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Abstract
Given a video of an activity, can we predict what will

happen next? In this paper we explore two simple tasks

related to temporal prediction in egocentric videos of ev-

eryday activities. We provide both human experiments to

understand how well people can perform on these tasks and

computational models for prediction. Experiments indicate

that humans and computers can do well on temporal predic-

tion and that personalization to a particular individual or

environment provides significantly increased performance.

Developing methods for temporal prediction could have far

reaching benefits for robots or intelligent agents to antici-

pate what a person will do, before they do it.

1. Introduction
Accurate visual recognition of image and video content

is becoming a reality: there have been significant recent

advancements in algorithms to recognize content elements,

such as, objects [21], scenes [42], or attributes [41]. Much

of this work focuses on estimating what’s in the frame, that

is, information that is directly visible within the image or

video. Alas, an image captures only a thin slice of real-

ity, and much of true human-level visual understanding is

about what happens beyond the frame: making inferences

about the broader contexts, e.g. spatial, temporal, social,

etc, suggested by a given visual input.

In this paper we explore predicting temporal context be-

yond the frame, examining how well humans and computers

can make predictions about what will happen next during

everyday activities. Such reasoning will be necessary for

producing intelligent agents that can understand what a per-

son is doing and anticipate what they are likely to do next.

Both types of inference can help produce robots that more

naturally interact with humans in our daily lives.

There has been a great deal of previous work on recog-

nizing activities from general video [23, 7, 37, 22, 20] and

egocentric video [30, 9, 18, 33, 10]. Some recent work has

started to look at the task of predicting what might happen

next in video, focusing on specific tasks like predicting fu-

ture trajectories of cars [36], pedestrians [19], or general

moving objects [40].

In our work we introduce two tasks related to temporal

prediction. In the first task, given two short video snippets

of an activity, the goal is to predict their correct temporal

ordering. In the second task, given a longer context video

plus two video snippets sampled from before or after the

context video, the goal is to predict which video snippet

was captured closest in time after the context video. This

task models the scenario of predicting what a person will

do next in ego-centric video.

These tasks have several advantages. They provide a

measure of video understanding that is complementary to

standard activity recognition with tasks that do not require

semantic labels, but are easy to evaluate. They also provide

quantitative measures for temporal prediction, one chal-

lenging aspect of general scene understanding. The tasks

are also designed so that we can ask (multiple) people to

perform the same tasks as the algorithms, allowing us to

measure human performance on temporal prediction. In

summary, this provides an initial first step toward enabling

computers to understand the temporal nature of videos.

We provide a variety of experiments to evaluate the tem-

poral prediction tasks. First we evaluate human perfor-

mance under several different scenarios. Given our findings,

we design several different computational methods for tem-

poral prediction using state of the art deep learning features

selected to capture a range of different types of video con-

tent. To enable these experiments, we collect a new dataset

of ego-centric videos of everyday activities. This dataset

allows us to evaluate both general models for temporal pre-

diction and prediction models personalized to a particular

individual or environment.

In summary, our contributions are:
• Definition of two new tasks for temporal prediction in

video: pairwise ordering and future prediction.

• A new dataset of ego-centric videos of everyday activ-

ities, including both individuals and families living in

the same location.

• Experiments to evaluate human performance on each

of the proposed temporal prediction tasks.

• Evaluation of deep features for object, scene, and mo-

tion estimation incorporated into several classification

methods for pairwise ordering and future prediction.

The rest of our paper is organized as follows. We first

review related work (Sec 1.1). Then we introduce the tem-

poral prediction tasks (Sec 2.1) and our first person person-

alized activity dataset (Sec 2.2). Next we perform experi-
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Figure 1: Illustration of our two temporal prediction tasks for ego-centric video of everyday activities. In the pairwise

ordering task (above) the goal is to provide the correct temporal ordering for two short snippets of video from an activity. In

the future prediction task (below), given a longer context video of an activity and two video snippets, the goal is to determine

which snippet will occur (closest in time) after the context video.

ments to understand human performance on pairwise order-

ing (Sec 3). Finally, we evaluate performance on pairwise-

ordering (Sec 4) and future prediction (Sec 5).

