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Abstract

We target the sparse 3D reconstruction of dynamic ob-

jects observed by multiple unsynchronized video cameras

with unknown temporal overlap. To this end, we develop

a framework to recover the unknown structure without se-

quencing information across video sequences. Our pro-

posed compressed sensing framework poses the estima-

tion of 3D structure as the problem of dictionary learning.

Moreover, we define our dictionary as the temporally vary-

ing 3D structure, while we define local sequencing informa-

tion in terms of the sparse coefficients describing a locally

linear 3D structural interpolation. Our formulation opti-

mizes a biconvex cost function that leverages a compressed

sensing formulation and enforces both structural depen-

dency coherence across video streams, as well as motion

smoothness across estimates from common video sources.

Experimental results demonstrate the effectiveness of our

approach in both synthetic data and captured imagery.

1. Introduction

Scene reconstruction from photo collections has reached

a high level of maturity due to the recent progress in struc-

ture from motion and stereo estimation [21, 28, 15]. Despite

these tremendous advances, these methods only reconstruct

the static parts of the environment captured by the photo

collections. However, most real-life videos and photos have

dynamic elements, e.g., imagery with people as the main

object of interest. Take, for example, videos captured at

music concerts, sports events, etc. It is these dynamic ob-

jects that we often aim to capture as they bring the static

scenes to life. The reconstruction of the dynamic objects

in these scenes using videos or photos currently falls far

behind the maturity for reconstruction of static scene el-

ements. There are some early approaches towards recon-

structing dynamic scene elements from ad-hoc capture sce-

narios [17, 20]. However, there are significant challenges

ahead in order to leverage uncontrolled video capture such

as those available in crowd sourced video collections.

In this paper, we specifically target the reconstruction
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Figure 1: (left) Example frame from the multiple videos

capturing a performance serving as input to our method,

with overlaid structure (points), and (right three) different

views of the reconstructed 3D points. Note that our method

only estimates the 3D points but no topology. The skeleton

lines are only added for visualization purposes.

of the shape of dynamic objects captured by a variety of

unsynchronized video cameras (See Fig. 2). This setup is

encountered, for example, when several people capture an

event, such as people dancing, each using their own cam-

eras. In that case, all videos capture the same event, but

since the cameras are not synchronized, the temporal order

of the frames is only known within each video sequence.

Hence, we propose a solution to determining 3D dynamic

structure without inter-sequence temporal information, ac-

counting for the potentially different and unknown frame

rates of the cameras. Fig. 1 shows one sample output of our

approach.

Despite its high relevance to real-life video collections,

there are currently no methods that can successfully ad-

dress this problem. Existing methods for shape reconstruc-

tion [19, 23] inherently require temporally ordered image

sequences (sequencing information) to reconstruct the 3D

points of the dynamic objects. As explained above, with

independently captured videos, it is challenging to provide

this sequencing information. Zheng et al. [29] recently pro-

posed to jointly estimate the photo sequencing and 3D point

estimation based on object detections by solving a general-
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Figure 2: (left) Multiple videos capture a performance, which serves as input to our method, and (right) each input video has

a different sampling of a 3D point’s trajectory.

ized minimum spanning tree (GMST) problem. However,

the GMST problem itself is NP hard, which makes the al-

gorithm not scalable. In this paper, we propose a continu-

ous formulation that jointly poses the problems of dynamic

structure estimation and cross-stream image sequencing as

a compressive sensing dictionary learning task [11, 1].

The remainder of the paper is organized as follows. We

briefly discuss the related work in Section 2. After this dis-

cussion, we introduce the foundations of our novel proposed

approach in Section 4, followed by a detailed introduction

to our model for shape estimation without sequencing in

Section 5. Section 6 then describes our proposed efficient

optimization solver to minimize the model. We conclude

the paper with an experimental evaluation of the proposed

approach on real and synthetic data in Section 7.

2. Related Work

Our work is closely related to trajectory triangulation

from a monocular image sequence [2, 19, 23, 29, 30]. Avi-

dan and Shashua [2] first coin the task of trajectory tri-

angulation that reconstructs the 3D coordinates of a mov-

ing point from monocular images. Their method assumes

the dynamic point moves along simple parametric trajecto-

ries, such as straight line or conic section. Park et al. [19]

represent the trajectory with a linear combination of low-

order discrete cosine transform (DCT) bases, and the tra-

jectory is triangulated by estimating the coefficients of the

linear combination. There are two fundamental limitations

of the method as observed in [23]. First, there is no au-

tomated scheme to determine the optimal number of DCT

bases. Second, the correlation between the object trajectory

and the camera motion inherently limits the reconstruction

accuracy. Valmadre et al. [23] overcomes the first limita-

tion by proposing a new method without using DCT bases.

