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Abstract

We present a fast and efficient Structure-from-Motion

(SfM) pipeline for refinement of camera parameters and 3D

scene reconstruction given initial noisy camera metadata

measurements. Examples include aerial Wide Area Motion

Imagery (WAMI) which is typically acquired in a circular

trajectory and other sequentially ordered multiview stereo

imagery like Middlebury [46], Fountain [50] or body-worn

videos [27]. Image frames are assumed (partially) ordered

with approximate camera position and orientation informa-

tion available from (imprecise) IMU and GPS sensors. In

the proposed BA4S pipeline the noisy camera parameters or

poses are directly used in a fast Bundle Adjustment (BA) op-

timization. Since the sequential ordering of the cameras is

known, consecutive frame-to-frame matching is used to find

a set of feature correspondences for the triangulation step

of SfM. These putative correspondences are directly used in

the BA optimization without any early-stage filtering (i.e. no

RANSAC) using a statistical robust error function based on

co-visibility, to deal with outliers (mismatches), which signif-

icantly speeds up our SfM pipeline by more than 100 times

compared to VisualSfM.

1. Introduction

The use of Global Positioning System (GPS) and Iner-

tial Measurement Unit (IMU) sensors to track the 3D path

of platforms and cameras is becoming more widely available

and is routinely used in aerial navigation and imaging [10].

The camera path and pose information is used to support

robust, real-time 3D scene reconstruction using Structure-

from-Motion algorithms (SfM) [24, 27, 43, 45, 6, 5, 7] and

direct geo-referencing. Irschara et al. in [24] observe that,

"These systems rely on highly accurate geo-referencing de-

vices that are calibrated and the delivered pose and orienta-

tion estimates are often superior to the one obtained by image

based methods (i.e. subpixel accurate image registration)".

However, many (inexpensive) aerial platforms produce IMU

and GPS values of limited accuracy due to measurement and

timing errors which then need to be refined for accurate SfM

[24]. Extracting and incorporating 3D information in WAMI
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processing [39, 11] will be very useful for mitigating paral-

lax effects in video summarization [52], better stabilization

and appearance models for tracking [38], depth map filter-

ing of motion detections [53], and improving video analytics

like object tracking [41, 40].

For robust computer vision tasks and accurate aerial pho-

togrammetry, it is essential to refine the camera poses1. Bun-

dle Adjustment (BA) is the most popular first stage and a

gold standard [49, 32] for obtaining precise camera poses.

BA uses initial estimates of camera poses to improve the

metadata by minimizing reprojection errors [14, 33, 51]. But

is computationally expensive requiring O((Nc+N3D)3) op-

erations for Nc cameras or views and N3D structure, 3D

scene feature or tie points (cubic in time and quadratic in

memory). Conventional BA shows satisfactory convergence

if sufficiently accurate initial estimates are provided either

from image feature matching-based essential matrix estima-

tion [23, 1] or combined with on-board sensor measurements

[29, 15, 45].

In this paper we propose a new pipeline which leverages

weak pose and path information available from imprecise

IMU and GPS measurements to both speedup the camera

pose refinement process and make it more robust. Figure 1

shows both the conventional SfM and the proposed fast Bun-

dle Adjustment for Sequential imagery (BA4S) pipelines.

Contributions of this paper include:

1. We show that weak camera parameters provided by in-

accurate sensors on airborne platforms can be directly

used for BA as initial values (and not as extra con-

straints [29, 15, 45]), provided that a proper robust func-

tion is used. It will be shown that there is no need to

apply a camera estimation method (e.g. Five-Point al-

gorithm [36]). Or to apply filtering methods such as Ex-

tended Kalman Filter (EKF) [29, 15] before using noisy

sensor measurements in the optimization step.

2. We demonstrate that the putative feature correspon-

dences obtained from a sequential matching paradigm

can be directly used as observations and initial 3D

points for BA optimization. There is no need to filter

outliers from the set of putative matches prior to opti-

mization. Specifically, we bypass RANSAC and other

combinatorial outlier filtering methods.

1In photogrammetry camera pose is also known as exterior orientation.
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3. We show that BA4S is robust in: (1) dealing with im-

precise and noisy camera parameters due to inaccurate

GPS and IMU sensors, and (2) using the set of all fea-

ture correspondences without explicit outlier filtering.