1.1. Related Work

Prediction: Recently, the idea of predicting the future has

been introduced for tasks such as estimating the future tra-

jectories of cars [36], pedestrians [19, 39], or general ob-

jects [40] in images or videos. In a related goal, early de-

tection methods, have aimed at predicting human behav-

iors such as facial expressions or other activities in early

stages of the action [16, 32]. More generally, some meth-

ods have looked at ideas related to human intent and goal

inference for prediction using Stochastic Context Sensitive

Grammars [28] or social models of behavior [39].

Temporal Ordering Recovery: Many methods for ac-

tivity recognition have incorporated temporal information

through the use of spatio-temporal descriptors [22, 7, 37].

A more complete survey is provided Wang et al [38]. How-

ever, there has been relatively less research on trying to re-

cover temporal orderings. The work in [29] aims to tell

whether a video is running forwards or backwards based on

low-level visual information. [13] shows that ranking mod-

els learned from frame orderings are useful for the activity

recognition problem. More relevant to our ordering pre-

diction task, [5, 4] have provided interesting methods for

trying to recover the temporal ordering for a set of photos

with consistently moving objects using geometric methods.

Our work extends these goals to recover temporal orderings

for video.

Egocentric video analysis: First person video analysis has

attracted increasing attention due to the rich information

contained in egocentric visual data and easier access to

wearable recording devices. There has been recent work on

object recognition [12, 31], activity recognition [30, 9, 33],

gaze prediction [25], and interaction detection [10] in first

person video. In addition, there has been interest in first per-

son video as a form of life-blogging, leading to methods for

egocentric video summarization [24, 26]. A more complete

survey of this area is provided by Betancourt et al [2].

2. Temporal Prediction Tasks & Dataset

We first introduce our tasks (Sec 2.1) and a new dataset

of first person everyday activity videos (Sec 2.2).

2.1. Temporal Prediction tasks

We design two tasks to evaluate temporal understand-

ing. Our goals for designing these tasks are two-fold: 1) we

would like to create tasks that are easy to evaluate, and 2)

we would like the tasks to be answerable by people so that

we can evaluate both human and computer performance.

The first task is a pairwise ordering scenario. In this task,

we are given two short snippets from an ego-centric video

of an activity and asked to infer their correct temporal or-

dering. For example, in Fig 1 the upper box shows two

example snippets from the activity of “putting on clothes”.

Obviously the left snippet occurs before the right snippet

in temporal order. Being able to infer the correct tempo-

ral ordering between pairs of video snippets is important

since it can provide a backbone algorithm for interpreting

the temporal information of an entire video sequence or for

predicting what might occur next in a video.

The second task directly evaluates our ability to make

future predictions for everyday activities. In this task, we

are provided with a video showing part of an activity plus

two shorter video snippets and asked to predict which of the

snippets comes next temporally in the video. Fig 1 (lower

box) shows an example of a person grabbing a bottle and

raising it toward himself. Temporal predictions should tell

us that the drinking action is more likely to occur (closest in

time) after the context video than the other snippet.
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Figure 2: Example frames of 5 activities from our dataset. People perform everyday activities in various locations, and

according to their own preferences, e.g. when putting on shoes people might squat down or stand or use a chair.

2.2. Dataset

There are several existing egocentric datasets [12, 30,

11, 10, 24] designed for a variety of purposes, such as ob-

ject recognition, activity recognition, social interaction de-

tection and video summarization. Many of these datasets

record daily life activities. However, due to the complexity

of data collection, most of the datasets contain only one or

a few examples of each activity performed by each subject.