They estimate the trajectory by minimizing the trajectory’s

response to a bank of high pass filters. To overcome the sec-

ond limitation, Zhu et al. [30] propose to incorporate the 3D

structures of a number of key frames to enhance the recon-

structability. However, obtaining those key-frame 3D struc-

tures requires interaction from human users. The methods

in [19, 23, 29, 30] require the sequencing information of the

images, but in natural capture setups, the availability of se-

quencing information and high reconstructability typically

cannot be fulfilled simultaneously [30].

Zheng et al. [29] address a slightly different problem.

They triangulate the object class trajectory, which is defined

by the connection of the objects of the same class moving

in a common 3D path, from a collection of unordered im-

ages. Their method jointly estimates the trajectory and se-

quencing, but has low scalability and efficiency due to the

NP hard GMST problem. In contrast, our proposed method

reconstructs the dynamic objects without sequencing infor-

mation across videos.

One class of related works solve the non-rigid structure

from motion (NRSFM) problem that targets simultaneous

recovery of the camera motion (rotation) and the 3D struc-

ture using image sequence. These methods typically start

from a set of 2D correspondences across frames, obtained

by optical flow or graph match based matching algorithms

[27]. The work by Bregler et al. [8] tackles the NRSFM

problem through matrix factorization, with the assumption

that deforming nonrigid objects can be represented by a

linear combination of low-order shape bases. It was later

shown that in order to achieve a unique solution, more than

just the orthogonality constraints have to be used [26]. To

solve this shape ambiguity, prior knowledge is required to

obtain a unique solution. Not until very recently, Dai et al.

[10] propose a new prior-free method.

As a dual method to above shape-based methods, Akhter

et al. [16] propose the first trajectory-based NRSFM ap-

proach, which leverages DCT bases to approximately rep-

resent object point trajectories. While shape-based NRSFM

approaches typically do not require the sequencing informa-

tion, trajectory-based approaches completely fail if image

frames are randomly shuffled (as shown in [10]).

At first glance, it seems the shape-based approaches can
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be applied to our problem without much modification. Nev-

ertheless, these approaches assume orthographic camera

model. It has been shown empirically that the extension of

these methods to projective camera model is not straight-

forward [19]. There are approaches for projective non-

rigid shape and motion recovery based on tensor estimation

[14, 24], but this difficult problem is still under on-going

research. Moreover, the NRSFM methods only recover the

shape of the object without absolute translation.

Sequencing information is important in trajectory trian-

gulation. Recently, Basha et al. [5, 6] target the problem

of determining the temporal order of a collection of photos

without recovering the 3D structure of the dynamic scene.

The method in [5] relies on two images taken from roughly

the same location to eliminate the uncertainty in the se-

quencing. Basha et al. [6] later introduce a solution that

leverages the known temporal order of the images from each

camera. Both of these methods assume dynamic objects

move closely to a straight line within a short time period, but

in practice points can deviate considerably from the linear

motion model. Tuytelaars et al. [22] propose a method to

automatically synchronize two video sequences of the same

event. They do not use any constraints from the scene or

cameras, but rather rely on point correspondences among

the video sequences.

3. Problem and notations

Let {I} denote an aggregated set of images attained

from N video sequences {Vn}. Assuming a total of F

available images we can denote each individual image as

If ∈ {I}, where f = 1, . . . , F . Alternatively, we can re-

fer to the m-th frame in the n-th video as I(n,m) ∈ {Vn},

where n = 1, . . . , N and m = 1, . . . , |{Vn}| .

We now discuss the parametrization of 3D structure

within our framework. We assume an a priori camera reg-

istration through structure-from-motion analysis of static

background structures within the environment [25]. Ac-

cordingly, for each available image If we know the cap-

turing camera’s pose matrix Mf = [Rf | −RfCf ], along

with its intrinsic camera matrix Kf .

