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Abstract

We propose a data-driven approach for intrinsic image

decomposition, which is the process of inferring the con-

founding factors of reflectance and shading in an image.

We pose this as a two-stage learning problem. First, we

train a model to predict relative reflectance ordering be-

tween image patches (‘brighter’, ‘darker’, ‘same’) from

large-scale human annotations, producing a data-driven re-

flectance prior. Second, we show how to naturally integrate

this learned prior into existing energy minimization frame-

works for intrinsic image decomposition. We compare our

method to the state-of-the-art approach of Bell et al. [7]

on both decomposition and image relighting tasks, demon-

strating the benefits of the simple relative reflectance prior,

especially for scenes under challenging lighting conditions.

1. Introduction

The human visual system is remarkable in its ability to

decompose the jumbled mess of confounds that is our vi-

sual world into simpler underlying factors. Nowhere is this

more apparent than in our impressive ability, even from a

single still image, to tease apart the effects of surface re-

flectance vs. scene illumination. Consider the mini-sofa in

Figure 1(a): on one hand, we can see that its seat (point

X) is much brighter than its frontal face (point Y ), but at

the same time, we can also clearly tell that they are both

“made of the same stuff” and have the same surface re-

flectance. This is remarkable because, by the time the light

has bounced off the sofa toward the eye (or the camera),

the contributions of reflectance and illumination have been

hopelessly entangled, which the brain then needs to undo.

In computer vision, the decomposition of an image into

reflectance (albedo) and illumination (shading) maps is usu-

ally, if somewhat inaccurately, referred to as the intrinsic

image decomposition [6]1. The intrinsic image model states

1The original formulation of Barrow and Tenenbaum [6] also includes

other factors, such as depth, orientation, occlusion, transparency, etc

(a) Original image

(b) Decomposition by Bell et al. (c) Our decomposition

X

Y

Figure 1: Given an image (a), people have no trouble disen-

tangling the confounding factors of reflectance and shading:

we can see that X is much brighter than Y , but at the same

time, we can also clearly tell that they are both “made of the

same stuff” and have the same surface reflectance. Our al-

gorithm (c) automatically decomposes (a) into a reflectance

image (c,top) and a shading image (c,bottom). Note how the

mini-sofa is a uniform red in our reflectance image, com-

pared to (b) state-of-the-art algorithm of Bell et al. [7].

that the observed luminance image is the product of the re-

flectance image times the shading image. Clearly, the in-

verse problem of inferring the underlying reflectance and

shading images is ill-posed and under-constrained in this

pure form since any given pixel intensity could be explained

equally well by reflectance or shading [2]. To address this,
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additional constraints (priors) are typically imposed on the

decomposition process to capture the statistical and/or phys-

ical regularities in natural images. However, those priors

are typically hand-crafted and overly weak. For example,

one popular prior proposed originally in the Retinex algo-

rithm of Land and McCann [18] assumes that large inten-

sity gradients correspond to reflectance edges, while low-

frequency changes are mainly due to shading. While this

prior works well in many cases, it fails in the presence of

strong shadows, sharp changes in surface orientation, and

smoothly-varying planar textures. Since then, many other

clever priors have been proposed, including texture statis-

tics [20, 23], shape, albedo, and illumination [3–5], meso-

and macro-scales of shading [19], chromaticity segmenta-

tion [10], sparsity on reflectances [11, 24], etc., or combi-

nation thereof [7], in the hopes of finding the silver bullet

which could fully explain the intrinsic image phenomenon,

but to date none has emerged. One is faced with the possi-

bility that there might not exist a simple, analytic prior and

that a more data-driven approach is warranted.