One observation that we would like to take advantage

of in our models is that we spend much of our daily lives

engaged in extremely repetitive activities. Every morning

most of us get up, brush our teeth, take a shower, put on

clothing, make and eat breakfast, and so on throughout the

day. On the other hand, this repetitiveness is offset by the

fact that each of us may perform these activities with dif-

ferent variations. For example, one person might prepare

cereal for breakfast while someone else may prefer toast.

Some people will use a chair to put on their shoes while

others may put on their shoes while standing. All of these

factors make for wide variation even in common everyday

activities. However, one insight is that although these fac-

tors, along with variations due to environment, may vary

from person to person, a particular person might be quite

consistent in how they perform each activity and in the lo-

cations in which they perform the activities.

Therefore, along with building general temporal predic-

tion models, we would also like to build models for predic-

tion that can be personalized, either to a particular individ-

ual or to a particular environment. To enable this, we have

collected a dataset of first person videos of everyday activi-

ties, called the First Person Personalized Activities (FPPA)

dataset, where each subject has performed every activity

many times. We make use of this dataset for evaluating tem-

poral prediction tasks, but it could also be used for general

or personalized activity recognition.

2.2.1 Data collection

For data collection, we make use of a GoPro camera

mounted on the user’s head using a head strap. The Go-

Pro cameras record ego-centric data simulating the wearer’s

viewpoint. Each camera captures a high-definition video

at 1080p (1920x1080 resolution) with a wide field of view

(133.6 degrees) at a rate of 30 frames per second.

Activities Avg No.of Avg No.of Totall No.of
videos/sub locs/sub videos/locs

Wash hands 24.2 (19-34) 3.2 (2-7) 121/16
Put on shoes 22.8 (21-29) 3.0 (2-6) 114/15
Use fridge 26.4 (21-31) 1.6 (1-3) 132/8
Drink water 23.2 (16-31) 3.6 (2-7) 116/18
Put on clothes 21.6 (16-26) 3.4 (2-5) 108/17

Table 1: Statistics of FPPA dataset. The contents in brackets

show the minimal to maximal numbers. The total number

of video clips in the dataset is 591.

We first provide each subject with a list of 5 daily activ-

ities (a list of activities is shown in Table 1). To encour-

age subjects to act naturally, they are not provided with

any more details. Subjects are encouraged to film them-

selves completing each activity multiple times at different

locations where they would normally perform them. Video

recordings were captured in the subjects own homes or in

public places (gym, lounge) that they usually visit. In total,

our data is made up of 5 sets of videos. Two of the sets

consist of videos from a single individual (single-subject)

while 3 of the sets consist of videos from families, i.e. two

or more people living together at the same location (family-

subject). We spread the data collection procedure of each

set over two months to encourage variability and to gather a

large number of videos for each subject.

2.2.2 Characteristics and statistics

The main characteristic of the FPPA dataset is that it is built

to enable learning both general and personalized models for

temporal prediction. As such we collect a large number of

examples of each activity from each subject and for each

location. Table 1 shows statistics of our dataset, including

the per subject average number of the video clips for each

activity, and the average number of locations in which each

subject performed the activity. On average subjects have

performed each activity approximately 20 times. As habits

vary from subject to subject, some subjects have performed

an activity in a single location while others have performed

them in up to 7 different locations. Figure 2 shows some

example frames from activities performed by different sub-

jects.
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Figure 3: Human performance on pairwise ordering. Left

shows performance as snippet size varies. Right shows per-

formance as interval varies.

3. Human experiments
Our main goal is to give computers the ability to pre-

dict temporal information for video. Toward this aim, we

start with a straightforward pairwise ordering task. How-

ever, before we can design even this simple task we would

like to know several things: the feasibility of this task for

people, and what specific implementation features should

be used for the task, e.g. what length snippets should we

use, or how far separated in time should the snippets be so

that they are still temporally distinguishable? Therefore, we

design two human experiments to gain some useful insights

into the pairwise ordering task and then configure our pair-

wise ordering (Sec 4) and future prediction (Sec 5) tasks

based on these analyses.

