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Abstract

In this paper, we show that the recent theory of Com-

pressive Sensing (CS) can successfully be applied to solve

a model-based inverse lighting problem for single face im-

ages, even in harsh lighting with multiple light sources, in-

cluding cast shadows and specularities. It has been shown

that an illumination cone can be used to perform realistic

inverse lighting. In this work, the cone images are synthet-

ically generated using directional lights and a realistic re-

flectance of faces. Thereby, the face model is achieved by

fitting a 3D Morphable Model to the input image. We ap-

ply CS to find the sparsest illumination setup from few ran-

dom measurements of the RGB input and the cone images.

The proposed method significantly reduces the dimension-

ality through stochastic sampling and a greedy algorithm

for the sparse support estimation, yielding low runtimes.

The greedy search is designed to handle non-negativity of

the light sources and joint-support selection. We show that

the proposed method reaches a quality of illumination esti-

mation equal to previous work, while dramatically reducing

the number of active light sources. Thorough experimental

evaluation shows that stable recovery is achievable for com-

pression rates up to 99%. The method exhibits outstanding

robustness to additive noise in the input image.

1. Introduction

This work brings the areas of inverse lighting of faces

and Compressive Sensing (CS) together. We show that

CS can profit from the low number of active illumination

sources needed to recreate the illumination conditions in the

input image to efficiently solve the problem.

1.1. Inverse Lighting

Single image inverse lighting aims for estimation of

lighting parameters for a given rendering machine to ren-

der an image as close as possible to the input image. For

rendering, not only lighting but also parameters such as 3D

shape, albedo and reflectance of the surfaces, camera prop-

erties and etc. are necessary. We specifically refer to the

realistic inverse lighting process proposed by Shahlaei and

Blanz [27]. The focus is on human faces, as one of the

most attractive real objects for computer vision and graph-

ics. This is the pipeline:

1. Estimate face model by fitting a 3D Morphabel Model

(3DMM) [4] to the input image.

2. Configure the renderer with the estimated 3D geom-

etry, together with a generic realistic reflectance and

texture for faces based on measurements of [29].

3. Using the renderer and a fixed number of light sources,

render images of the face with each single light.

4. Find an optimum coefficient vector for combining the

rendered images, so that the weighted summation be-

comes as similar as possible to the input image. (See

Eq. 1.)

They call the set of rendered images a synthetic illumination

cone, comparing it to an illumination cone which is exten-

sively defined in [3]. One successful approach with a real

illumination cone is to build an orthogonal basis out of the

cone images with spherical harmonics [25]. Conversely, we

directly take the rendered cone images as the basis. The use

of a realistic representation of lighting with non-negative

lighting parameters leads to realistic reconstruction of illu-

mination effects such as specular and Fresnel highlights and

cast shadows, which are perceived strongly in real images.

When combined with a realistic reflectance function and a

3D model, even complex unknown lightings can be esti-

mated from a single face image. On the downside, we have

to deal with the linear dependencies among basis elements.

Moreover, using a synthetic cone for inverse lighting of a

captured image introduces even more challenges, specially

when the only available data is that single image. According

to [27], these challenges rise from all the unknowns, such as
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shape and texture of the face, reflectance of the skin, cam-

era properties and the color balance of the image. Based

on superposition principle, light is additive. In illumination

cone terms, it means that any lighting situation can be re-

constructed as a weighted sum of the cone images. It has

been shown that an environment map, representing the in-

cident light for an object, can be summarized in a few light

sources for rendering of that object [12]. Therefore, it is

possible to formulate the superposition as below:

~I = ΨΨΨ ~X (1)

where ~I the vector of face pixels in the input image and ~X

is the coefficient vector for the linear combination of cone

images in matrix ΨΨΨ.

To find the lighting parameters means to correctly find a

non-negative vector ~X for the Eq. 1. This paper shows how

to successfully apply Compresive Sensing to solve this real

life problem.

1.2. Compressive Sensing

Few research areas have experienced a development as

fast as that of Compressive Sensing (CS). The success on

applying CS to very different areas of science testifies the

evolution from a mathematical theory to an useful tool that

can be used in cases where the high dimensionality of the

data is an issue, typically in data acquisition and transfer.