In this paper we propose to learn priors for intrinsic im-

age decomposition directly from data. Compared to other

work that trains a reflectance vs. shading classifier on im-

age patches (e.g. [26, 27]), our main contribution is to train

a relative reflectance prior on pairs of patches. Intuitively,

the goal is to learn to detect surface regions with similar re-

flectance, even when their intensities are different. We take

advantage of the recently released Intrinsic Images in the

Wild (IIW) database of Bell et al. [7], in which a large set

of relative reflectance judgments are collected from human

subjects for a variety of real-world scenes. Other contem-

porary work, developed independently, have also employed

the IIW dataset. Narihira et al. [22] use the IIW dataset to

learn a perceptual lightness model. The key difference is

that we not only learn a relative reflectance prior from pair-

wise annotations, but also utilize it for intrinsic image de-

composition. In these same proceedings, Zoran et al. [31]

use a similar approach to ours to estimate ordinal relation-

ships between pairs of points, but globalizes them with a

different energy optimization.

Our relative reflectance model is an end-to-end trained

convolutional neural network that predicts a probability dis-

tribution over the relative reflectance (‘brighter’, ‘darker’,

‘same’) between two query pixels. We show how to natu-

rally integrate this learned prior into existing energy min-

imization frameworks for intrinsic image decomposition,

and demonstrate the benefits of such relative reflectance

priors, especially for scenes under challenging illumination

conditions.

2. Learning a model of reflectance

Let ri ∈ R be a reflectance estimate at pixel i, where

R is the set of all reflectance values in a scene. For two

reflectance values ri, rj ∈ R let ri < rj denote that re-

flectance ri is darker than reflectance rj , and ri = rj means

that the reflectances are roughly equivalent.

Estimating reflectance directly is hard and usually re-

quires a specialized sensor, such as a photometer. Not even

the human visual system can infer absolute reflectance re-

liably (see Adelson [1] for examples). Humans are much

better at estimating relative reflectance between two point

ri and rj in a scene [7]. We follow this intuition and learn a

classifier that predicts this relative reflectance between dif-

ferent parts of a scene in Section 2.1. However, just like hu-

man reflectance estimates, this classifier might not be glob-

ally consistent. Section 2.2 recovers the globally consistent

reflectance estimate following our relative estimates. We

then use this global reflectance model in Section 3 to guide

an intrinsic image decomposition.

2.1. Relative reflectance classifier

For two pixels i and j in a scene, our goal is to esti-

mate the relative reflectance between them as being equal

ri = rj , darker ri < rj or brighter ri > rj . Our rel-

ative reflectance classifier is a multi-stream convolutional

neural network (see Fig. 2), accounting for 1) local features

around pixel i, 2) local features around pixel j, 3) global

scene features of the input image, and 4) spatial coordinates

of both input pixels, respectively. The network weights are

shared between the two local feature extraction streams.

All features are then concatenated, and fed through three

fully-connected layers that predict classification scores over

the relative reflectance labels (‘same’, ‘darker’, ‘brighter’).

Each convolution and fully-connected layer (except for the

last prediction layer) is followed by a rectified linear unit.

We train this network from scratch using the pairwise

human judgments of the Intrinsic Images in the Wild

dataset [7] and millions more obtained through symmetry

and transitivity properties of the original annotations (see

Section 4.1 for details on data augmentation). The net-

work is learned end-to-end in CAFFE [13] using a softmax

loss. Our network outperforms all state-of-the-art methods

in terms of relative reflectance predictions, as we will show

in Section 4. However the resulting predictions are not al-

ways globally consistent. This is in part due to inconsisten-

cies in the human-annotated training data. Roughly 7.5%
of all training annotations are inconsistently labeled [7] and

our network learns part of that inconsistency.

Next, we show how to recover a globally consistent re-

flectance estimate from the noisy pairwise predictions pro-

duced by the classifier.