3.1. Snippet size
We design an experiment to evaluate the effect of snip-

pet length on human perceptions of pairwise ordering us-

ing Amazon Mechanical Turk (AMT) as our crowdsourcing

platform. For each activity we randomly pick 100 pairs of

snippets from videos of the activity, where the central frame

for each snippet is selected at a random temporal position

within the video. We vary snippet size as 1, 10, 30, 60, or

100 frames (snippet size 1 is a static image). For each pair

of snippets we ask 3 AMT workers to tell us which snip-

pet should come first in temporal ordering. To limit bias,

we randomly reshuffle the left-right placement of snippets

in our Turk interface, and only allow workers to see one

snippet length for a particular pair of snippets.

Figure 3 (left) shows the effect of snippet size on hu-

man performance. One interesting observation is that for

the “using fridge” and “drinking water” activities there is

an obvious increase in human performance between a snip-

pet size of 1 (static image) and snippet size of 10 frames.

One reason for this could be that these activities are rela-

tively symmetric so it may be difficult to tell from a single

frame whether the person is opening or closing the fridge,

or picking up or putting down a cup. For a video snippet,

motion cues help people resolve these ambiguities.

Based on these experiments, we find that human perfor-

mance for pairwise ordering increases greatly past single

frame snippets, but then levels off at about 60 frames. For

Figure 4: Model performance on pairwise ordering. Left

shows prediction performance of general models (trained

on other subjects). Right shows personalized model perfor-

mance (trained on other videos from the same subject).

length 60 frame snippets we find that average performance

across users is about 80 to 85% for all activities. Therefore,

for the rest of our human and computer experiments we use

a snippet length of 60 frames.

3.2. Snippet Interval
Our next experiment explores how the temporal distance

between two snippets affects human pairwise ordering per-

formance. For this experiment, we keep the snippet size

fixed to 60 frames, but vary the time interval between the

selected snippet pairs. In particular, for each activity we

select 100 video snippet pairs. For this sampling, we first

select a random video, and a random first snippet. Then

we extract the second snippet for the pair from later in the

same video with intervals between center frames of 1, 60,

90, 120, or 180 frames. We limit Turker bias in the same

manner as the previous experiment.

The results of this experiment are shown in Fig 3 (right).

Agreeing with intuition, when the temporal offset between

two snippets is extremely small (e.g., 1 frame), it is difficult

for people to predict the correct pairwise ordering between

snippets. As the interval between snippets increases, human

performance also increases, but then levels off or even drops

as the interval between the snippets gets very long (e.g., 180

frames). For activities such as “putting on clothes” which

have clear steps in a relatively lengthy procedure, larger

intervals tend to increase performance. For activities like

drinking water, the accuracy initially rises with larger inter-

vals then decreases for longer intervals. There are several

potential reasons for this: (1) the most distinctive parts of

the procedure may be very short, or (2) this activity is pe-

riodic (people may repeat the sipping portion of the action

multiple times in one drinking activity). Both reasons can

cause ambiguity for longer intervals.

4. Pairwise Ordering Task
We now design our computational pairwise ordering

task. For this task we investigate several different repre-

sentations for video snippets, to extract information about

depicted objects, scenes, and motion (Sec 4.1). We also

evaluate performance of 4 different classification methods

(Sec 4.2) for building general pairwise ordering models
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Methods Washing hands Putting on shoes Using fridge Drinking water Putting on clothes Average

