
Interactive Visual Hull Refinement for Specular and Transparent Object Surface

Reconstruction

Xinxin Zuo†,‡, Chao Du‡, Sen Wang†,‡, Jiangbin Zheng† and Ruigang Yang‡

†Northwestern Polytechnical University, P.R.China ‡University of Kentucky, USA

{xinxin.zuo,chao.du,sen.wang}@uky.edu, zhengjb@nwpu.edu.cn, ryang@cs.uky.edu

Abstract

In this paper we present a method of using standard

multi-view images for 3D surface reconstruction of non-

Lambertian objects. We extend the original visual hull con-

cept to incorporate 3D cues presented by internal occlud-

ing contours, i.e., occluding contours that are inside the

object’s silhouettes. We discovered that these internal con-

tours, which are results of convex parts on an object’s sur-

face, can lead to a tighter fit than the original visual hull.

We formulated a new visual hull refinement scheme – Lo-

cally Convex Carving that can completely reconstruct con-

cavity caused by two or more intersecting convex surfaces.

In addition we develop a novel approach for contour

tracking given labeled contours in sparse key frames. It

is designed specifically for highly specular or transparent

objects, for which assumptions made in traditional con-

tour detection/tracking methods, such as highest gradient

and stationary texture edges, are no longer valid. It is for-

mulated as an energy minimization function where several

novel terms are developed to increase robustness.

Based on the two core algorithms, we have developed

an interactive system for 3D modeling. We have validated

our system, both quantitatively and qualitatively, with four

datasets of different object materials. Results show that we

are able to generate visually pleasing models for very chal-

lenging cases.

1. Introduction

3D reconstruction of specular or transparent objects is

still a challenging problem in computer vision. Due to

their non-Lambertian surface reflectance properties, estab-

lishing correspondences – a fundamental requirement for

many 3D reconstruction algorithms – becomes difficult or

even impossible. Therefore existing methods on recon-

structing these difficult objects typically use additional con-

straints such as active illumination or known reference ob-

jects (e.g.,[12, 25, 8, 21, 31]).

In this paper we aim to reconstruct highly specular sur-

faces like glass sculptures and glossy trophies (such as these

Figure 1: The reconstructed models for glossy trophy and

glass sculpture. The left column shows the capture object;

the middle column shows the reconstructed 3D model using

visual hull; and the right column presents the reconstructed

surface using our proposed method.

shown in Figure 1), from a multi-view images set casually

captured with a hand-held camera, without using active il-

lumination or reference objects (except a few markers for

pose estimation). Naturally we decide to use a visual hull-

based approach that does not require pixel correspondences.

The fundamental limitation of the visual hull representation

is that it is unable to model concavity. Through careful ge-

ometric analysis, we show that some type of concavity can

actually be removed by using the internal occluding con-

tours, i.e., occluding contours that are inside the object’s sil-

houette. Based on that we present a new visual hull refine-

ment method, which we refer to as Locally Convex Carving

(LCC).

In addition we present a novel contour tracking algo-

rithm designed specifically for highly specular/transparent

objects. Different from most contour tracking algorithms

that are based mainly on image gradient, we use the color

statistics along contour to make the tracking more robust.

12237

Based on these novel algorithms, we have developed

a complete interactive system to achieve visually pleasing

reconstruction results as shown in Figure 1. Our system

takes in a number of calibrated images of the object to be

modeled. The images are first segmented interactively us-

ing GrabCut [28]. A visual hull is reconstructed from the

segmented images. Internal contours are labeled in a few

key frames, then automatically prorogated to the remaining

ones using our novel contour tracking algorithm. The re-

sults from tracking are sent to our unique LCC algorithm

to refine the visual hull. Finally a simple depth propaga-

tion module can be used to interactively refine the remain-

ing concave part.

2. Related Work

Our work is related to shape from silhouette (e.g., Vi-

sual Hull), contour tracking and reconstruction of non-

Lambertian objects. We will briefly review related work

in the following sections.

