create the

P-iLIDS dataset (see Fig. 5). The CAVIAR dataset contains

1220 images of 72 individuals from 2 cameras in a shopping

mall. We randomly selected half of holistic images of each

person to generate the partial images (see Fig. 5).

Compared Methods. For comparison, six existing repre-

sentative re-id models were considered, including the rela-

tive distance comparison (RDC) method [42], the ranking

based model using PRSVM [26], the local fisher discrim-

inant analysis (LFDA) [25], the KISSME distance learn-

ing method [9], locally-adaptive decision functions (LADF)

[15] and the non-learning distance based L1-norm match-

ing. However, existing re-id methods are not designed for

solving the partial person re-id; they are thus not expected

to be competitive. Hence, we also selected some representa-

tive models that address the related partial face recognition

problem. These include the multi-task sparse representation

(MTSR) [17] proposed for partial face modelling, and the s-

tandard sparse representation classifier (SRC) [32] which is

a general-purpose classifier but has obtained strong perfor-

mance on recognising face images with occlusion.

Features. All methods were evaluated using the same set

of features for fair comparison. Specifically, features were

extracted from a 16 × 16 support area, and these support

areas were densely sampled with an overlap of half of the

width/height of the supporting area in both horizontal and

vertical directions. Each region was represented by a 16-bin

histogram of 8 colour channels (RGB, YCbCr, HS), unifor-

m LBP histograms and HOG descriptors. So each patch

was represented by a 484-dimensional feature vector. The

partial image size was normalised to 128× 48 pixels for the

compared re-id methods in our experiments, and a total of

Figure 5. Examples of partial person images (first row) and the cor-

responding full images (second row). From left to right, columns

1–3 are from P-iLIDS, and columns 4–6 are from P-CAVIAR.

75 regions were selected, resulting in a 36300-dimensional

vector. In contrast, the image size was not normalised in our

method. Each image was represented by a feature matrix,

and each column is a feature vector of each 16 × 16 patch,

resulting in a 484×m matrix, where m is the number of re-

gions per image and may be different for different images.

Settings. Both single-shot and multi-shot experiments were

conducted. The test sets of all datasets were randomly se-

lected using 70% of the individuals. Specifically, there are

p = 42, p = 50, and p = 83 individuals in each of the test

sets for the Partial REID, P-CAVIAR and P-iLIDS datasets,

respectively. Each test set was composed of a probe set and

a gallery set. The probe set consists of all partial images

per person, and the holistic person images were used as the

gallery set. This procedure was repeated 10 times. For eval-

uation, we used the average cumulative match characteristic

(CMC) curves to measure the matching performance.

In most conventional person re-id works and most exper-

iments in this work, the gallery vs. probe is in a closed-

set setting, i.e. the probe and gallery contain exactly the

same set of people. To see how our algorithm perform-

s against imposters, we also provide the ROC curves for

open-set testing, under which images of 30% of the gallery

people were randomly removed in each closed-set testing

case. Due to the space limitation, we only provided the

ROC curves in the single-shot experiments.

4.2. Evaluations on the Partial REID Dataset

Single-shot Experiments. Single-shot re-id means that a s-

ingle (N=1) image is used as the gallery image for each per-

son. Firstly, we compared our AMC-SWM against existing

re-id methods including PRSVM, RDC, L1-norm, LFDA,

KISSME and LADF. The CMC curves in Fig. 6 show clear-

ly that much worse performance is obtained when using

these conventional re-id methods compared to our method.

This is because that the same person’s appearance will ex-

perience dramatic changes in the partial re-id setting and

these methods assume full body detection for both the probe

and gallery images. They thus all perform more poorly on

this more challenging partial re-id task. We then compared

the proposed AMC-SWM with the two representative par-

tial face recognition methods MTSR and SRC. Among the

two, MTSR is closely related to our AMC model because
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Figure 6. Performance comparison on the Partial REID dataset: CMC curves with rank-1 matching rate, and ROC curves with area-under-

curve (AUC) values (p = 42, best viewed in colour)
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Figure 7. Performance comparison on P-CAVIAR dataset: CMC curves and ROC curves (p = 50)

it also employs sparse coding for local patch modelling.

The main difference is that AMC incorporates the ambigu-

ity score to guide the local-to-local patch-based matching.

Figure 6 shows that MTSR is much more competitive than

the six compared full-body person re-id models. However,

our AMC still achieves at least 3% higher matching rate at

rank-1 and our whole algorithm AMC-SWM outperforms

MTSR by a large margin by comparing Table 1 and Fig. 6.

In contrast, the SRC model yields very weak performance.

This is because although SRC is also a sparse-based clas-

sifier, it directly uses the entire input partial images rather

than local patches. It is thus sensitive to the severe mis-

alignment problem. Similar results are also observed on the

ROC curves under the open-set setting (see Fig. 6(d)).

Multi-shot Experiments. We also evaluated our AMC-

SWM method under the multi-shot setting (N=2 and N=5)

on the Partial REID dataset. The results are shown in Fig. 6.