NN frac(O) 0.5707 0.5257 0.5494 0.5459 0.5604 0.5504
NN frac(OS) 0.5879 0.5402 0.5468 0.5432 0.5421 0.5521
NN frac(OSM) 0.5694 0.5299 0.5884 0.4938 0.5807 0.5525
NN DTW(O) 0.5835 0.5302 0.5400 0.4709 0.5501 0.5350
NN DTW(OS) 0.5610 0.5447 0.5387 0.5335 0.5533 0.5462
NN DTW(OSM) 0.5738 0.5257 0.5884 0.4855 0.5758 0.5499
LR(O) 0.5635 0.5502 0.6296 0.5844 0.6034 0.5862
LR(OS) 0.5550 0.5853 0.6233 0.5732 0.5923 0.5858
LR(OSM) 0.5536 0.5964 0.6583 0.6039 0.5950 0.6014
SVM(O) 0.6392 0.7026 0.7351 0.6848 0.6967 0.6917
SVM(OS) 0.6609 0.7270 0.7435 0.6845 0.7044 0.7041
SVM(OSM) 0.6749 0.6945 0.7402 0.7538 0.7006 0.7128
FcNet(O) 0.6506 0.7166 0.7648 0.7045 0.6710 0.7015
FcNet(OS) 0.6857 0.7188 0.7045 0.6650 0.6943 0.6936
FcNet(OSM) 0.6775 0.7274 0.7473 0.7828 0.6966 0.7263

Table 2: Accuracy of pairwise temporal ordering using general prediction models (trained and tested on different subjects)

for interval size 120. Here O indicates object features, S scene features, and M motion features

Methods Washing hands Putting on shoes Using fridge Drinking water Putting on clothes Average

NN frac(O) 0.7398 0.7043 0.7491 0.6602 0.7659 0.7239
NN frac(OS) 0.7417 0.7142 0.7626 0.6671 0.7774 0.7326
NN frac(OSM) 0.7304 0.6867 0.7782 0.6934 0.7806 0.7339
NN DTW(O) 0.7547 0.7138 0.7369 0.6616 0.7703 0.7280
NN DTW(OS) 0.7534 0.7010 0.7525 0.6681 0.7784 0.7307
NN DTW(OSM) 0.7288 0.6841 0.7705 0.6942 0.7731 0.7302
LR(O) 0.7118 0.7551 0.8029 0.7233 0.7773 0.7541
LR(OS) 0.6903 0.7425 0.7784 0.6911 0.7567 0.7318
LR(OSM) 0.6872 0.7235 0.8018 0.7248 0.7528 0.7380
SVM(O) 0.7548 0.7822 0.8136 0.8275 0.8187 0.7994
SVM(OS) 0.7526 0.7583 0.8208 0.8264 0.8184 0.7953
SVM(OSM) 0.7142 0.7433 0.8214 0.8568 0.8129 0.7897
FcNet(O) 0.7915 0.7845 0.8238 0.8343 0.8224 0.8113
FcNet(OS) 0.7880 0.7668 0.8239 0.8143 0.8253 0.8036
FcNet(OSM) 0.7447 0.7555 0.8220 0.8318 0.8217 0.7951

Table 3: Accuracy of pairwise temporal ordering using personalized prediction models (trained and tested on different videos

from the same subject) for interval size 120. Here O indicates object features, S scene features, and M motion features

(Sec 4.3), and models personalized to a particular subject

or environment (Sec 4.4).

4.1. Video snippet representation

There has been an increasing amount of work trying to

understand the nature of ego-centric video. Different from

videos taken from a third person point of view, egocen-

tric videos record not only the inherent environment seen

from the wearable device, but also the body or head motion

of the wearer [1]. Quite a few previous works have used

techniques such as, hand detection, object detection, or mo-

tion features such as optical flow to represent ego-centric

videos [30, 9, 18, 33, 10], but how to represent first per-

son videos effectively for temporal prediction tasks is an

open question. Recently the use of features learned by deep

networks have achieved success in many different vision

tasks such as object recognition and detection [8, 27, 14],

scene classification [42], or activity recognition [35]. In

this work, we represent video snippets using learned deep

features for objects, scenes, and motion.

Object representation: For each frame of a video snip-

pet, we extract the 4096 dimension fc6 layer of the VGG

model [3], pre-trained to recognize 1000 ImageNet [6] ob-

ject categories. Then we apply max-pooling over a 10-

frame window around the frame to implicitly capture some

temporal information about objects within the snippet.