2.1. Occluding contours and visual hull

Occluding contours, or apparent contours have long been

used for surface reconstruction [3, 7, 30]. They are the 2D

projection of a set of surface points whose normals are or-

thogonal to the line of sight. The relationship between the

2D occluding contours and the 3D shape of the correspond-

ing surface has been analyzed theoretically by Cipolla and

Blake [7]. The very first attempts of using occluding con-

tours for surface recovery can date back to 1990, where the

reconstructed object tends to be simple in shape [3]. As

the definition of visual hull is given in [18], researchers fo-

cus more on how to use silhouettes, which are the regions

enclosed by occluding contours, to reconstruct 3D shapes

from multi-view images. Various approaches have been

developed for computing the visual hull of objects given

silhouettes from multiple images [4, 5, 19, 9, 6]. Com-

pared to typical stereo-vision, shape-from-silhouette does

not require finding correspondences, which can be fragile

in practice. However, visual hull cannot represent con-

cavity. Therefore the silhouettes or visual hull constraints

have been used in multi-view stereo reconstruction as com-

plementary to photo-consistency cues, which can help in

texture-less regions too [10, 13].

The occluding contours exploited in shape-from-

silhouettes are actually external contours, which separate

the object from the background. The use of internal con-

tours has received less attention. Gargallo et el. [11] use

internal contours while modeling visibility changes in mesh

evolution framework. Results were only demonstrated on

synthetic examples with highly distinctive colors. Recently

Shan et al. combines all contours cues with a multi-view

stereo reconstruction framework to get better result around

object contours [29].

Our work is different from these reconstruction methods

in that we focus on non-Lambertian objects and incorporate

both external and internal contours to reconstruct a tighter

shape than the visual hull.

2.2. Contour detection/tracking

Contour tracking is a traditional problem in image pro-

cessing and computer vision area. Most approaches rely

on active contour models [15] from which the initial con-

tours will evolve to the desired object boundary. The tradi-

tional active contour framework involves parameterization

of curves for performing visual tracking [27]. Other meth-

ods such as geometric active contours [26] for representing

contours are the level set method where a contour is repre-

sented as the zero level set of a higher dimensional function.

For general contour detection(e.g., [17]) or object bound-

ary extraction, the cues in the energy function are based on

image gradient or edge information combined with inter-

nal forces for smoothness. Contour tracking also relates to

object tracking where objects are represented as contours

to express the fine details of the object. For example, ob-

ject motion and shape model prior [14] can be integrated in

the formulation to better deal with noise and partial occlu-

sion. Also, there are approaches that regard the tracking as

a classification problem [2] and a classifier is trained to dis-

tinguish the object from the background. Then the contour

pixels are extracted from the labeling [24].

While these methods typically track in 2D, the 3D cues

conveyed by contours have be used in 3D object tracking

as well [20]. Szeliski and Weisee [30] have exploited the

3D cues and used Kalman filtering to model the contours in

images sequences so as to predict the contour in next frame.

This method is able to differentiate stationary edges from

occluding contours assuming diffuse objects.

It is beyond the scope of this paper to discuss the broad

topic of tracking. We have not observed a previous method

in contour detection and tracking that deals explicitly with

highly specular objects. Many general contour tracking al-

gorithms always assume that the contour is closed and the

image gradient tends to be the most dominant external force

to define the contour. However these assumptions are no

longer valid in the cases this paper aims to address. With

highly specular or transparent objects, texture edges are no

longer stationary and gradient is no longer a strong indi-

cator of contours due to specular highlight. Both factors

make automatic and reliable detection/tracking of contours,

in particular these inside silhouettes, very challenging.