4. BA4S uses a new adaptive robust error function based

on weighted feature track-length to mitigate the influ-

ence of outliers for fast BA optimization. Each residual

weight is based on its feature track to population statis-

tics using a novel 3D feature co-visibility measure.
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(a) Conventional SfM pipeline where camera poses and outliers are simultaneously

estimated using RANSAC. Metadata maybe used as extra constraints in optimization.
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(b) Proposed SfM pipeline (BA4S) where camera metadata is used directly. There is

no model estimation, explicit outlier elimination or RANSAC filtering of mismatches.

Figure 1: Conventional versus our proposed BA4S SfM pipelines.

Background

In the computer vision community the camera param-

eters are known as intrinsic and extrinsic, while in pho-

togrammetry, these same metadata are referred to as in-

terior and exterior parameters and the estimation process

is referred to as resectioning. Precise estimates of these

parameters are critical for practical computer vision appli-

cations particularly dense 3D reconstruction. BA, consid-

ered as the gold standard for refinement of camera meta-

data [49, 32, 21], is a classical and well studied problem in

computer vision and photogrammetry dating back more than

three decades [30, 51, 21]. A comprehensive introduction to

BA in [51] covers a wide spectrum of methods and issues.

Due to the recent surge in developing large scale 3D re-

constructions using internet photos, smartphones as well as

aerial imagery, there has been renewed interest in making

BA more robust, scalable and accurate [3, 25, 28, 23, 47].

Recent methods include Sparse BA [31, 26, 13], Incremen-

tal BA [29] and Parallel BA [56, 55]. Several optimization

methods for BA are compared in [25] and the conjugate gra-

dient approach is shown to produce better results in terms

of speed and convergence. In [45] a SfM system using low-

resolution images taken by micro-aerial vehicles (MAVs) is

described. In [24], the authors use a view selection strategy

to speedup SfM but had limited success using robust BA,

"Through our experiments, robust bundle adjustment was not

able to converge to a true solution from raw IMU initialized

projection matrices". Although a robust BA was tested their

approach was not sufficient to improve the camera parame-

ters when raw metadata was used. In our work, we success-

fully used robust BA to refine the cameras due to a different

SfM pipeline and camera motion model that enabled inaccu-

rate sensor measurements to be directly used as initial values

for BA and without any early-stage feature mismatch filter-

ing (i.e. no RANSAC or its variants).

Recently multi-view stereo techniques have been success-

fully used in large scale 3D scene reconstruction. For exam-

ple, 3D reconstruction from large collections of consumer

cameras has enabled visualization of city-scale models and

photo tourism [1, 48]. In aerial imagery, similar photo

tourism techniques has been adapted [37] and true volumet-

ric approaches [42] have shown promising 3D reconstruc-

tions. The topic of dense matching in oblique multi-camera

systems is discussed in [44]. Semi-global matching in air-

borne video sequences is discussed in [22, 19].

Many approaches to use GPS and IMU measurements for

refining camera parameters have been proposed, especially

in the robotics community. However, GPS and IMU mea-

surements have been used mostly as ancillary information

along with other pose estimation methods through the essen-

tial matrix (e.g. Five-Point algorithm) in computer vision

[29, 15] or resectioning in photogrammetry. For example, in

[15, 29, 43, 12], platform and sensor GPS and IMU measure-

ments are fused with an SfM approach using an Extended

Kalman Filter or as extra constraints in BA in order to pro-

duce 3D reconstructions and not directly as in our proposed

robust BA4S approach.

2. Building Feature Tracks

In sequential image capture, we know which frames are

adjacent to each other, as in persistent aerial WAMI [39]

or hyper-lapse first person videos [27]. By leveraging this

powerful temporal consistency constraint between images as

prior information, we reduce the time complexity of match-

ing, Nc cameras, from O(N2

c ) to O(Nc), without compro-

mising the quality of BA results [45]. In our proposed ap-

proach, interest points are extracted from each image using a

robust local feature detector. Starting from the first frame, for

each two successive image frames, the descriptors associated

with interest points are compared with successive matches

building up a set of feature tracks without using RANSAC.

A feature track provides evidence that a potentially unique

3D point in the scene has been observed in a consecutive set

of image frames.