CS proposes to apply the compression at sensing and not

after, that is, to gather few measurements, less than those

required for the desired signal resolution, but still contain-

ing all signal information. Fundamental works in CS [5, 15]

have shown that the high-resolution signal can be recovered

from the measurements if it is sparse (or, at least, compress-

ible) in a certain dictionary and certain conditions on the

sensing process and its relation to the dictionary are ful-

filled. The number of measurements required to recover

a signal is directly related to its sparsity in the dictionary

and not to the maximum frequency contained in it. Con-

sequently, CS theory implicitly suggests that highly-sparse

signals can be recovered from much less measurements than

those suggested by the Nyquist rate.

At first glance, the topics of realistic inverse lighting and

CS might seem unrelated, but a closer look reveals that

the previous can take enormous profit of the novel sens-

ing paradigm proposed by the latter. It is clear that the

amount of information contained in an image does not nec-

essarily grow with its resolution. Specifically, in our case,

the amount of useful information does not grow at all after

some low resolution is reached, since illumination effects

are of low spatial frequency. Higher resolutions are not ad-

vantageous in information terms. Additionally, large im-

ages might lead to intractable optimization problems when

operating directly in pixel domain. CS natively accounts for

such issues, operating in a compressed domain, which is as-

sured to preserve the information contained in the original

image if it admits a sparse representation in an appropriate

dictionary. This bring us to the next strong point of this

work, which is the signal sparsity. Most natural signals are

not exactly sparse in general dictionaries such as orthogonal

basis, but compressible, e.g., periodic signals in Fourier do-

main or natural images in wavelet domain. This means that

part of the signal power is to be distributed among many or

all dictionary atoms, since the signal cannot be exactly rep-

resented as a sparse linear combination of them. We show

that the inverse lighting problem falls into the category of

purely sparse signal recovery, since very few active light

sources are typically needed to approximate the illumina-

tion in the input face image.

2. Related Work

2.1. Inverse Lighting

Inverse rendering methods can be divided in two groups

based on the type of the input. On the one hand, a group

of inverse rendering approaches acquire the appearance of

the given face with a configuration of multiple cameras, 3D

scanners and geodesic light domes. Some of these works,

including [3, 13, 18, 29] measure the facial appearance un-

der different lighting situations in a lab, in several 2D im-

ages or 3D scans, and use the results to estimate the illu-

mination. Some other data driven approaches, such as [17],

infer information about the lighting of the scene with the

help of a reference object. Providing visually impressive

results, this group have demonstrated the challenges of ap-

pearance acquisition and inverse lighting in a controlled en-

vironment. They also have shown that it is challenging to

reconstruct perfect results when it comes to the human skin.

On the other hand, there are single image methods which

make assumptions on unknown parameters or estimate them

to perform inverse rendering for faces [4, 26, 1, 19, 27].

Among these methods, using a 3D morphable model, to es-

timate shape and texture of the face, has gained attention.

While some of them [4, 19, 26] fit the whole rendering pa-

rameters (i.e., shape, texture, lighting, color balance, etc.)

in a unified process, some others [1, 27] perform an extra

illumination estimation step to refine the results.

The single image inverse rendering methods demand no

special hardware and are free from the presence of the per-

son in the lab. This adds to the flexibility and the amount of

imaginable use cases. As a tradeoff, they usually lack visual

quality compared to the first group. While many aspects of

the appearance acquisition methods in the first group have

been researched, the second group is still dealing with a

hard kind of open problem.

Using illumination cone is common in both groups. All

illumination cone methods, but [27], use non-physical rep-

resentation of lights, such as Spherical Harmonics, to build

an orthogonal basis from a captured illumination cone. A
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mathematically manipulated basis has clear mathematical

benefits, yet, fails in reconstruction of some complexities of

natural lighting effects. Usually specular highlights, and

cast shadows are the most important effects that are be-

ing compromised. However, a physically plausible basis

lacks orthogonality.This demands mathematical approaches

which are specifically configured to deal with the ambigu-

ity of the model. On the bright side, a this approach as-

sures to take all the physical effects of light into account

and shows more stability against complexity of the lighting

and more potential of improvement, whenever other param-

eters of rendering are estimated more accurately.