2.3. Specular and transparent object reconstruction

Surface reconstruction of specular and transparent ob-

jects are challenging and methods using traditional stereo

correspondence are not sufficient for these objects, since the

complex reflection effects are not validate under the Lam-

2238

bertian assumption. There are successful approaches [8, 21,

31] that use structured light methods relying on specialized

patterns, where the surface depth or normal is computed by

analyzing the captured patterns. In paper [8] a checkboard

pattern is used and observed after distorted by the trans-

parent objects; Liu et al. [21] design a set of frequency-

based patterns. Zickler et al. [32] use Helmholtz stereopsis

for surface reconstruction with arbitrary and unknown sur-

face reflectance. The captured signal is transformed from

the time domain into the frequency domain to solve the

correspondence problem. As for specular objects, existing

state-of-art methods can be broadly classified into two cat-

egories, namely shape from specular flow and shape from

specular correspondences [22]. The first method assumes a

known continuous motion and tries to track the dense spec-

ular flows, while the second one uses a reference plane with

a known pattern as guidance to predict the unknown surface.

The above methods all need careful setup and extra projec-

tor or light sensor. There are also methods that try to sep-

arate the specular reflection effects from diffuse reflection

effects and use traditional photometric stereo method for

surface reconstruction (e.g., [23]). These methods will have

difficulty reconstructing highly specular or almost transpar-

ent objects like what we will present in this paper.

3. Our Approach

Our goal is to reconstruct highly non-Lambertian objects

from a set of casually-captured multi-view images, without

using any active lights. We assume that viewpoint for each

image is known and the object has been segmented from

the background. There are many existing techniques and

tools that can achieve these two requirements. From the

calibrated and segmented images, we first construct a visual

hull of the 3D model using traditional volumetric visual hull

reconstruction. The overall pipeline is shown in Figure 2,

in which we develop a novel contour tracking method and

a new visual hull refinement scheme that we referred to as

Locally Convex Carving, finally concave areas are identified

and interpolated using boundary conditions. In the next few

sections we will present our methods in detail.

3.1. Terminology

An object’s contour provides important clues about the

object shape. Suppose a 3D object S is viewed by a cam-

era. The object’s silhouette image contains values that dis-

tinguish regions where the object is or is not present. Com-

bined with calibration information for the camera, Each

pixel in a silhouette defines a ray in scene space (denoted

as E3) that intersects the object S at some unknown depth.

The union of these view rays for all pixels in the silhouette

defines a generalized cone within which S must lie. If we

are presented with multiple views of S, the intersection of

these generalized cones from all views defines a volume in

Internal Contour
Tracking

Locally Convex
Carving

Concave
Refinement

Sparse Labeled
Contours

Volumetric
Visual Hull

Boundary Cues

…

Figure 2: The system pipeline of our approach

E3 that must contain S. As the number of the reference

views, taking from different locations, goes to infinity, the

intersection volume converges to the shape known as the

objects visual hull, a term defined by Laurentini [18]. The

visual hull, denoted as V H(S), is guaranteed to contain the

object S. In 2D, the visual hull is equal to the convex hull of

the object (denoted as CH(S)). For 3D scenes, the visual

hull is a tighter fit than the convex hull.

A less-known term, also defined by Laurentini [18], is

the internal visual hull ((IV H(S)). CH(S) segments E3

into two regions. When all the reference views are taken

outside CH(S), V H(S) is formed. If views are taken out-

side S, e.g., including concave areas in S but still outside

S, IV H(S) is formed. It can be shown that IV H(S) is an

even tigher fit than V H(S), i.e., S ≤ IVH (S)≤VH (S)≤
CH (S). However it is often difficult, if not impossible, to

take pictures in concave areas in S. So IV H(S) mostly

remains a theoretical concept.

V

P Q

3
E

()CH S

S

Figure 3: Illustration

for occluding contours

and visual hull. S is the

real surface and CH(S)
is the convex hull which

is same as visual hull

(V H(S)) in 2d. P is

the internal occluding

contour point while Q is

the external occluding

contour point.