2.2. Globally consistent reflectance estimate

The network output gives an estimate for the relative re-

flectance between a pair of pixels i and j. Let w=,i,j , w<,i,j

and w>,i,j be the classifier score of ‘same’, ‘darker’, and
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Patch 1 (63x63) 

Conv1 (3x3,16,2) 

Conv2 (3x3,32,2) 

Conv3 (3x3,64,2) 

Conv4 (7x7,64,1) 
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Resize  

Image (150x150) Patch 2 (63x63) 

Conv1 (3x3,16,2) 

Conv3 (3x3,64,2) 

Conv4 (7x7,64,1) 

Conv2 (3x3,32,2) 

Conv5 (5x5,32,4) 

Conv7 (5x5,32,4) 

Conv8 (3x3,64,1) 

Conv6 (5x5,32,4) 

(x
1 , y

1 , x
2 , y

2 ) 
Figure 2: Our multi-stream network architecture for rela-

tive reflectance prediction. The network weights are shared

between the local feature extraction streams. Features ex-

tracted from all four streams are fed through three fully-

connected layers for final relative reflectance prediction (see

Sec. Section 2.1 for more details).

‘brighter’, respectively. A higher score enforces a larger

consistency for a specific pairwise comparison. We con-

strain all weights to be non-negative, and formulate global

reflectance estimation as a constrained optimization prob-

lem, where each classifier output imposes a pairwise con-

straint on the global ordering

minimize
r,ε

∑

i,j∈E

∑

o∈{=,<,>}

wo,j,iξo,i,j

subject to ri≤rj+ξ=,i,j

rj ≤ ri + ξ=,i,j ,

ri ≤ rj + ξ<,i,j ,

rj ≤ ri + ξ>,i,j ,

ξ ≥ 0. (1)

Here, ξ is a slack variable that tries to enforce all constraints

as well as possible. All pairwise reflectance measures are

evaluated on a set of sparse edges E .

This constrained optimization naturally translates into a

global energy minimization:

E(x) =
∑

i,j∈E

∑

o∈{=,<,>}

wo,j,i µo(ri, rj), (2)

where µ<, µ>, and µ= penalizes the disagreement between

our classifier and the globally consistent ranking.

For objective Eq. 1 this translates into a hinge loss, that

penalizes the degree to which the consistent reflectance es-

timate disagrees with our classifier:

µ=(ri, rj) = ξ=,i,j = |ri − rj |

µ<(ri, rj) = ξ<,i,j = max(ri − rj , 0)

µ>(ri, rj) = ξ>,i,j = max(rj − ri, 0).

For continuous values ri the energy minimization 2 is con-

vex. For discrete values ri it can be expressed as a binary

submodular problem on an extended sparsely connected

graph [16]. We use GraphCuts to globally optimize it [9].

While objective 1 computes a global ordering on the re-

flectance, it does not provide information about the absolute

reflectance in an image. In the next section we will show

how to incorporate the reflectance prior into a standard in-

trinsic image decomposition pipeline to recover an absolute

estimate of reflectance.

3. Intrinsic image decomposition

We start out with the intrinsic image decomposition

framework of Bell et al. [7]. Given an input image I , their

system recovers a reflectance image r and shading image

s. They model intrinsic image decomposition as an energy

minimization in a fully connected CRF [15].

E(s, r) =
∑

i

ψi(ri, si)+
∑

i>j

ψr
ij(ri, rj)+ψ

s
ij(ri, rj), (3)

where ψi is a unary term that captures some lightweight

unary priors on absolute shading intensity or chromaticity

of the reflectance as an L1 norm between the original im-

age and the estimated properties. The unary term also con-

strains the reflectance and shading to reconstruct the origi-

nal image. Most of the heavy lifting of the model is done

by the pairwise terms ψr and ψs that enforce smoothness of

reflectance and lighting respectively.

The pairwise shading term is modeled as a fully con-

nected smoothness prior:

ψs
ij(ri, rj) = (si − sj)

2 exp
(

−β1(pi−pj)
2
)

,

where pi is the position of a pixel i, and β1 is a parameter

controlling the spatial extent of the prior. This prior captures

the intuition that the shading varies smoothly over smooth

surfaces.