Scene representation: For each frame of a video snippet,

to model scene/environment information for video snippets,

we extract the 4096 dimension fc7 layer of the Caffe ref-

erence model [17], pre-trained on the scene-centric Places

dataset [42]. Again, we apply max-pooling in a 10-frame

window to capture temporal scene information.

Motion representation: Inspired by recent work on

deep networks for activity recognition, we re-implement

the Temporal Convnet approach of Simonyan and Zisser-

man [35]. Their method takes a two stream approach to

activity recognition using both object and optical flow fea-

tures. Our reimplementation of their method achieves an

accuracy of 78% on the UCF-101 dataset compared to their

reported result of 81%. From the optical flow portion of

the Temporal Convnet, we extract the 4096 dimensional fc6

layer as our motion representation.

In our experiments, we evaluate the use of object fea-

tures in isolation or combining object features with scene
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or scene and motion features. For the combined features

we simply concatenate features for classification. For our

experiments we use video snippets of size 60 frames. For

each snippet we uniformly sample 6 frames from the snip-

pet, compute the above features and then do max-pooling

over each feature dimension to get the final representation.

4.2. Prediction methods

We evaluate several methods for predicting pairwise

temporal ordering. The first two are nearest neighbor based

methods. The intuition behind these methods is that if two

video snippets have similar appearance and motion then we

can directly transfer temporal information from one video

to the other. One challenge for nearest neighbor methods

is that activities can be completed at different rates, there-

fore we experiment with temporal warping methods to align

video snippets. Next we present a regression method that

tries to directly predict the time of a video snippet. All three

of these models attempt to estimate when a video snippet

occurred within a larger activity. Given two snippets we can

then predict their pairwise ordering based on their relative

estimated times. Our final two methods are trained to di-

rectly predict pairwise ordering. Given two video snippets,

A and B, we train an SVM and a fully-connected network

to predict whether or not snippet A occurred temporally be-

fore B. For all of these methods we assume that we know

what activity is occurring to focus our efforts on the task of

temporal prediction. These methods could be incorporated

into a broader system to estimate both activity recognition

and temporal predictions.

NN Frac: We first represent the temporal information of all

snippets as a real value computed as the temporal position

of the snippet relative to the length of the entire action. For

each query snippet, using one or more of our feature repre-

sentations, we retrieve its nearest neighbor snippet from the

training set and transfer the nearest neighbor’s relative time

to the query. Similarity is measured as cosine similarity.

NN DTW: We perform nearest neighbor prediction as be-

fore, but a priori first align all training videos for an activ-

ity temporally using Dynamic Time Warping (DTW) [34].

DTW is a dynamic programming algorithm that keeps track

of the cost of the best path of the alignment. Here the cost

function is defined as the Euclidean distance between each

pair of video snippets.

LR: We train a Linear Regression model to estimate the

temporal position of a video snippet, relative to the length

of the entire activity. Inputs to the regressor are one or more

of our feature representations described in Sec 4.1.

SVM: We train a linear SVM model directly for the pair-

wise prediction task. Input to the model are concatenated

features from a pair of snippets, A and B. Output of the

model is a binary prediction ∈ {1,−1} where the model

predicts 1 to indicate that A temporally occurs before B and

-1 to indicate that A occurs after B. To train this model, we

randomly sample pairs of snippets from activities with in-

tervals between the snippets ranging from 60 to 300 frames.

The learning parameter is set using cross-validation.

FcNet: Inspired by the metric network architecture intro-

duced in [15], we train a three layer fully-connected net-

work to predict pairwise ordering. The scenario is the same

as the SVM method, that is, we model the task as a binary

classification problem. The first two layers of this network

have 512 units and use Rectified Linear Unit (ReLU) as the

non-linear activation function. The last layer has 2 output

units, estimating the probability that snippet A occurs be-

fore or after B. During training we apply mini-batch gradi-

ent decent and cross-entropy loss. We set the learning rate

to be 0.001, dropout rate 0.5, momentum 0.9, and train for

30000 iterations. The hyper-parameters are decided using a

validation set.