To explain our method, a few more terms need to be de-

fined. As shown in Figure 3, a contour is a view-dependent

concept, a point in a contour is a point on S for which a

tangent line is intersecting S. The intersection point divide

the tangent line into two segments. When both segments

are outside CH(S), it is called an external contour point

(e.g. Q in Figure 3); when at least one of them is inside

the CH(S), it is called an internal contour point (e.g. P

2239

in Figure 3). V H(S) can also be thought of as a union of

the external contour points. IV H(S), on the other hand, is

the union of all contour points, both external and internal,

resulting a tighter fit.

The central idea of our method is to use the internal con-

tours, without requiring pictures taken from the concave re-

gions of S. First we want to point out that most internal

contours are actually visible from outside, as long as one

segment of the tangent line is outside CH(S). For now we

assume that the internal contours are already detected and

present our internal contour carving algorithm below.

3.2. Locally Convex Carving

Our carving algorithm starts with an already calculated

V H(S) and detected internal contours. Unlike the external

contours, an internal contour captured outside CH(S) does

not define a clear region that separates S from E3. How-

ever, by definition, it does point to a set of points that are

locally convex. We just do not know where they are on the

tangent line. Inspired by stereo matching, we plan to use

a pair of internal contours to further carve the volume. As

illustrated in Figure 4, let us assume that we are given two

internal contours IC0 and IC1 with respect to viewpoint V0

and V1. We intersect view rays defined by two contours to

define a region R. At a first glance, R is in the concavity and

should be removed (shown in Figure 4 left). But close ob-

servations lead to the conclusion that the intersecting view

rays coming from the two sides of concavity may lead to

over or under carving. To prevent this, we define our Rule

(1): if the contour normals (Np and Nq) are opposite from

each other, no carving should occur. On the other hand, if

the two contours are generated from the same continuous

convex surface (as shown in Figure 4 right), then R could

be safely carved. However if the direction of the contour is

close to parallel to the epipolar plane, the intersections can-

not be reliably estimated. So we set up Rule (2) to prevent

this: the angle between the surface normal and the epipolar

plane normal should not be too small.

In summary, our locally convex carving is defined in

Algorithm 1. The two if statements represents the two

rules. To is the threshold of the angle between surface nor-

mal computed from occluding contours and epipolar plane.

Also in practice we have used contours from neighboring

viewpoints to do convex carving which is more reliable.

Figure 5 shows the effect with and without locally con-

vex carving. While the area carved out may not be that sig-

nificant, it actually identifies locally convex points, which

are usually next to concave areas. These points are critical

in our concave fitting step that will be introduced in Sec-

tion 5.

4. Internal Contour Tracking

We have described our locally convex carving approach

to refine the visual hull using internal contours. The prob-

p
N

0V

ep
N

1Vq
N

P

R
p

N
P

ep
N

q
N

0V

1V
R

Figure 4: Locally Convex Carving. The left figure repre-

sents the case that the intersected tangent lines coming from

two different convex surface and the contour normal are op-

posite from each other, and in this case we cannot carve out

the Region R. The right one is what we defined as locally

convex carving cases where the Region R can be carved.

All the tangent lines in these figures indicate internal con-

tours. Np and Nq are the contour normals and Nep is the

normal for the epipolar plane.

Algorithm 1 Locally Convex Carving

for pixel p in IC0 do

find its correspondence q in IC1 using the epipolar

constraint;

triangulate 3D point P with p and q;

Estimate the surface normal of p and q, denoted as Np

and Nq;

Compute the angle between Np and Nq with epipolar

plane (Nep), denoted as Rp and Rq;

if dot (cross(Np, Nep), cross (Nq , Nep)) < 0 then

continue;

else if Rp < To or Rq < To then

continue;

else

carve out R;

end if

end for

Figure 5: Locally convex carving Illustration of convex and

concave cases. The figure presents the two cases that illus-

trate the additional regions that can be carved out with LLC

and also the region that we will get after the locally convex

carving operation.

lem now is how to get the internal contours on the images.

While there are previous methods on contour tracking and

detection (e.g., [17, 20, 29]), none of them addresses highly

specular surfaces in our case. We present a semi-automatic

2240

approach for detecting the internal contours with contours

labeled in a few key frames.