The pairwise reflectance term is modeled as a color sen-

sitive regularizer encouraging pixels with a similar color

value in the original image to take a similar reflectance:

ψr
ij(ri, rj) = |ri−rj | exp

(

−β2(pi−pj)
2 − β3(Ii−Ij)

2
)

,
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where Ii is color value of a pixel i, and β2 and β3 control

the spatial and color extent of the prior. This reflectance

term is quite arbitrary, as original color values are usually

not a good sole predictor of reflectance. In the rest of this

section we will show how to replace this term with our data-

driven pairwise reflectance prior.

The overall energy E(s, r) is optimized using an alter-

nating optimization for s and r. The reflectance term r

is optimized using the mean-field inference algorithm of

Krähenbühl and Koltun [15], while the shading term is op-

timized with iteratively reweighted least squares (IRLS).

3.1. Data­driven reflectance prior

We now show how to incorporate our relative reflectance

classifier into the mean-field inference for reflectance.

Specifically we define our new pairwise term as

ψr
ij(ri, rj) =

∑

o∈{=,<,>}

µo,i,j(ri, rj)wo,i,j , (4)

The main difficulty here is to evaluate the pairwise term

densely over the image. The mean-field inference al-

gorithm relies on an efficient evaluation of Q̃i(ri) =
∑

j

∑

rj
ψr
ij(ri, rj)Q(ri), which is known as message pass-

ing. This message passing step naturally decomposes into a

matrix multiplication with µo and a filtering term with wo.

The matrix multiplication can be evaluated efficiently as it

is independent for each pixel and scales linearly in the num-

ber of pixels. The filtering step on the other hand requires

an exchange of information between each pair of pixels in

the image. Krähenbühl and Koltun [15] showed that for a

Gaussian pairwise term the filter can be approximated ef-

ficiently. The same Gaussian pairwise term is used in the

original model of Bell et al. [7]. In our model this filter is

no longer a simple Gaussian kernel, but guided by the out-

put of a classifier. The filtering has the following form

Q̂
(o)
i (l) =

∑

j

wo,i,jQj(l), (5)

for each comparison o ∈ {<,>,=}. For our data-driven

pairwise term we would need to evaluate a classifier densely

over each pair of pixels in the image, which is computation-

ally intractable for more than a few thousand pixels.

However, the classifier output is quite low rank. If we

denote |R| as the number of unique reflectance values in

a scene, which is usually small [11, 24], then the output

of an ideal classifier is of at most rank |R|. This comes

from the fact that each reflectance value r ∈ R forms a

binary basis B, with a value of Bi,r = 1 if pixel i takes

reflectance r, and Bi,r = 0 otherwise. Thus any ideal clas-

sifier output can be expressed as a product of BW̃oB
⊤,

where W̃o is a |R| × |R| matrix describing the weighting

between different reflectance values. Any rank beyond this

can be attributed to noise or inconsistencies in the classifier.

We measured the rank of the classifier matrix by randomly

sampling K = 500 points in the image and computing the

full pairwise term between those points. This results in a

K ×K pairwise comparison matrix. We never encountered

this classifier matrix to be of rank more than 100. This sug-

gests that the low rank approximation models w<, w= and

w> well.

3.2. Nyström approximation

We use Nyström’s method [17] to approximate wo. The

main caveat with Nyström is that it requires a symmetric

pairwise comparison matrix wo. While the equality con-

straint matrix w= is symmetric, the inequality matrices are

not w> = w⊤
< . We address this by rearranging all classifier

outputs in a larger comparison matrix W :

W =













w=,1,1 w>,1,1 w=,1,2 w>,1,2 . . .

w<,1,1 w=,1,1 w<,1,2 w=,1,2 . . .

w=,2,1 w>,2,1 w=,2,2 w>,2,2 . . .

w<,2,1 w=,2,1 w<,2,2 w=,2,2 . . .

. . . . . . . . . . . .













This extended matrix is symmetric and can be well approx-

imated using Nyström’s method. It is still low rank, as

the three submatrices it comprises of are all low rank. We

can compute the filtering in Eq. 5 by multiplying W with a

vector [Q1(l), 0, Q2(l), 0, Q3(l), . . .]
⊤ and extracting every

other elements from it.