Without loss of generality, we assume each image If
captures a common set of P 3D points {X}, and assume

correspondences of image features x(f,p), f ∈ {1, . . . , F}
across images are available. Then for each image feature

x(f,p) with p ∈ {1, . . . , P}, we can compute a viewing ray

with direction

r(f,p) = R
⊤
f K

−1
f

[

x(f,p)

1

]

.

Hence, the position of the dynamic 3D point X(f,p) corre-

sponding to x(f,p) can be described by the distance along

the ray r(f,p) given by

X(f,p) = Cf + d(f,p)r(f,p), (1)

where d(f,p) is the unknown distance of the 3D point from

the camera center.

Given F frames with each frame observing P dynamic

3D points, we denote our aggregated observed 3D datum as

X =







X(1,1) · · · X(1,F )

...
. . .

...

X(P,1) · · · X(P,F )






= [S1 · · · SF ] (2)

where the f -th column of the matrix X, denoted as Sf , is

obtained by stacking all the P 3D points observed in the f -

th frame. Since the point X(f,p) has one unknown variable

d(f,p), we denote the matrix describing each of the depen-

dent variables associated with X as

d =







d(1,1) · · · d(1,F )

...
. . .

...

d(P,1) · · · d(P,F )






. (3)

The use of d within our framework will be explained in

section 6. Our task is to recover X from the 2D measures

without image sequencing information across videos.

4. Principle

We first describe the observations motivating our solu-

tion before presenting a detailed description of our proposed

method for determining 3D structure from a set of unsyn-

chronized videos.

For our method, we assume a smooth 3D motion under

the sampling provided by the videos. Hence, we can ap-

proximate the observed 3D structure Sf observed in image

f in terms of a linear combination of the structures corre-

sponding to the set of immediately preceding (Sprev) and

succeeding (Snext) frames in time. In this way, we have

Sf ≈ t · Sprev + (1− t) · Snext, (4)

for 0 ≤ t ≤ 1. If our structure matrix X from Equation

(2) was temporally ordered, which it is not in general, the

two neighboring frames would be Sf−1 and Sf+1. Clearly,

such perfect temporal order can be extracted from a single

video sequence. However, the reconstructibility constraints

[23, 29] make single camera structure estimation ill-posed.

Hence, we rely on inter-sequence temporal ordering infor-

mation to solve the 3D trajectory triangulation problem.

The absence of a global temporal ordering requires us to

search for temporal adjacency relations across the different

video streams of potentially different frame rates.

In the most simple scenario, the pool of candidate neigh-

boring frames is comprised by all other frames except f .

Writing the 3D points of the current frame Sf as a linear

combination of other frames, we have

Sf = XTf , (5)
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where Tf =
(

t(f,1), . . . , t(f,f−1), 0, t(f,f+1), . . . , t(f,F )

)⊤

is a vector of length F representing the coefficients for the

linear combination. Note that the f -th element in Tf equals

0, since the f -th column of X (corresponding to Sf ) is not

used as an element of the linear combination. Moreover,

since only the structure estimates Sj in the close temporal

neighborhood of Sf are likely to provide a good approxi-

mation, we expect the vector Tf to be sparse. Accordingly,

we propose to find the local temporal neighborhood of a 3D

point set Sj through a compressive sensing formulation by

introducing the l1 norm as follows,

minimize
Tf

||Sf − XTf ||
2
2 + λ||Tf ||1, (6)

where λ is a positive weight. Here, the l1 norm serves as an

approximation of the l0 norm and favors the attainment of

sparse coefficient vectors Tf [3].

Moreover, we incorporate the desired properties of our

linear combination framework (Eq. (4)) and reformulate

Eq. (6) as

minimize
Tf

||Sf − XTf ||
2
2

subject to Tf · 1F×1 = 1

Tf ≥ 0 ∀f ∈ {1, . . . , F}.

(7)

The affine constraints of Eq.(7) constrain the variable Tf to

reside in the simplex ∆f defined as

∆f , {Tf ∈R
F s.t. Tf ≥0, t(f,f) = 0 and

F
∑

j=1

t(f,j)=1}

(8)

Eq. (7) is a variant of compressive sensing that still keeps

the sparsity-inducing effect [3, 9]. For the considered prob-

lem of sequencing with known structure, we know that

the sparsity can be achieved at the point that satisfies the

simplicial constraint. A similar formulation has been used

in modeling archetypal analysis for representation learning

[9]. They also provide a new efficient solver for this kind of

problem.