Given labeled contours from key frames, our algorithm is

designed to interpolate the corresponding contours between

these frames. Let us assume that we have contours Ci−n

and Ci+m in Image Ii−n and Ii+m respectively, the goal is

to detect the corresponding contours in Image Ii.

refU

i n
I

iI i mI

p q

'P

P

Q

i nC
i mC

Figure 6: Geometric illustration for contour prediction. See

more details in the text.

We first intersect Ci−n and Ci+m to obtain a set of 3D

points, which provides a proxy about where the contour

points should be in 3D. The use of the 3D proxy to guide

contour detection is the main difference from typical con-

tour tracking/detection formulations. Let p in Ci−n and q
in Ci+m denote the pair of corresponding pixels and Uref

be the reconstructed 3D point. We also denote the contour

points on the surface as P and Q. Assuming the surface be-

tween P and Q is smooth, then the possible contour points

for Ii must be between P and Q. This is similar to the order

constraint that is often used in stereo matching. Unfortu-

nately we really do not know where P and Q are. How-

ever, Uref can be used as loose upper bound for Q. For the

lower bound, we approximate it with a user-defined param-

eter ∆, which defines a 3D point P ′ on the back-projection

ray for p, but ∆ distance away from Uref . The line between

the lower bound P ′ and the upper bound Uref provides the

searching space in 3D. Projecting P ′ and Uref to image Ii
defines the possible candidates for a contour point in Ii.

Once all the candidates for one contour are identified, we

develop a global optimization approach to detect the con-

tour points. We formulate it as a labeling problem with a

data consistency term and two regularization terms. To cre-

ate a uniform label set for each contour point, the 3D line

segment between P ′ and Uref is uniformly divided to a set

of discrete points {Lk}, each representing a unique label.

4.1. Data term

The data term expresses the likelihood of point Lk,

which projects to a particular pixel uk in Image Ii that is

a contour pixel. It is defined as the weighted sum of two

sub-terms as described below.

Gradient term Dg is the gradient term, which favours the

contour point to pass through pixels with strong gradient. It

can be computed as:

Dg(k) = exp
(

− λkG(uk)
2
)

(1)

λk = ω1V(uk) ·V(p)

+ω2V(uk) ·V(q)
(2)

where G(·) is the gradient magnitude at a given pixel lo-

cation and V(·) is the gradient direction. λk is used to

preserve the direction of the contour. It considers the dif-

ferences of the gradient directions between predicted con-

tours and two reference contours. ω1 = m/(m + n) and

ω2 = n/(m+ n) are the interpolation factors.

Histogram of intensity term Dh is the intensity matching

term computed with histogram. It is assumed that the cor-

responding occluding contours in consecutive frames have

similar color distributions (see Figure 7 for some examples).

Dh is computed as follows:

Dh(k) = exp
(

−H
(

Ii(uk)
)2)

(3)

Where H is the intensity probability function computed

from the intensity of pixels of Ci−m and Ci+n. In essence,

we calculate a histogram of all the pixels in Ci−m and Ci+n.

For uk’s intensity, we look at the corresponding bin to find

its normalized probability.

Figure 7: Intensity histogram. The upper row is captured

images with internal contours highlighted in red, and the

second row is the histogram of corresponding contours. Im-

ages in the first and second column are from nearby view-

points and so as the third and fourth column.

With these terms defined, the data term for one contour

point u can be defined as

D(u) =
∑

k

(ωgDg(k) + ωhDh(k)) (4)

where ωg and ωh are weighting factors. The data term for

an entire contour, D(Ci), is the sum of D(u) for all u in Ci.

We use the number of pixels in Ci−n to discretize Ci.

4.2. Regularization terms

To preserve the smoothness of the detected contour, we

introduce two regularization terms. To abuse the notation a

2241

bit, we denote a contour point in Ii as uj , it is different from

uk, which is a candidate for one contour point. uj has two

neighbors uj−1 and uj+1. The first term V (uj) penalizes

large spatial distance of neighboring pixels.