The Nyström approximation samples 2K rows from ma-

trix W . Let C denote those sampled rows. We always

sample pairs of consecutive rows, to not introduce a bias

towards any of the operations =,< or >, Nyström then ap-

proximates the dense pairwise classifier matrix as

W ≈ CD+C⊤,

where D is a K × K matrix corresponding to the dense

pairwise classifier scores between all sampled points, and
+ refers to the pseudo-inverse. We sample K = 64 on a

regular grid, which allows us to compute the matrices C

andD within 10 seconds including the classifier evaluation.

The Nyström approximation allows us to compute a mes-

sage passing step within a few hundred milliseconds, while

a naive evaluation would take multiple days to compute.

In summary, we evaluate the pairwise reflectance clas-

sifier from K sampled points to all other points in the im-

age. The Nyström approximation then allows us to approx-

imate a fully-connected dense pairwise comparison matrix

using those few samples, which in turn allows for a nat-

ural integration into the fully connected CRF framework

of Krähenbühl and Koltun. Notice that Nyström approxi-

mation for dense CRF has recently been explored in [29].

However, [29] merely approximates the commonly used

Gaussian kernel, while we show how to integrate a more

general output of a classifier into the dense CRF framework.
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4. Experiments

In this section, we evaluate the performance of each

component of our pipeline using two data sources: 1) In-

trinsic Images in the Wild (IIW) dataset [7] and 2) Image

Lighting Composition (ILC) dataset [8]. Our main baseline

is the state-of-the-art intrinsic image decomposition algo-

rithm by Bell et al. [7]. All models are trained and evaluated

on the dataset split of Narihira et al. [22].

4.1. Data augmentation

IIW dataset provides 875, 833 comparisons across 5, 230
photos, which we extensively augment by exploiting the

symmetry and transitivity of the comparisons. The aug-

mentation not only helps reduce overfitting (as shown in

Sec. Section 4.2), but also generates pixel pairs that are spa-

tially distant from each other (in contrast to ones originally

derived from edges of a Delauney triangulation [7]). We

create the augmented training and test annotations as fol-

lows:

1. Remove low-quality comparisons with human confi-

dence score < 0.5.

2. For each remaining pairwise comparison (ri, rj), aug-

ment the annotation for (rj , ri) by either flipping (if

ri 6= rj) or keeping (if ri = rj) the sign.

3. For any unannotated pair of reflectances (ri, rj) that

share a comparison with rk, we augment it using the

following rules: 1) ri = rj , iff ri = rk and rj = rk for

all connected rk; 2) ri > rj , iff ri ≥ rk > rj or ri >

rk ≥ rj ; 3) ri < rj , iff ri < rk ≤ rj or ri ≤ rk < rj .

If any pairwise comparisons are inconsistent we do not

complete them. This step is done repetitively for each

image until no further augmentation is possible.

Our augmentation generates 22, 903, 366 comparisons in

total, out of which 18, 621, 626 are used for training and

4, 281, 740 for testing.

4.2. Network performance

We use ADAM [14] with β1 = 0.9, β2 = 0.999, an

initial learning rate of 0.001, step size of 20, 000, a step

multiplier γ = 0.8. We train with mini-batches of 128 pairs

and weight decay of 0.002.

For evaluation, we first use the same weighted human

disagreement rate (WHDR) metric as [7] on the test split.

WHDR measures the percent of human judgments that a

model incorrectly predicts, weighted by the confidence of

each judgment. Note that the human judgments are not nec-

essarily consistent in the IIW dataset as human performance

using this metric is 7.5 [7]. As shown in Table 2, our full

model trained on the augmented data performs the best with

WHDR = 15.7.