4.3. General Pairwise Ordering Prediction

We evaluate performance of our models on the general

pairwise ordering task using a leave-one-out strategy, train-

ing on all subjects except one and then predicting on the

held out subject. Fig 4 (left) shows accuracy averaged

over activities and subjects for each prediction method, us-

ing a combination of all feature types. Similar to humans,

the computational methods do not provide accurate predic-

tions when the interval between snippets is too small, but

as the interval increases performance improves. For the NN

method applying DTW does not help a great deal, probably

due to the high variance of the data. Future work could con-

sider better alignment mechanisms. We also observe that

the SVM and FcNet models trained to directly predict tem-

poral ordering outperform the other methods significantly.

Table 2 shows accuracy for each activity, classifier choice,

and feature choice (for interval size 120). For some activ-

ities, optimal performance is achieved by combining all of

the features while performance in others favored the com-

bination of object and scene features.

4.4. Personalized Pairwise Ordering Prediction

We evaluate two types of personalized models: models

personalized to a particular subject or to a particular loca-

tion. First, we evaluate personalization where we use dif-

ferent video clips from a single subject for training and

testing by applying the leave-one-out method. Since the

amount of personalized data is quite limited, for the Fc-

Net, to prevent overfitting, we fine-tune the general net-

work using personalized data for another 25000 iterations

(the hyper-parameters remain unchanged). Figure 4 (right)

shows averaged results across activity, subject, and interval

for models personalized to a subject. In these experiments,

we see improved performance on the pairwise ordering task

compared to general prediction models trained on other sub-

jects, indicating that the personalized models are able to

better adapt to a particular individual’s habits and daily en-
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Figure 7: Visualization results of computer-based future prediction. Text within red borders are the pairwise ordering results

generated by our method. Right shows algorithm proposed future prediction (red border) and ground truth (green border).

Figure 5: Additional personalization experiments for pair-

wise ordering. Top left shows performance for same per-

son, different locations. Top right shows performance for

different people, same location, and bottom left evaluates

performance as training set size varies.

vironments. Table 3 shows personalized pairwise ordering

accuracy for each activity type and feature combination for

interval size of 120. Unlike the general prediction model,

the models achieve best performance with the object repre-

sentation based model, but for some activities incorporating

additional features is helpful.

We provide several more experiments to further under-

stand personalization. To evaluate generalization for indi-

viduals between locations, we train models for the single-

subjects with different locations in training vs testing. To

evaluate generalization between people in the same loca-

tion, we train models for family-subjects with different fam-

ily members in training vs. testing. And we also evalu-

ate the effect of training set size. Due to the limited data,

Figure 6: Inferring temporal information for an entire video

sequence. Colorbar indicates the reordering of original time

information (black=start, white=end).

for each experiment we apply the SVM method on object,

scene, and motion features. (Figure 5 shows quantitative

results). For the individual and location experiments, ac-

curacies are still reasonable compared to the previous per-

sonalization experiment. For the training size experiment,

we find that the amount of training data required for accu-

rate prediction varies, with some activities benefiting from

larger training sizes (e.g. “using fridge”) and others achiev-

ing surprisingly good accuracy with only 5 samples (e.g.

“putting on clothes”).

Finally, as mentioned above, pairwise ordering can be

used a backbone algorithm for inferring the temporal infor-

mation of an entire video sequence. To demonstrate this

potential, we reshuffle the video sequence of an activity

and use our personalized regression model to predict a tem-

poral value for each frame. Then we reorder the frames

based on predicted time. Results are visualized in Fig 6

where the colorbar shows the reordering of original time
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Activities SVMg SVMp FcNetg FcNetp Human

Wash hands 0.6350 0.7550 0.6350 0.7900 0.7816
Put on shoes 0.7000 0.7250 0.7600 0.7700 0.8733
Use fridge 0.6100 0.7100 0.6600 0.7350 0.9284
Drink water 0.6500 0.7300 0.6350 0.7500 0.8717
Put on clothes 0.7100 0.8350 0.6950 0.8650 0.8866
Average 0.6630 0.7510 0.6770 0.7820 0.8686

Table 4: Future prediction task accuracy by computational

methods and people, where ‘g’ indicates general model, and

‘p’ personalized model.