Finally, we generalize our formulation from Eqs. (6) and

(7) to include all available structure estimates Sf , with f =
1, . . . , F into the following equation

minimize
T

||X− XT||2F

subject to Tf ∈ ∆f , f = 1, · · · , F
(9)

where || · ||F denotes the Frobenius norm, and T =
[T1 . . . TF ] is an F×F matrix with the f -th column equal

to Tf . By construction, the matrix T has all the diagonal el-

ements equal to zero.

As an illustration of the validity of our compressed sens-

ing formulation, Fig. 3 shows the output of Eq. (9) on a

Figure 3: We illustrate the output of Eq. (9) on a real motion

capture data of 13 3D points over 150 frames. Each element

in X corresponds to a ground truth coordinate value. The es-

timation of T through l1 compressive sensing approximates

the correct ordering after enforcing all elements in the diag-

onal to be equal to 0.

“faint” real motion capture dataset presented in [19] given

the known 3D points X. Although image sequencing is as-

sumed unknown, we show results in temporal order for vi-

sualization purposes. The coefficients in T approximate a

matrix having non-vanishing values only on the locations

directly above and below the main diagonal. This indicates

that, in this specific example, the 3D points Sf are a linear

combination of Sf−1 and Sf+1.

Minimizing Eq. (7) is equivalent to finding most related

shapes to linearly represent Sf . It is usually true that the

temporally close shapes Sf−1 and Sf are most related, and

therefore it is able to reveal the local temporal information

based on the non-vanishing values in X. However, if object

motion is repetitive or that the object is static for a period of

time, there is no guarantee that the most related shapes are

temporally close. Even though this is true, it does not cause

any problem for our method aiming at 3D reconstruction.

To validate our prior of sparse representation for real mo-

tion, we quantitatively evaluate the estimated coefficients T

by minimizing Eq. (9), on all the three real motion capture

datasets presented in [19]. For a shape at a given time sam-

ple, we measure the sum of the two largest estimated coef-

ficient values for this sample, and the frequency with which

these top two coefficients correspond to the ground truth

temporally neighboring shape samples. Given our prior,

values of 1 for both measures are expected. The average

values we get are 0.9860 and 0.9895, supporting the valid-

ity of our prior.

We note that the self-representation in Eq. (9) is previ-

ously used in sparse subspace clustering [12], where the

element in each subspace can be sparsely represented by

other elements in the same subspace, and the coefficients of

sparse coding is used to build a graph for clustering.

5. Method

We address the problem of estimating sparse dynamic

3D structure from a set of spatially registered video se-

quences with unknown temporal overlap. Section 4 pre-

sented a compressive sensing formulation leveraging the
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self-expressiveness of all the shapes in the context of known

3D geometry. However, our goal is to estimate the unknown

structure without sequencing information. To this end, we

define our dictionary as the temporally varying 3D struc-

ture, and propose a compressive sensing framework which

poses the estimation of 3D structure as a dictionary learning

problem. We solve this problem in an iterative and alternat-

ing manner, where we optimize for 3D structure while fix-

ing the sparse coefficients, and vice versa. This is achieved

through the optimization of a biconvex cost function that

leverages the compressed sensing formulation described in

Section 4 and, additionally, enforces both structural depen-

dency coherence across video streams, as well as motion

smoothness among estimates from common video sources.

5.1. Cost function

To achieve the stable estimation of both the structure X

and the sequencing information T, we extend our formula-

tion from Equation (9) to the following cost function,

minimize
X,T

||X− XT||2F + λ1Ψ1(T) + λ2Ψ2(X)

subject to Tf ∈ ∆f , f = 1, · · · , F ;
(10)

where Ψ1(T) and Ψ2(X) are two convex cost terms regulat-

ing the spatial relationships between 3D observations within

and across video image streams.

5.2. Coefficient relationships

As described in Section 4, a given structure Sf in frame

f can be attained from the linear combination of the 3D

points Si captured in other frames. The coefficients or

weights of the linear combination are given by the elements

of the matrix T. In particular, the element on the f -th

column and j-th row of T is denoted as t(f,j), and it in-

dicates that in order to estimate the 3D points in Sf , the

relative contribution (weight) from Sj is equal to the mag-

nitude of t(f,j). Similarly, t(j,f) represents the contribution

of Sj towards the 3D points in Sf . Accordingly, a value

of t(j,k) = 0 indicates the absence of any contribution from

Sk to Sj , which is desired for tempo/spatially non-proximal

3D shapes.