Data source Original Augmented

Metric WHDR Error Rate

Bell et al. [7] 20.6 27.9

Retinex-Color [12] 26.9 29.3

Retinex-Gray [12] 26.8 30.5

Garces et al. [10] 24.8 29.9

Shen and Yeo [25] 32.5 34.2

Zhao et al. [30] 23.8 31.1

Narihira et al. [22] 18.1 36.6

Local 16.6 25.8

Local + Spatial 16.1 25.1

Local + Spatial + Global 15.7 24.6

Local + Spatial + Global (Orig.) 17.3 32.4

Table 1: Performance on the IIW dataset [7] measured by

WHDR (left) on the original, locally-connected compar-

isons and Error rate (right) on our augmented, potentially

long-range comparisons. The bottom four rows correspond

to our models trained with different components: local fea-

tures only, local and spatial features, full network, and full

network trained on original IIW annotations only.

Additionally, we evaluate the error rate of different al-

gorithms on our augmented annotations. Our full model

again obtains the lowest error rate of 24.6. More surpris-

ingly, on this metric other baselines surpass the recent top

performer [22]. This is likely due to a subtle bias in the orig-

inal IIW annotations – spatially close pixels often have the

same reflectance. This bias is no longer present in our aug-

mented annotations as they contain more long-range pairs.

This is further verified by the performance of our full model

trained only on the original annotations: it too does poorly

on the augmented data.

Globally consistent reflectance estimate We measure

the performance of recovering a globally consistent re-

flectance estimate with the energy optimization presented in

Sec. 2.2. Specifically, for each test image in the IIW dataset,

we build a sparse graph over the annotated pixel pairs, and

apply the relative reflectance network to each of the sam-

pled pixels. The predicted scores are then jointly optimized

by Eq. 2 using GraphCuts [9] to recover the globally consis-

tent ordering. The recovery performance is measured using

WHDR, and we obtain 18.0 over the entire test split. Com-

pared to the direct network output (WHDR = 15.7), global

ordering recovery loses 2.3 percent of the performance due

to the inconsistency and noise of the network output.

Nyström approximation We experimented with differ-

ent point sampling strategies (including random sampling,

spatial grid sampling and Poisson disk sampling) as well as

different sample sizes, and found that grid sampling with 64
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Reflectance Shading Reflectance Shading Original 

Bell et al. Ours 

Figure 3: Comparison of intrinsic image decomposition between Bell et al. [7] and ours (chrom. + our prior + shading). Rows

1–3 are examples from the ILC dataset [8], and the rest are ones from the IIW dataset [7]. In general, our decomposition

tends to distinguish between reflectance and shading boundaries better compared to the baseline, especially under challenging

lighting conditions (e.g. Rows 1–3). The last row shows an example where Bell et al. outperforms ours due to stronger

reflectance smoothness constraints.

samples to work well. More samples tend to yield better ap-

proximation at the cost of computation. The overall WHDR

on the IIW test split using Nyström approximated pairwise

comparison is 17.2, which is slightly worse than the direct

network output (15.7).

4.3. Intrinsic image decomposition

To understand the effect of our reflectance prior on in-

trinsic image decomposition, we perform an ablation study

on several variants of the decomposition framework:

Chromaticity only each pixel being assigned to the re-

flectance label that is most similar in chromaticity. This

Data source Original Augmented

Metric WHDR Error Rate

Bell et al. [7] 20.6 27.9

Chromaticity only 33.6 38.5

Chrom. + Our prior 22.5 29.6

Chrom. + Our prior + Shading 19.9 27.3

Table 2: Ablation study on different variants of the decom-

position framework. All results are on the test set of IIW.
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Figure 4: Comparison of relighting results between Bell et al. [7] and ours on the variable lighting dataset of [8]. In each row,

we construct a relit image from the shading in the same row and the reflectance of the adjacent row. We expect a minimal

change in appearance between the original and relit images, since they depict the same scene and thus should share the same

reflectance. Our relighting results tend to reconstruct the target images more closely, which also implies better decomposition

performance. See Sec. 4.4 for more details.

simple variant achieves WHDR = 33.6 on the original an-

notations, and error rate = 38.5 on the augmented data.

Chromaticity + our prior dense CRF with chromaticity

similarity as the unary potential and our reflectance prior

as the pairwise potential. This variant greatly improves the

performance over using chromaticity only with WHDR =
22.5 and error rate = 29.6 on the original and augmented

annotations, respectively, indicating the effectiveness of our

reflectance prior.