(ground truth) information (black=start in original video,

white=end), with sampling of reordered keyframes below.

5. Future Prediction Task

Next we design a future prediction task where we are

provided with a 3 second context video, C, of an activity

and two video snippets, A and B, and we are asked to pre-

dict which will occur (soonest in time) after C. A is sam-

pled from soon after the context video (randomly selected,

but no more than 3 seconds in the future) and B is randomly

sampled, either from further in the future or from the time

period prior to C. A correct prediction will predict snippet

A as happening next.

Computer prediction: Given an algorithm to predict pair-

wise orderings between snippets, it is straightforward to ex-

tend this algorithm to the future prediction task. We com-

pute all pairwise orderings between A, B, and C, and then

select the snippet that is most likely to follow after C in tem-

poral order. For these experiments we use combined object,

scene, and motion features (Fig 7 shows examples).

Human prediction: We also evaluate how well humans can

make future predictions when provided with a longer con-

text video. In particular, we show 3 AMT workers the con-

text video plus the two video snippets and ask the worker to

identify which will follow soonest in time after the video.

Table 4 shows accuracies of human and computer predic-

tions. Personalized models outperform the general models

significantly, achieving an average accuracy of 75%. Hu-

man performance on this task is also quite good (87%). We

also want to understand how well algorithms can perform

on the future prediction given snippets from two different

videos. Here we first ask humans to perform the future

prediction task and then select data with high inter-subject

agreement. On this data, using the human predictions as

ground truth, the general SVM and FcNet models achieve

66.22% and 66.99% accuracy respectively.

6. Additional experiments

Pairwise ordering on UCF101: For comparison, we also

evaluate our pairwise ordering task on a subset of a wildly-

used third person action recognition dataset, UCF101. We

select 10 categories of action with reasonably long dura-

tions and non-repetative movements. Each category con-

tains more than 100 video clips. In this experiment we eval-

Figure 8: Left is the pairwise ordering accuracy of sub-

set of UCF101 dataset. Note that video clips in UCF101

are very short for some actions, the largest interval is only

90. Right is the forward/backward classification accuracy

of our method and Flow-Words method in [29] testing on

our dataset

uate our SVM method and keep other settings (snippet size,

feature) the same as our previous experiments. We run 3

train/test splits provided by the UCF offical project web-

page. Fig 8 (left) shows performance. We see that for third-

person activity videos, our method can achieve even better

performance than for first person videos.

Arrow of time: Finally, we use our pairwise ordering

method as a backbone to evaluate the task proposed by [29]

on our dataset. The goal of [29] is to tell whether a video

is runing forward or backward. We implement their Flow-

Words classification method which is based on a SIFT-like

descriptor and linear SVM. For specific information and pa-

rameter settings, please refer to [29]. Predicting the tempo-

ral direction of video clips can be solved by our pairwise

ordering predictions. Our method achieves comparable per-

formance on this task. For each testing video clip, we sam-

ple all its snippet pairs with interval 90 and 120 along the

video and apply our general SVM model to classify the or-

dering, then we do majority vote to decide the flow direction

of the video. Fig 8 (right) shows the average accuracy for

Flow-Words and our method.

7. Conclusions
We have introduced two tasks for evaluating temporal

understanding of ego-centric videos of everyday activities:

pairwise ordering and future prediction. We have evaluated

both human performance on these tasks and computational

models under general and personalized training scenarios.

We find that models trained directly on the pairwise order-

ing task outperform models trained to predict the time at

which a video snippet occurred. We also find that personal-

ized models significantly outperform general models, sug-

gesting that to build an accurate predictor for an individual,

we should capture data specific to that person.
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