In our approach, along with sequential feature tracking,

we compute a persistency factor, γj , that measures the tem-

poral co-visibility of the j-th 3D point (length of a trajectory)

in the image sequence. Temporal co-visibility was used in

the literature for other purposes such as object recognition

[20]. Here we exploit it as a robustness parameter reflecting

the reliability in identifying a 3D scene point. Each track

(i.e. estimated 3D feature point trajectory) has an associ-

ated persistency factor. After building all tracks, the popula-

tions statistics of track persistency factor for, N3D, 3D points

are estimated including the mean, µF = 1

N3D

∑N3D

j=1
γj and

standard deviation, σF . These first and second order track
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persistency statistics are used to appropriately weight each

track in a novel manner in the BA optimization formulation.

3. Bundle Adjustment for Sequential Imagery

3.1. BA Formulation

Bundle Adjustment (BA) refers to the problem of jointly

refining camera parameters and 3D structure in an optimal

manner often using reprojection error as the quality metric.

Given a set of Nc cameras, with arbitray poses (translations,

orientations) and, N3D, points BA optimization is defined as

minimizing the sum-of-squared reprojection errors:

E = min
Ri,ti,Xj

Nc
∑

i=1

N3D
∑

j=1

‖xji − g(Xj ,Ri, ti,Ki)‖
2 (1)

where Ri, ti, Ki are respectively the rotation matrix, trans-

lation vector and (intrinsic) calibration matrix of the ith cam-

era, Xj is the j-th 3D point in the scene and observation xji

is the 2D image coordinates of feature Xj in camera i and

the L2 norm is used. The mapping g(Xj ,Ri, ti,Ki) is a

transformation model which projects a 3D point Xj onto the

image plane of camera i using its extrinsic, Ri and ti, and

intrinsic parameters, Ki, defined as:

g(Xj ,Ri, ti,Ki) ∼ PiXji (2)

where Pi is the projection matrix of camera i, defined as:

Pi = Ki [Ri|ti] . (3)

Due to errors in the metadata and feature matching outliers,

g(Xj ,Ri, ti,Ki) 6= xji, and the minimization problem

seeks a statistically optimal estimate for the camera matri-

ces Pi and 3D feature points Xj . The L2 minimization of

the reprojection error involves adjusting the bundle of rays

between each camera center and the set of 3D points which

is a non-linear constrained optimization problem. Note that

the above minimization is equivalent to finding a maximum

likelihood solution assuming that the measurement noise is

Gaussian; see [51, 21] for more details. There exist various

methods to solve the non-linear least squares problem includ-

ing implicit trust region and Levenberg-Marquardt methods

that are well established in the BA literature [31, 25].

3.2. Adaptive Robust Error Function

The selection of 2D feature point correspondences is one

of the most critical steps in image-based multi-view recon-

struction [4]. Feature correspondences are usually contam-

inated by outliers, that is matching errors or incorrect data

associations. The outliers or mismatches may be caused by

occlusions, repetitive patterns, illumination changes, shad-

ows, image noise and blur for which the assumptions of the

feature detector and descriptors are not satisfied [16]. On the

other hand, BA which is usually solved using the Levenberg-

Marquardt numerical method [51] is highly sensitive to the

presence of feature correspondence outliers [4]. Mismatches

can cause problems for the standard least squares approach;

as stressed in [9] even a single mismatch can globally af-

fect the result. This leads to sub-optimal parameter estima-

tion, and in the worst case a feasible solution is not found

[4, 35]. This is even more problematic in high resolution im-

ages that have a large number of features and potential cor-

respondences which increases the probability of association

or matching errors. Furthermore, aerial images have a high

degree of parallax making matching and feature tracking a

much more difficult problem.

Generally the mismatches are explicitly excluded from

the set of potential feature correspondence in the early stages

of the conventional SfM pipeline (Figure 1a) well before the

BA optimization stage. In this approach the initial camera

parameters are simultaneously estimated while explicitly de-

tecting and eliminating outliers usually by applying different

variations of RANSAC. In our proposed SfM approach (Fig-

ure 1b), we show that we can bypass the explicit RANSAC-

based outlier elimination step by using an appropriate ro-

bust error measure. Robust error functions also known as

M-estimators are popular in robust statistics and reduce the

influence of outliers in estimation problems. We have ob-

served that not every choice of a robust function works well

[8] and a proper robust function is critical to achieve a ro-

bust minimization of the reprojection error when the initial

parameters are too noisy and outliers are not explicitly elim-

inated beforehand.