We note that, if Sf contributes to Sj , it means the two

sets of points are highly related, which further implies that

Sj should reciprocally contribute to estimating Sf . We

deem this reciprocal influence within our estimation process

as structural dependence coherence and develop a cost term

that contributes to enforce this property within the estima-

tion of T. We encode this relationship into our cost function

as an additional term of the form

Ψ1(T) = ||T− T
⊤||2F (11)

A strict interpretation of the above formulation aims to

identify symmetric matrices. In general, the reciprocal in-

0.5 0.5 0.1

Figure 4: Illustration of the triplets influencing the weights

for Sf and Sj leading to an asymmetric T. The values in

the figure are the distance between points.

fluence between Sf and Sj does not imply symmetric con-

tribution, as the values of t(f,j) and t(j,f) depend on the

actual 3D motion being observed. More specifically, these

values describe the linear structural dependencies between

two different, but overlapping, 3-tuples of 3D points, e.g.

(Si,Sf ,Sj) and (Sf ,Sj ,Sk) as illustrated in Fig. 4. Fol-

lowing the example of Fig. 4 it can be seen that Si and

Sj are at equal distance to Sf and hence equally contribute

to it, i.e. t(f,j) = 1
2 . However, in order to determine the

linear combination weights for specifying Sj , we need to

consider Sf and Sk. Given their distances to Sj of 0.5 and

0.1 respectively the weight of t(j,f) = 1
6 , which is signif-

icantly lower than t(f,j). Accordingly, we do not expect a

fully symmetric weight matrix T. However, given our ex-

pectation of a sparse coefficient matrix T, we can focus on

finding congruence between the zero-value elements of the

T and T
⊤, which Ψ1(T) effectively encodes. Moreover,

Ψ1(T) is convex, which enables its deployment within our

biconvex optimization framework.

5.3. Sequencing information

As mentioned in Section 4, while the availability

of video sequences enables enforcing constraints among

frames attained from the same video, these constraints are

insufficient to robustly estimate 3D geometry. Under the as-

sumption of sufficiently smooth 3D motion w.r.t. the frame-

rate of each video capture, we define a 3D spatial smooth-

ness term that penalizes large displacements among succes-

sive frames from the same video. Therefore, we define a

pairwise term over the values of X

Ψ2(X) =

N
∑

n=1

|Vn|−1
∑

m=1

∣

∣

∣

∣X(n,m) −X(n,m+1)

∣

∣

∣

∣

2

2
(12)

where n is the video index, m is the image index within a

video and |Vn| denotes the number of video frames within

each sequence. Note that Ψ2(X) does not explicitly enforce

ordering information across video sequences, but instead

fosters a compact 3D motion path within a sequence. More-

over, Ψ2(X) is a convex term.

However, this regularization term Ψ2(X) is a double-

edged sword. Since this term minimizes the sum of squared
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distances, and if a video camera is static or has small mo-

tion, the estimated 3D points are likely to be pulled towards

the camera center. This typically biases the estimated 3D

points slightly away from their real positions. Therefore,

we propose to first minimize Eq. (10) to obtain values for

X and T, and then taking those values as initialization, we

further optimize the problem with weight of Ψ2(X) (i.e. λ2)

set to 0.

5.4. Dictionary space reduction

The first cost term in Eq. (10) functions as searching

shapes in the dictionary to sparsely represent each shape.

The searching space can be reduced if some elements of T

are forced to be 0. As mentioned, the diagonal elements of

T are forced to be 0, because a shape is not used to represent

its own. Moreover, it is possible that if a priori knowledge

of rough temporal information across video steams is avail-

able, we can use it to reduce the searching space.

In our formulation, we explicitly enforce that the shape

observed by one video is not used to represent the shape

observed in the same video, because the reconstructibility

analysis in [23, 29] shows such estimation is ill-posed. In

our implementation, this is achieved by not defining the cor-

responding variables in T during the optimization.