2.2. Compressive Sensing

The basic theoretical background underlying this work is

Compressive Sensing (CS). Introductory works on CS are

[2, 7]. While the basis of modern CS can be found in, e.g.,

[8, 15], a good compendium of recent developments and

applications is given in [16]. The core idea of CS is that

a signal which admits a sparse or compressible representa-

tion can be recovered from a reduced set of non-adaptive

measurements. In the case of an exactly sparse signal, an

accuracy similar to that achievable with knowledge of the

sparse support of the signal is guaranteed if a minimum

number of measurements is performed. This already intro-

duces the two main fields of CS: how the measurements are

to be performed and how to recover the sparse vector of co-

efficients from the measurements, given the measurement

strategy and the sparsity dictionary.

Regarding to the sensing process, Fourier matrices [5],

Gaussian random matrices [9] and Bernoulli binary matri-

ces have been shown to allow for sparse recovery. Recov-

ery rates and error bounds for these matrices are given in

[6]. Binary sensing matrices allow for fast computation and

high efficiency in an eventual hardware implementation.

In [5, 8, 15] it was stated that m = O(k log(n)) mea-

surements are necessary for sparse signal recovery, that is,

the minimum number of measurements required for recov-

ery depends linearly on the sparsity, k and only logarithmi-

cally on the signal size, n. This is of capital importance in

this work, since it allows our method to perform a dramatic

dimansionality reduction, backed by the very low values of

k (number of active light sources) and to deal with large

images directly, without prior downsampling.

Finding the sparsest solution to the system of linear

equations (SLE) in Eq. 5 is equivalent to minimizing the l0
norm of the solution, subject to the constraints imposed by

the SLE. It has been shown that finding a solution to such a

problem is, in general, NP-hard [22]. In the literature, there

are two different approaches to overcome this difficulty: to

substitute the l0 minimization by an l1 minimization or to

design a greedy algorithm to find the sparse support of the

signal and estimate the corresponding non-zero coefficients

of the sparse solution.

In [10] it is shown that such linearly-constrained l1 mini-

mization can be efficiently solved as a linear program, even

when dealing with overcomplete dictionaries. While con-

vex optimization methods for l1 minimization are a standard

way of signal recovery in CS, greedy algorithms deserve

special mention, since they allow for lower complexity and

greater flexibility than convex optimization, leading to very

reduced runtimes in cases of high sparsity.

The general structure of a greedy algorithm consists of

two steps: support element selection and coefficients up-

date. A basic pursuit algorithm is the Matching Pursuit

(MP), presented in [20], where it was already shown that

such greedy pursuits can operate in overcomplete dictionar-

ies and deal natively with noise, which is filtered out not

because of its lower level, but because of its incoherence

with the dictionary atoms. MP selects a single column of

AAA at each iteration and only the associated coefficient is up-

dated. The Orthogonal Matching Pursuit (OMP) [24], also

known as the Orthogonal Greedy Algorithm [14], adds a

new element to a support set at each iteration and X is up-

dated by projecting Y orthogonally onto the columns of AAA

indexed by that support set. OMP selects at each iteration

the dictionary atom that is most correlated with the residual,

but this does not imply selecting the atom that provides the

largest error reduction after orthogonalization. The Order

Recursive Matching Pursuit (ORMP) [23] solves this issue

with the introduction of an orthogonal projection operator,

which is updated for the new support set in each iteration.

This way, ORMP selects, at each iteration, the support el-

ement whose normalized projection orthogonal to the sub-

space spanned by the columns of A indexed by the current

support set is maximally correlated to the current residual.

2.3. Compressive Sensing and Inverse Lighting

In contrast to the mainstream research on inverse light-

ing, we propose the use of Compressive Sensing (CS) to

deal with basis redundancy and provide a solution which

minimizes the number of active light sources. Although

this approach is thematically close to some previous work

[21, 31], our method deals with much more complicated

lighting conditions; it is invariant to pose and camera, con-

siders and replicates realistic reflectance effects and works

natively with color images. Such degree of freedom in the

proposed method contributes to the complexity of the prob-

lem and demands special care in the design of the solution.