Overall, similar results are obtained as in the single-shot ex-

periments. In particular, the results show that multi-shot

helps, since the matching rate of AMC-SWM increases

from 53.14% (N=1) to 73.62% (N=5) at rank-1. In con-

trast, the performance improvement to the other existing re-

id methods are also more modest when compared to that of

the AMC-SWM model. For instance, KISSME increases

from 24.95% (N=1) to 30.48% (N=5) at rank-1. Although

MTSR also performs better when more samples are used,

the gap between MTSR and AMC-SWM increases at rank-

1 score (a 11% difference at N=1 was increased to 14%

at N=5). Again the SRC which performs directly on input

partial images does not perform well.
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Figure 8. Performance comparison using CMC and ROC curves

on the P-iLIDS dataset (N=1), (p = 83)

4.3. Evaluations on the Simulated Datasets

The proposed AMC-SWM was also compared with the

existing methods on the two simulated partial re-id datasets

P-CAVIAR and P-iLIDS. The results are shown in Figs. 7

and 8. Since there is always only one pair of images for each

person in i-LIDS, we only report single-shot results (N =

1). It is evident that all the observations from the results on

the Partial REID dataset experiments remain valid for these

two simulated datasets. For instance, on P-CAVIAR, AMC-

SWM gains 7.5% at N = 1 and 12% at N >= 2 for rank-1

performance over the second best performed model MTSR.

The gap become even bigger on P-iLIDS which contains

more naturally occluded person images than P-CAVIAR.

4.4. Further Analysis

Contributions of Individual Components. Our proposed

method consists of two matching components: AMC and
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Methods
N=1 N=2 N=5

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10

AMC-SWM 53.14 76.43 85.29 62.43 83.62 89.57 73.62 89.43 93.29 Partial REID

AMC 45.19 70.29 81.00 53.48 77.43 87.19 63.86 86.57 91.48 p = 42

SWM 47.24 71.05 80.57 56.00 77.67 86.10 65.24 85.10 90.91

KLFDA 23.47 47.43 60.90 27.00 49.76 63.05 30.90 52.95 65.67

AMC-SWM 47.64 71.52 79.80 64.16 83.44 89.92 82.08 94.40 97.24 P-CAVIAR

AMC 44.72 67.52 78.32 59.48 82.00 88.68 78.84 92.20 95.56 p = 50

SWM 44.16 65.08 74.72 58.88 78.12 85.96 76.92 91.28 95.32

KLFDA 27.88 57.00 70.92 33.28 64.04 77.72 37.96 71.52 84.36

AMC-SWM 37.33 59.07 70.13 - - - - - - P-iLIDS

AMC 31.87 52.80 59.60 - - - - - - p = 83

SWM 35.73 54.53 65.87 - - - - - -

KLFDA 20.27 37.33 47.73 - - - - - -

Table 1. Further Analysis on AMC-SWM

SWM. In Table 1, we evaluated the two components on how

they contribute to the full model. The results show that both

of them are effective on their own (each outperforms all the

compared methods). Moreover, when combined, the best

performance is achieved. This validates our design consid-

eration in that the two matching components are comple-

mentary and should be combined.

Evaluation on Effect of Kernel-based Method. Recently,

Kernel LFDA (KLFDA) [33] achieved good performance

for conventional person re-id [33] indicating that kernelisa-

tion helps. For partial person re-id problem, we addition-

ally evaluated its effect in Table 1. Compared to LFDA in

Figs. 6, 7 and 8, KLFDA does not differ from LFDA on the

performance for partial re-id. This suggests that the effect

of kernelisation diminishes for partial person matching.

Influence of Parameters. We evaluated two key parameter-

s in our modelling, the strength of the ambiguity modelling

(i.e. α in Eq. (7)) and the weight to combine two matching

models (i.e. γ in Eq. (12)). Due to space limitation, we on-

ly show results on the Partial REID dataset, similar results

were obtained from the other datasets. As shown in Fig. 9,

overall the effects of both parameters are small. When α is

approximately 5 and γ is around 0.7, the proposed AMC-

SWM model achieves the best performance.

4.5. Discussions

Our experiments show that the existing person re-id

methods including RDC, KISSME and LADF perform

poorly for partial person re-id when compared to the pro-

posed AMC-SWM model. This is expected because these

methods assume that full body appearance of a person is

available for matching. When this assumption is invalid,

there is no mechanism in these models that can cope effec-

tively with the challenges of matching a partial observation

against a full observation across camera views.

A more sensible solution is to build a model specifically

designed for matching the partial observation against part of

a full observation. Such a model does not exist in existing

person re-id works but has plenty of options in the related

field of partial face recognition. Indeed, the MTSR mod-

el, originally designed for partial face recognition, has been
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Figure 9. Evaluation of different parameter (Eqs. (7)& (12)) using

AUC curves on Partial REID (N=1).

shown in our experiments to be more effective than other

full-body based re-id methods. However, without consider-

ing person re-id specific constraints, MTSR is notably infe-

rior to the proposed AMC model. This suggests that there

are far great ambiguity in the person body patch appear-

ance. Particularly, many utility patches exist which can be

combined to approximate any given patch in a probe im-

age. The ambiguity score introduced in our AMC model

is specifically designed to overcome this patch ambiguity

problem by preventing visually dissimilar gallery patches

from being used for reconstructing the probe patch. This

contributes to the improvement of the proposed AMC over

MTSR. Finally, the best performance of the proposed full

AMC-SWM model suggests that combining the global and

local matching models in this paper is the optimal solution

as it exploits the complementarity of the two models.

5. Conclusion

We have considered a new and more realistic person re-

identification challenge: the partial person re-identification

problem. To address the unique challenges associated with

this new re-id problem, we proposed a novel framework that

consists of a local-to-local matching model and a global-

to-local matching model. Both models are specifically de-

signed to address the partial re-id problem and are com-

plementary to each other. The effectiveness of our models

has been demonstrated by extensive experiments on three

datasets including a new partial person re-id dataset intro-

duced in this paper. Future work includes extending our

model to handle multi-scale images of body parts when they

are of very different scales. As a simple solution, the image

of each scale can be matched using the proposed method,

followed by fusing the matching scores or selecting the s-

cale with the highest score.
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