6. Optimization

The biconvex function in Eq. (10) is non-convex, but it

is convex if one set of the variables X or T is fixed. To opti-

mize Eq. (10), though more complicated dictionary update

scheme such as K-SVD [1] is possible, in this paper we use

the simplest optimization scheme that alternates the opti-

mizations over X and T. Since the alternating optimization

steps need to be performed until convergence, it requires

each step to be reasonably fast. Although optimizing over

X is relatively easy, optimizing over T is relatively more

difficult due to the simplicial constraint. We find that opti-

mizing over T with a general solver, such as CVX [13], is

too slow for moderate number of total frames F . Moreover,

during our iterative optimization, the output of the previous

step can be fed into the current step as a good initializaiton

(hot start), but typically the general solver does not allow

for a hot start. To solve the problem of speed and scalabil-

ity, we propose a new solver based on alternating direction

method of multipliers (ADMM) [7].

6.1. Optimize over X

If T in Eq. (10) is fixed, the optimization over X is

straightforward. After substituting Eq. (1) into Eq. (10),

we get a quadratic programming problem without any con-

straint on the unknown variable d. The solution can be

found at zero value of the derivative of the cost function

over d.

6.2. Optimize over T

The optimization over T is more complex mainly due to

the simplex constrains. By fixing the variable X in Eq. (10),

the cost function becomes,

minimize
T

||X− XT||2F + λ1||T− T
⊤||22

subject to Tf ∈ ∆f , f = 1, · · · , F
(13)

Notice that if the term ||T − T
⊤||2F vanishes, the cost func-

tion is the same to Eq. (9). Eq. (9) can be decomposed into

Eq. (7), and optimized over Tf for each f = 1, . . . , F inde-

pendently. Therefore the number of variables for each sub-

problem is much smaller comparing to the total number of

variables in T, and it can be parallelized on the level of sub-

problems. Moreover, Chen et al. [9] propose a fast solver to

the optimization problem in Eq. (7) based on an active-set

algorithm that can benefit from the solution sparsity. How-

ever, the cost term ||T−T
⊤||2F prevents the decomposition.

In this paper, we propose an ADMM algorithm that en-

ables the decomposition. By introducing a new auxiliary

variable Z, Eq. (13) can be rewritten as

minimize
T

||X− XT||2F + λ1||Z− Z
⊤||2F

subject to Tf ∈ ∆f , f = 1, · · · , F

T = Z

(14)

The resulting ADMM algorithm iterates until convergence.

For each iteration, there are three steps. In step 1

T
k+1 = argmin

Tf∈∆f , for1≤f≤F

||X− XT||2F

+vec(Yk)⊤vec(T) +
ρ

2
||T− Z

k||2F

(15)

where the superscript k is the iteration index. Y
k is the

matrix of dual variables and is initialized with 0. Note that

the values of Y
k and Z

k are known during this step, we

only optimize over the variable T. The optimization can be

decomposed into optimizing over Tf independently and in

parallel, and minimized by the fast solver proposed in [9].

In step 2

Z
k+1 = argmin

Z

λ1||Z− Z
⊤||2F − vec(Yk)⊤vec(Z)

+
ρ

2
||Tk+1 − Z||2F

(16)

This is a quadratic programming in the unknown variable Z

without constraint, and can be easily solved by setting the

derivative of Eq. (16) with respect to Z equal to 0. In step

3, the dual variables Y are updated directly according to

Y
k+1 = Y

k + ρ(Tk+1 − Z
k+1) (17)

The three Eqs. (15), (16) and (17) iterates until the stop cri-

terion is met. We use the stop criterion proposed in [7].
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6.3. Initialization of the Optimization

Given the non-convexity of our original cost function

Eq. (10), the accuracy of our estimates is sensitive to the ini-

tialization values used by our iterative optimization. Hence,

we designed a 3D structure (i.e. X) initialization mecha-

nism aimed at enhancing the robustness and accelerating

the convergence of our biconvex framework. While our

approach explicitly encodes the absence of concurrent 3D

observations, we aim to leverage the existence of nearly-

incident corresponding viewing rays as a cue for the depth

initialization of a given 3D point X(f,p). To this end, we

identify for each bundle of viewing rays captured in If ,

(i.e. associated with a given shape structure Sf ) an alter-

native structure instance captured at Ij that minimizes the

Euclidean 3D triangulation error across all corresponding

viewing rays. In oder to avoid a trivial solution arising

from the small-baseline typically associated with consec-

utive frames of single video, we restrict our search to ray

bundles captured from distinct video sequences.