The following novel robust function is proposed which

uses the weighted persistency factor of each feature track,

number of consecutive observations compared to the set of

all tracks, to reduce the effects of outliers in the optimization

error metric:

ρji(sji, γj , µF , σF ) = (
γj

µF + σF

)2 log(1 + (
µF + σF

γj
)2 s

2

ji)

(4)

where sji = ‖xji−g(Xj ,Ri, ti,Ki)‖
2 denotes the residual

of the j-th 3D point in the i-th camera (i.e. feature track),

γj stands for the persistency factor related to j-th 3D point,

and µF and σF are the mean and standard deviation of the

persistency factor, respectively, for the population of feature

tracks. Substituting (4) into (1) we obtain a new robust error

function which leads to the global minimization:

EBA4S = min
Ri,ti,Xj

Nc
∑

i=1

N3D
∑

j=1

{

(
γj

µF + σF
)2·

log
(

1 + (
µF + σF

γj
)2‖xji − g(Xj ,Ri, ti,Ki)‖

2
)

}

. (5)

The proposed robust function is inspired by the Cauchy or

Lorentzian robust function [24, 51] which has an influence

function very similar to the Geman-McClure robust function

[34] that decreases rapidly reducing the effect of large outlier

values. The residuals, sij associated with each feature track
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Dataset specification BA4S Time: BA4S Time: VisualSfM

Per stage Total

Dataset Image size Nc No N3D Iter. Tracking Triangulation Optim. Whole sequence Per image Whole sequence Per image

Four hills 6048×4032 100 262,828 80,661 36 42 s 8 s 16 s 66 s (∼3 m ) 0.66 s 36 m 21.6 s

Columbia (subset) 6600×4400 202 655,593 115,897 10 235 s 13 s 15 s 263 s (∼4 m) 1.3 s NA NA

Albuquerque (subset) 6600×4400 215 668,000 141,559 30 223 s 15 s 35 s 273 s (<5 m) 1.27 s 265 m(> 4h) 73.95 s

Berkeley 6600×4400 220 683,123 138,743 24 185 s 16 s 43 s 244 s (∼4 m) 1.11 s 280 m (> 4.5 h) 76.37 s

LA 6600×4400 351 1,115,603 207,391 10 230 s 23 s 39 s 292 s (<5 m) 0.83 s 485 m (∼ 7 h) 78.29 s

Coit Tower (SanFrans.) 6600×4400 629 2,059,711 344,923 10 370 s 40 s 93 s 503 s (<9 m) 0.79 s NA NA

Albuquerque (full) 6600×4400 1,071 3,473,122 603,119 30 467 s 63 s 222 s 752 s (<13 m) 0.7 s 1,596 m (> 26h) 85.37 s

Columbia-II 6600×4400 5,322 17,437,897 2,509,670 10 2329 s 270 s 521 s 3140 s (∼52 m) 0.59 s NA NA

Table 1: Datasets specifications and timings for individual processing steps (per image) and overall with comparison to an incremental structure from motion approach. Nc, No and

N3D stand for ’number of cameras/images’, ’number of observations (2D points)’ and ’number of feature tracks (3D points)’, respectively. The speed performance of each dataset

is presented per stage for BA4S. The total taken time and per image speeds are presented for both BA4S and for VisualSFM as an incremental SfM algorithm.

are weighted adaptively, with longer lived feature tracks be-

ing favored (larger γj) over residuals with shorter length fea-

ture tracks (smaller γj). So a larger persistency weight favors

longer co-visibility features that are more likely to represent

the same real 3D structure point in the scene. The proposed

weighted persistency factor using a modified Cauchy robust

function in (4) performed the best compared to the standard

Cauchy or Huber robust functions without persistency [8].