Additionally, the classification of sparse estimation

methods in [21, 31] as CS is doubtful, since the required

stochastic sampling is missing. In [21] spherical harmonics

are used as measurement method, providing a large dimen-

sionality reduction, but at the cost of bounding the range of

illumination effects that can be recovered. Using random

sensing matrices does not compromise the information and
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meets the incoherence between sensing and representation

demanded by CS. In [31] no dimensionality reduction takes

place and their Sparse Representation-based Classification

(SRC) is therefore based on l1 minimization with constrains

in the high-dimensional image space.

A crucial observation was made in [30], where random

projections and downsampled images where used as image

features and it was stated that, if a sparse representation is

possible, the choice of features, i.e., the sensing method, is

irrelevant and what matters is its number, i.e., the number

of compressed measurements. Although the goal of [30]

is different to ours, it is related as it actually performs a

compressed sensing prior to sparse recovery. Similarly, we

also make use of random projection, with and without prior

downsampling, as sensing method.

3. Optimization with Non-Negative Least

Squares

In this section we briefly describe the optimization

method from [27], which is taken as a reference for

comparison to the proposed method in Section 5. A

Pseudo-Newton-Raphson iterative algorithm successfully

minimizes a sum of least squares cost function (Eq. 2)

to find the optimum coefficient vector per channel. Let

Γ = {R,G,B} be the set of image channels, consider the

matrix XXX = [ ~Xγ ]γ∈Γ constructed stacking coefficient vec-

tors by columns. Eq. 2 comes from Eq. 1, considering im-

ages in RGB color space and the color balance differences

between the rendered images ΨiΨiΨi = [ ~ψγ
i ]γ∈Γ and the input

image III = [ ~Iγ ]γ∈Γ with a transformation matrix TTT and an

offset vector ~o = [oγ ]γ∈Γ.

−−−→
E(XXX) = 1

2

∑

p∈face



~o+ TTT

−−−−−−−−−−−−−−→

(

natoms
∑

i=1

(

~xi . ~ψi(p)
)

)− ~I(p)





2

(2)

where, ~I(p) represents the R, G and B values of pixel p

from the input image, ~o and TTT (Eq. 3) parameters for color

correction of the renderd images with respect to the input

image, ~xi the i-th RGB coefficient and ~ψi(p) the RGB val-

ues of pixel p of the i-th cone image, natoms the number of

cone images, and therefore, the

−−−−−−−−−−−−−−−−→
(
∑natoms

i=1

(

~xi . ~ψi(p)
)

) is

the weighted linear combination of the cone images at pixel

p. The color balance parameters are based on the model de-

scribed in [27], which transforms the neutral colors of the

model to the color contrast of the input image. To control

the overall brightness, the offset vector ~o is added to the

pixels of a rendered image after transformation TTT has been

applied to it:

TTT = diag(~g)





(0.7ξ + 0.3) (0.6− 0.6ξ) (0.1− 0.1ξ)
(0.3− 0.3ξ) (0.4ξ + 0.6) (0.1− 0.1ξ)
(0.3− 0.3ξ) (0.6− 0.6ξ) (0.9ξ + 0.1)



 (3)

where ~g = [gγ ]γ∈Γ the estimated gain for each channel

and ξ is the estimated color contrast. This transformation

not only controls the gain of each color channel separately,

but also allows a ξ-weighted interpolation between the gray

value and the saturated value of each pixel. The offsets,

gains and the value of ξ are estimated during the fitting of

the 3DMM to the input image [4]. Please note that the ~Ψi

images are rendered with ξ = 1, ~o = ~0 and ~g = ~1, so that

they have the neutral saturation of the rendering machine.

Modeling the color balance is necessary for the estimation

of illumination and reconstruction of scenes when dealing

with differently saturated input images images.

The cost function in Eq. 2 is regularized with a prior on

the value of ~X for all the 3 color channels in Eq. 4.

r(XXX) = η
(

∑

γ∈Γ(
∑natoms

i=1
(xγ

i
)2

σ2
i

)
)

(4)

This regularization term is tuned with η and σi, ∀i | i ∈
[1, natoms]. It penalizes all negative and positive values and

forces each x
γ
i to become zero, depending on their influ-

ence on the value of the cost function. This l2 regulariza-

tion term not only prevents overfitting but also helps the

non-negativity constraint to work properly and supports the

convergence of the algorithm. To force non-negativity, each

x
γ
i is watched during the iterative process and set to zero

whenever their current value is negative. The algorithm is

stopped whenever the value of error per pixel is lower than

a threshold. Because the error per pixel might never reach

that small value for reasons other than illumination (e.g., the

3D shape is a suboptimal estimation), the algorithm stops

when a certain number of iterations is reached. Each result-

ing ~xi is used as R, G and B values of the i-th directional

light, which has been used to render the corresponding illu-

mination cone image ~Ψi.