V (uj) = V (uj |uj−1) + V (uj |uj+1) (5)

V (uj |uj±1) = 1− exp
(

− ||uj − uj±1||
2
2/σ

2
v

)

(6)

where σ2
v is a normalization factor.

The second term T (uj) is to preserve the shape of Ci

to be similar with reference contours Ci−n and Ci+m. We

denote the corresponding contour points as pj and qj . We

formulate in a way to preserve the Laplacian vector of uj .

Since a contour is a 1D entity, the Laplacian coordinate of

uj is calculated as L(uj) = uj −
1
2 (uj−1 + uj+1). Then

T (uj) is expressed in the following:

T (uj) = ∆(L(uj),L(pj)) + ∆(L(uj),L(qj)) (7)

∆(L(p),L(q)) = 1− exp(−||L(p)− L(q)||22/σ
2
t) (8)

where σ2
t is again a normalization factor.

4.3. Energy Function

Finally we get the energy function to be minimized as,

E(Ci) = D(Ci) +
∑

j

(λvV (uj) + λtT (uj)) (9)

where λv , and λt are weighting terms. We have used the

SRMP [16] to solve the high-order optimization problem

with multiple labels. One contour is labeled each time.

5. Concave refinement

The locally convex carving (LCC) algorithm presented

in Section 3.2 is able to reconstruct the convex part of

the object surface revealed by internal occluding contours.

However It cannot recover concave part since the tangent

lines of a concave surface is lying inside the surface. We

have developed a simple surface fitting method to estimate

the concave part with some user interactions.

The basic idea is to fit a concave surface based on its

boundary that can be correctly reconstructed. We first allow

the user to mark a concave area. This is done in the image

space. An image in which the concavity is most frontal is

chosen to allow the user to mark up the concave region RC.

Boundary points near RC serve as the seed points, denoted

as RS. Many points in RS can be automatically identified

since there is usually a transition from convex to concave,

the convex part can be carved out with our LCC algorithm.

A user can also include additional boundary points to give

a tighter control. Figure 8 shows the concave boundary.

Then we try to propagate the boundary depth to the con-

cave part under the smoothness constraints. We will esti-

mate a depth value (dp) for every pixel in RC. The energy

Figure 8: Concave boundary illustration. The two images

illustrate the boundary cues used in concave fitting for these

two models. The projection of these 3D boundary vertices

is RV aera in the frontal 2d image.

function that needs to be minimized can be expressed as

follows:

Ed = λc

∑

p∈RV

||dp − d̃p||
2
2 + λr1

∑

p,q∈RC
q∈N(p)

||dp − dq||
2
2

+λr2

∑

p,q∈RC
q∈N(p)

||δdp − δdq||
2
2

(10)

where λc, λr1 and λr2 are the weights for corresponding

terms and N(p) defines the four neighbors of pixel p. The

first data term measures the depth difference between the

known point d̃p and the depth value of the reconstructed

point dp. The second and third term enforce the smoothness

constraints with δdp stands for the depth gradient.

The above energy function can be formulated as a linear

least square system for which the global optimum can be

efficiently computed. Once we get depth map for RC, we

will use it to carve out any volume that is in the concave part

of the reconstructed surface. That leads to the final model.

6. Experiments and Results

We evaluate the proposed method on four challenging

objects, consisting of shiny specular objects (statue, trophy,

and frog) and one transparent object made of glass (lotus).

Forty-five 2000 ∗ 3000 images were captured for each ob-

ject when it was placed on a checkerboard pattern (for pose

calculation). The object silhouettes were extracted using

Grab-cut.

6.1. Contour Tracking Results

We have verified our contour tracking method on the four

datasets. Several contours were scribbled first in a set of

key frames. Based on the complexity of objects, generally

we need to label internal contours in every 5-7 consecutive

images (see supplementary materials). From these labelled

contours on the key frames, we ran our contour tracking

algorithm. The parameters were set to ∆ = 20mm, wg =

2242

wh = 0.8, σv = 2.0, σt = 2.5, and λv = 1.2, λt = 1.0.