4. Experiments on Real Datasets

In this section we evaluate the proposed BA4S SfM

pipeline. The sample aerial WAMI data were collected (by

Transparent Sky) using an aircraft with on-board pose sen-

sors flying over five different urban areas including down-

town Albuquerque, NM, Four Hills, NM, Columbia, MO,

Los Angeles, CA and Berkeley, CA. In addition to sequential

aerial imagery datasets, the BA4S pipeline has been tested

on several publicly available vision benchmark datasets with

multiview imagery acquired in a sequential and circular tra-

jectory, including Dino from the Middlebury MVS evalua-

tion project [46]. As discussed in [17, 4], Dino is a very in-

teresting dataset since the object lacks salient features and is

a challenging example to test the BA4S pipeline. Fountain-

P11 from EPFL [50] is another dataset with eleven images

taken from side views of a wall-attached fountain.

4.1. Evaluation Methods

In aerial WAMI, it is not always practical to provide a

quantitative evaluation of the results due to a lack of avail-

able 3D ground truth which is both expensive and difficult to

collect [17]. Generally, reprojection error is commonly used

for evaluating SfM results. However, in our pipeline the stan-

dard L2 reprojection error is not an appropriate measure for

evaluation since outliers have not been eliminated. That is

all spurious scene points as well as valid 3D points across all

cameras will contribute to the reprojection error while our

primary objective is to recover accurate camera pose.

Instead, we introduce a new pixel-based error measure to

evaluate the SfM results referred to as the Euclidean Epipo-

lar Error (EEE) which uses the classical epipolar constraint

to evaluate the quality of the refined camera parameters on

the image plane. We also include a few additional error mea-

sures to compare the camera poses in 3D. We also consider

a qualitative assessment of the refined camera metadata by

recovering dense multiview 3D scene using PMVS ([18]).

4.1.1 Euclidean Epipolar Error (EEE) Measure

We generate image-based manual groundtruth, Ng feature

tracks, for each WAMI dataset (typically Ng = 11 to 50).

Given reference camera, l, then for each possible camera pair

(l,m), the fundamental (transformation) matrix is directly

computed using extrinsic parameters (not estimated) as:

Flm = K−T
m Rl R

T
m K′

l skew(Km Rm RT
l (tm −Rl R

T
m tl))
(6)

For the k-th 3D groundtruth points, gkm, with k = 1 . . . Ng ,

each projected into camera, m, its corresponding epipolar

line is computed and plotted in the reference image l. The

sum of the perpendicular Euclidean distances between the

each epipolar line and its associated groundtruth point, aver-

aged over all points, is used as the error measure between the

camera pair:

ǫlm =
1

Ng

∑Ng

k=1
d(gkm , Flm gkl) (7)

This error is computed over all possible pairs of cameras

in the sequence, {(l,m)| l,m = 1 .. Nc}. Ideally the ǫlm
should be zero due to the fundamental geometric constraint.

However, the triple product gT
km Flm gkl 6= 0, in real sce-

narios due to errors in either point correspondences or cam-

era parameters. The errors ǫlm can be treated as a matrix and

visualized using colored picture elements (pels). In addition

to computing, ǫlm, between cameras, l and m, the mean µǫ

and standard deviation σǫ of the error over all cameras is:

µǫ =
1

N2
c

∑Nc

l=1

∑Nc

m=1
ǫlm (8)

σǫ =
( 1

N2
c

∑Nc

l=1

∑Nc

m=1
(ǫlm − µǫ)

2

)1/2

. (9)

4.2. Implementation

The BA4S pipeline was implemented in C++. The com-

puter used for experiments was a server with CPU Intel Xeon
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Figure 2: Timing performance for BA4S corresponding to Table 1 showing total time

(left) and per frame (right); note non-linear horizontal scale. The time complexity

is linear in the number of frames. The per-frame timing decreases as the number of

frames increases which is very promising for large scale aerial imagery applications.
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Figure 3: Camera trajectories corresponding to the LA WAMI dataset.
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Figure 4: Difference between camera positions of metadata and BA4S output. They

basically indicate how much the camera positions have been corrected after BA.
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Figure 5: Evaluation of camera parameters using EEE measure before (a) and after BA

(b) for the Berkeley WAMI dataset. The pel in each matrix, ǫlm, indicates the error

between the l-th camera (matrix rows) and m-th camera (columns), computed using

(7). The ǫlm pel values were truncated beyond the maximum value (ie 50 and 5). The

mean and standard deviation of the errors (8) and (9) over all cameras are shown below

each plot. Notice that each plot uses a different scale for better visualization of errors.

Color bars shown to the right.