Chromaticity + our prior + shading previous variant

with additional shading costs from Bell et al. [7]. This

variant achieves the best decomposition performance with

WHDR = 19.9 and error rate = 27.3. It improves on the

decomposition of Bell et al. both quantitatively and qualita-

tively.

We visualize our final decomposition output (chrom. +

our prior + shading), and compare with Bell et al. [7] in Fig-

ure 3 for examples from both IIW dataset and ILC datasets.

In general, our decomposition tends to distinguish between

reflectance and shading boundaries better than the baseline,

especially under challenging lighting conditions (e.g. ex-

amples from the ILC dataset). For instance, for the kitchen

scene in the first row of Fig. 3, Bell et al. failed to sepa-

rate the shading layer from the reflectance layer correctly,

leading to large shadow boundaries (see cupboards and the

floor) left over in the reflectance layer. Similarly for the ex-

ample in row 6 of Fig. 3, Bell et al. failed to recognize that

the drastic intensity change on the ceiling and floor is due to

illumination from the lamp, whereas our decomposition was

able to correctly identify the shadows, and attribute them to

the shading layer. However, the hand-crafted reflectance

smoothness prior still works more favorably in some cases

(e.g. the last row of Fig. 3).
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Kitchen Sofas Cafe Mean

Bell et al. [7] 8.66 8.39 8.55 8.53

Ours 6.93 6.87 6.63 6.81

Table 3: Mean pixel reconstruction error (MPRE) on three

illumination varying sequences (×10−4). Lower is better.

4.4. Robustness to illumination variation

An ideal reflectance model should be invariant to illumi-

nation changes. To measure the degree of illumination in-

variance, we use image sequences of indoor scenes taken by

a stationary camera under different lighting conditions pro-

vided by [8], and perform relighting experiments on decom-

position outputs of our method and Bell et al. Specifically,

given two images IA and IB taken from the same scene

and their decomposition IA = RASA and IB = RBSB

respectively, perfect decomposition would imply equal re-

flectance RA = RB , and the difference between IA and

IB is entirely explained by the shading/lighting components

SA and SB . In other words, for ideal decompositions, we

should be able to relight RA using SB to reconstruct IB
(and similarly use RB and SA to reconstruct IA). Thus,

we propose to use mean pixel reconstruction error (MPRE),
1

N2P

∑

A

∑

B ‖RASB − IA‖2, for measuring illumination

invariance, where N is the number of images, and P is the

number of pixels per image. We report the MPRE results

for the three indoor scene sequences in Table 3, and a qual-

itative comparison in Fig. 4. We significantly outperform

Bell et al. both quantitatively and perceptually.

4.5. Feature visualization

Finally, we visualize the features learned by our relative

reflectance network using the t-SNE algorithm [28]. Specif-

ically, we randomly extract 50, 000 patches from the test

set of IIW and find a 2-dimensional embedding of their 64-

dimensional Conv4 features. Fig. 5 shows this embedding.

The overall layout appears to be highly predictive of re-

flectance (light to dark from top-left to bottom-right). More-

over, it seems to discover some surface or material proper-

ties beyond reflectance (see Fig. 5 for more details).

Discussion

One limitation of our paper is that although the learned

reflectance prior accounts for most of the decomposition

performance, hand-crafted unaries on chromaticity and

shading are still used for achieving state-of-the-art results.

However, while it is beyond the scope of this paper, we

believe hand-crafted unaries can be replaced by learned

unaries (c.f. concurrent work of Narihira et al. [21]).
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Figure 5: Feature embedding visualized by t-SNE [28]. The learned features are usually highly predictive of surface color

(bottom right). More interestingly, our network is also able to coherently group patches based on properties beyond re-

flectance. For example, the network groups bathroom tiles (top left), wall paper (top right), or cloth surfaces (bottom left),

based on material properties or local appearance.
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