These values were tuned empirically and remained fixed for

all four data sets.

Figure 9: Comparison of contour tracking. The detected

pixels are highlighted in images. The first row shows the

results using only the gradient data term and the pairwise

smoothness term. The second row shows the results with all

the data terms and regularization terms. The third shows the

general contour detection results using gPb algorithm [1].

Figure 9 shows some qualitative comparisons with gra-

dient + smoothness only method. As we can see in the first

row, for statue and lotus (right two) the detected contours

can be snapped to highlights where the gradient is really

strong. With our proposed terms, we can still get good re-

sults in these cases, as shown in the second row. For frog

(left), comparable results are archived since it is not as spec-

ular as the other two. The general contour detection method

used in [29] is not suitable for our case as shown in the

third row, where the highlight areas have large probability

to be detected as contours. This also indicates why previous

contour tracking methods are likely to fail since they would

also be confused by the gradient caused by highlights.

Quantitative Evaluation We further manually labelled all

the images to quantify the accuracy of our tracking re-

sults. We calculate the mean distance (in pixels) between

the tracked contour and labelled data, which are considered

as ground truth. The results are shown in Table 1. It shows

the effect of different terms. With only the gradient term we

cannot get pleasant results especially for statue and lotus.

As we integrate the proposed data terms and regularization

terms, the mean pixel error has been reduced to half.

6.2. Reconstruction Results

We present our final reconstructed 3D models in Fig-

ure 10 with comparison to visual hull reconstruction. The

Statue Lotus Trophy Frog

G 2.3178 2.3516 1.9448 1.7657

G+IH 1.3902 1.6106 1.2256 1.1423

G+IH+P 1.2503 1.3961 1.1028 0.9869

G+IH+P+T 1.1221 1.2324 1.0509 0.9381

Table 1: Mean error of tracked contours. The table gives

the mean pixel error on four datasets and the rows indicate

the terms that were incorporated. G donates the gradient

term data (eq. 1) and IH is the term using histogram of color

intensity (eq. 3); P and T are two regularization terms of

eq. 5 and eq. 7 respectively.

threshold To in the LCC algorithm is chosen from 30 to 45

degrees. As for the weighting parameters for each term in

the fitting formulation, we use λc = 0.5 , λr1 = 0.2, and

λr2 = 0.3 for the four models. It will take about twenty

mininutes to get the 3D model with user gudiance.

As shown in Figure 10a, the reconstructed statue model

is much closer to the real surface than the original viusal

hull model. The left/right wings of the model are refined

using our LCC method with detected contours along the

wings. And then concave fitting is performed on the back of

the statue to have smooth transition with its surroundings.

For the lotus model (Figure 10c), it has three layers of

petals, which are barely recognizable from the visual hull

model, while the geometry has got revealled successfully

with our convex carving procedure. The concave part on

the top of the model is fitted to have smooth transition with

the petals on the top layer.

For the frog model (Figure 10d), we are able to carve out

the locally convex part along the left/right arms and also

the belly under the hands, which provides the boundary and

gradient propagation cues for concave fitting, as shown in

Figure 8. Therefore, the fitted surface has preserved the

tendency of the surface.

For the trophy model (Figure 10b), the pillar of the

model is completely reconstructed with our method, as

marked red on the model. No concave fitting is performed

on this model.

Limitations There are still some limitations in our method.

Our concave fitting method tends to under fit concave ar-

eas. A better user interaction method is needed, such as

push of surfaces. Contour tracking on highly specular ob-

jects are still very challenging, in particular for areas with

small details, such as the face of the baseball player on the

trophy. These are difficult for even our human eye to see.

Overall our method is better suited for reconstruction of or-

ganic shapes without detailed surface relief patterns. Fi-

nally image segmentation on glass objects is very difficult,

even with user interactions. It probably requires a more con-

trolled setup.

2243