5650, 2.66 GHz, 12 cores (24 threads), 24 GB RAM and

nVidia GTX480/1.5GB GPU. SIFT-GPU [54] was used for

fast feature extraction. The Ceres Solver library [2] was used

for non-linear least-squares estimation; Schur’s complement,

Cholesky factorization and Levenberg-Marquardt algorithms

were used for trust region step computation.

4.3. Results

The characteristics of the test dataset along with timing

results are given in Table 1. Each dataset includes platform-

based camera orientation matrices and translation vectors

provided by imprecise IMU and GPS measurements along

with intrinsic camera parameters that we refer to as meta-

data. The BA4S pipeline was run on each dataset. A non-

linear triangulation algorithm [21] was used to estimate and

initialize 3D points. The persistency factors of the tracks and

their related statistics are used as weights in the adaptive ro-

bust function for the BA optimization. We compare BA4S

with VisualSfM [56] a state-of-the-art SfM implementation

for some datasets; For VisualSfM we provided imagery with-

out including metadata which is not a fully supported feature.

VisualSFM uses two strategies for matching including pre-

emptive and exhaustive [55]. With preemptive matching Vi-

sualSFM generated several fragments of cameras and only a

fraction of cameras could be recovered while for other cam-

eras it failed. This is consistent with similar observations

about VisualSFM’s limited performance on sequential aerial

images [45]. We ran VisualSFM in its exhaustive/expensive

matching mode in order to recover all cameras.

BA4S performance in terms of overall and per frame ex-

ecution times are plotted in Figure 2. The time per frame

is approximately constant (see column 11 in Table 1) and

is independent of the number of cameras (or views) which

is a surprising result compared to other methods in the lit-

erature. In fact for the longer sequence the per-frame time

is decreasing which is very promising for large scale aerial

imagery mosaicing and reconstruction applications. For the

largest dataset (Columbia-II) with 5,322 frames BA4S uses

only 0.59 sec per frame.

The camera positions and their viewing directions (opti-

cal axes) for the LA dataset are plotted in Figure 3. Figure

4 shows the degree of camera pose correction recovered by

BA4S. The EEE evaluation metric perviously explained was

applied to the Berkeley dataset and the error matrix shown as

colored pels in Figure 5. The left plot shows the EEE mea-

sure of the camera parameters using metadata (uncorrected

platform camera parameters); the range of errors is truncated

to 50 pixels. The initial raw metadata is very noisy but after

refinement using the proposed BA4S pipeline there is signif-

icant improvement in quality (see Figure 5b). The EEE µǫ

and σǫ statistics using all the cameras (see (8) and (9)) are

also given. BA4S was quite successful in refining the meta-

data while using significantly less time (Table 1).

Figure 6 shows the EEE graphically to assess camera pa-

rameters for Albuquerque (left column) and Berkeley (right

column) datasets. Point correspondence #2 in the ground

truth between 50th and 150th cameras within the sequence

were used. The epipolar lines corresponding to image #50

in each dataset is computed using the camera parameters

and plotted on image #150. The first row shows original

raw metadata (unrefined). The middle row shows the epipo-

lar lines after the metadata were refined using the BA4S
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(a) Original metadata

(b) Metadata refined by BA4S

(c) VisualSfM’s result

(d) Original metadata

(e) Metadata refined by BA4S

(f) VisualSfM’s result

Albuquerque Berkeley
Figure 6: Visual assessment of camera parameters using epipolar lines for the cor-

responding ground truth points between a pair of cameras (#50,#150). The first and

second columns correspond to Albuquerque and Berekeley datasets. The images cor-

respond to camera #150 within each dataset. On each image the corresponding ground

truth point is indicated by red circle. Epipolar lines corresponding to the ground truth

point from camera #50 (the other camera in the pair) is calculated using camera param-

eters and plotted on the image of camera #150, for each dataset. The camera param-

eters from three different sources are used in each row; top: metadata, middle: BA4S

(refined metadata) and bottom: VisualSFM.

pipeline. The epipolar lines should ideally pass through the

ground truth points (center of the marked circles in each

plot). As can be seen, the noise in metadata is significantly

reduced after applying BA4S. The errors values in these plots

are consistent with the EEE values in Figure 5; look at the

pair (#50,#150) in the matrix. The epipolar lines in the last

row were plotted using the camera parameters estimated by

VisualSFM for comparison.