The position of each point Xf,p in Sf is determined by

d(f,p) as in Eq. (1). Denoting df = [d(f,1), . . . , d(f,P )],
we can find the distance between shape of Sf and Sj by

minimizing the following cost function over the unknown

variables df and dj

{d∗
f ,d

∗
j} = argmin

df ,dj

||Sf − Sj ||
2
2 (18)

This is a quadratic cost function with a closed-form solution

corresponding to the intersection points of each correspond-

ing pair of viewing rays and their common normal. We

then build a distance matrix D with element D(f,j) equal

to the minimized Euclidean distance value of Eq. (18). If

the frames f and j are from the same video, D(f,j) is set

to infinity. Next, we find many pseudo-intersection points

with negative ray depth for spatio-temporally distant pairs

of viewing rays, and the corresponding element in D is also

set to infinity. Finally, we determine the minimum element

of each f -th row in our distance matrix D and assign the

corresponding depth values d
∗
f as our initialization for the

definition of our 3D structure Xf .

7. Experiments

We evaluate our algorithm on both synthetic and real

data. In our experiments, the values λ1 and λ2 in Eq.(10)

are set empirically to 1 and 0.1 for all the experiments.

7.1. Synthetic data

To generate synthetic data, we use the motion-capture

datasets “faint”, “walk”, and “stand” from [18], and lever-

age them as ground truth structure for our estimation. The

datasets are comprised of the temporal sequences of a com-

mon set of 3D points, which correspond within our frame-

work as ground truth structure XGT . These 3D points are
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Figure 5: The error distributions at different noise levels.

The noise level is defined as the standard deviation of zero-

mean Gaussian noise in pixels.

projected onto virtual cameras to generate input 2D mea-

sures into our methods. XGT . We select the virtual camera

to have a resolution of 1M and focal length of 1000, and

positioned three static cameras at a common distance from

the centroid defined by XGT . The ratio between the dis-

tance to the centroid and the maximal distance between any

two points in XGT is set to one. Every third temporal 3D

capture is assigned to each camera to build three disjoint

image sequences. To test the robustness, we add zero-mean

Gaussian noise to the 2D measures with different standard

deviations. The accuracy is defined as the mean error of

each 3D point from the ground truth. We report the accu-

racy of our 3D structure estimation using the initialization

mechanism proposed in Section 6.2. Figure 5 illustrates the

overall accuracy over the evaluated datasets.

We also quantitatively evaluate the estimated T, obtained

by minimizing Eq. (10). Using the same two measures de-

scribed in Sec. 4, we get values of 0.9797 and 0.9881, which

shows our formulation is valid.

7.2. Real datasets

For experiments using real image capture we use the Jug-

gler and Rothman datasets from [4]. We do not use the

datasets in [5, 19] because they only provide images with

large temporal discrepancy, and therefore each shape can-

not be well approximated by the other shapes (i.e. Eq. (4)

does not hold). We perform manual feature labeling on the

input sequences and provide the attained set of 2D mea-

surements as input for our estimation process. We also cap-

ture a new dataset of a person juggling (called Juggler2) by

three iPhone6 (downsampled to 10 Hz) and one iPhone5

(downsampled to 6.25 Hz) with no temporal synchroniza-

tion. When testing our algorithm on this dataset, we also

include the juggling balls as feature points for reconstruc-

tion. For visualization purposes, Fig. 6 depicts the esti-

mated 3D geometry by connecting the estimated position of

the detected joint elements through 3D line segments.
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Figure 6: Example results using the real datasets Juggler (150 images, 3 videos) and Rothman (100 images, 2 videos) from

[4] and Juggler2 (212 images, 4 videos). All the datasets are captured by handheld cameras.

8. Conclusion

The contributions of our framework encompass:

1. Problem Definition. We are the first to address the

problem of dynamic 3D structure estimation using un-

synchronized cross-video streams.

2. Methodology Formulation. We pose the problem in

terms of a dictionary learning and compressive encod-

ing framework leveraging a novel data-adaptive local

3D interpolation model.

3. Implementation Mechanisms. We define and solve

a biconvex optimization problem and develop an effi-

cient ADMM-based solver amenable for parallel im-

plementation.

Our proposed method was successfully evaluated on real

and synthetic data. It is a first step towards dynamic 3D

modeling in the wild.
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