Usually a dense 3D reconstruction algorithm such as

PMVS[18] is applied after BA in order to obtain a dense and

colored point cloud. We also applied PMVS for some of the

datasets to visually assess reconstructed point clouds. The

optimized metadata from BA4S is used as input to PMVS

(or CMVS). Figures 7-a and -b show the PMVS dense point

clouds for Albuquerque and Four Hills respectively.

In addition to testing BA4S on aerial WAMI datasets, we

have applied it to the Middlebury benchmark datasets for

mulitview 3D reconstruction which are not WAMI but the

images are acquired sequentially. Dino [46] is one of the

challenging datasets for a classical BA due to the lack of

salient features for tracking across views [17, 4]. The pro-

posed BA4S pipeline was tested on this dataset to evaluate

its applicability and performance for non-WAMI trajectory

images. The camera parameters in the Middlebury ground

truth were synthetically perturbed for both rotation and trans-

(a) Albuquerque downtown (b) Four Hills - Albuquerque

Figure 7: Dense 3D point clouds obtained by applying PMVS using BA4S outputs
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(b) FountainP11

Figure 8: Position errors before (red curve) and after (green curve) optimization using

BA4S to refine the metadata for Dino (left) and Fountain-P11 (right) datasets.

lation. The perturbed camera parameters along with the im-

ages were input to the BA4S pipeline. The Dino dataset has

48 cameras with image resolution of 640 × 480 pixels. The

position errors for the metadata (perturbed camera parame-

ters before optimization) and the optimized ones by BA4S

are plotted in Figure 8a. Figure 9 shows the visual assess-

ment of two point correspondences. The errors for the corre-

sponding epipolar lines are significantly reduced after BA4S

optimized camera parameters. The epipolar lines have very

large errors (third and fourth columns of each row) when the

noisy camera parameters are used. A dense version of the

point cloud using PMVS with BA4S optimized camera pa-

rameters is shown in Figure 11a.

FountainP11 [50] is another non-WAMI dataset. As with

the Dino dataset the ground truth camera parameters were

perturbed prior to running the BA4S algorithm. There are

11 cameras each image has a resolution of 3072× 2048 pix-

els. The position errors for the metadata (perturbed camera

parameters) and the refined results using BA4S are plotted

in Figure 8b. Figure 10 shows two point correspondences.

The initial epipolar lines have very large errors in the views

(third and fourth columns of each row) when the perturbed

camera parameters were used. The errors for the correspond-

ing epipolar lines become significantly smaller once BA4S

refined camera parameters are used. A dense version of

the point cloud for FountainP11 using PMVS and optimized

camera parameters is shown in Figure 11b.

5. Conclusions

We describe BA4S a fast, robust and efficient SfM

pipeline that we developed for 3D reconstruction from im-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9: Visual assessment of camera parameters using epipolar lines in Dino dataset.

Each row shows the results for one correspondence. First and second columns of each

row show the full and zoomed views using camera parameters after BA4S. Third and

fourth columns are using the original camera metadata parameters.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 10: Visual assessment of camera parameters using epipolar lines for the

Fountain-P11 dataset. Each row shows the results for one correspondence. First and

second columns of each row show the visual assessment when camera parameters were

obtained from BA4S. Third and fourth columns show the significantly larger errors

when the original camera metadata are used.

ages acquired using sequentially ordered camera motion

with approximate camera metadata. Significant performance

gains for 3D reconstruction are possible since we do not re-

quire RANSAC-like combinatorial feature correspondences

and outlier rejection nor estimating the initial camera param-

eters (i.e. no essential matrix estimation). A new robust re-

projection error function was introduced that is adaptive to

feature track or 3D scene point quality and measures the co-

visibility persistency factor of each track relative to the pop-

ulation statistics. Using the BA4S pipeline it is possible to

efficiently refine noisy camera parameters more 100 times

faster than VisualSfM, taking on average just 0.59 sec per

(a) Dino (b) Fountain-P11

Figure 11: Dense reconstruction using PMVS after optimized camera parameters are

estimated using BA4S.

frame. The proposed SfM pipeline is highly suitable and

scalable for 3D urban reconstruction for wide area motion

imagery in which high resolution geo-tagged aerial imagery

are sequentially acquired.
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