The Newton-Raphson update function demands calcula-

tion of the first and second derivatives of the summation of

Eq. 2 and Eq. 4. The first derivatives are calculated in ev-

ery iteration. In case of the second derivatives, the result

is a Hessian matrix which needs to be inverted. Instead of

inverting the Hessian with Singular Value Decomposition

(SVD), which is usual for these problems (because of sin-

gularity of the matrix a direct inverse is not possible), only

the inverse of the diagonal values is calculated and the rest

of the Hessian-inverse is set to zero.

Using a synthetic input image, [27] proves that, when-

ever other rendering parameters are accurately available,

this state of the art algorithm converges the sum of least

squares to zero.

4. Compressive Sensing for Inverse Lighting

This section describes our approach for inverse lighting

of faces using Compressive Sensing (CS) in detail. First

we unify the terminology of lighting estimation and CS, we

comment on the sensing step and finally we present our al-

gorithm for sparse recovery of the illumination sources.

CS requires a linear sensing model, as indicated in Eq. 5,

where ~Y ∈ R
m is the vector of measurements, AAA ∈
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R
m×natoms the so-called measurement matrix and ~X ∈

R
natoms the sparse vector of coefficients, being natoms the

number of atoms in the sparsity dictionary.

~Y = AAA ~X (5)

The measurements are obtained applying a sensing ma-

trix, ΦΦΦ ∈ R
m×n to the dense signal, ~I ∈ R

n, i.e., ~Y = ΦΦΦ~I .

Note that the matrix ΦΦΦ maps the high-dimensional signal

space to a low-dimensional space, ΦΦΦ : Rn → R
m,m ≪ n.

If we denote the dictionary asΨΨΨ ∈ Mn×natoms
by columns,

the signal ~I can be represented as a linear combination of

few columns of ΨΨΨ, i.e., ~I = ΨΨΨ ~X and, consequently, the

measurement matrix is constructed asAAA = ΦΦΦΨΨΨ. In our case,

ΨΨΨ is the matrix of cone images introduced in Eq. 1,which

allows a sparse representation of the dense vector of face

pixels, ~I . Both in Eq. 1 and Eq. 5, ~X is the sparse vector

containing the intensity values of each possible light source.

We consider now a slightly different notation and stack

the channels of the vectorized image by columns, turning

the vectors into matrices: YYY = [ ~Y γ ]γ∈Γ, XXX = [ ~Xγ ]γ∈Γ,

being Γ the set of image channels. In this paper we only

consider RGB images, i.e., Γ = {R,G,B}, but the method

applies to hyperspectral data if a hyperspectral dictionary is

provided. Note that both ΨΨΨ and AAA are now 3-dimensional

matrices, where the third dimension is nch = |Γ|, since a

different matrix ΨγΨγΨγ per channel exists. Each measurement

vector ~Y γ is obtained projecting the corresponding channel

of the image ~Iγ through ΦΦΦ, i.e., ~Y γ = ΦΦΦ ~Iγ . As introduced

in Section 3, a color correction is needed to adapt the color

from the 3DMM to the input image. For simplicity, instead

of including such correction in our linear model, we undo it

in the input image, which is equivalent and always possible,

since rank(TTT ) = nch = 3. If we stack the image channels

by rows, we get a matrix III ∈ R
nch×n, where, from now on,

n is the number of pixels per channel. Then, the measure-

ments are performed on the images given by rows in Eq. 6,

where TTT is defined in Eq. 3 andOOO = ~o ~1n
⊥

.

[ ~Iγ
⊤
]γ∈Γ = TTT−1(III −OOO) (6)

A single sensing matrix, ΦΦΦ, is used for all channels. The

performance of most common types of sensing matrices

was evaluated with appropriate data, including pure random

and pseudorandom, dense and binary matrices. We selected

a Gaussian matrix, with entries i.i.d. drawn from a zero-

mean, unit-variance Gaussian distribution. A Bernoulli

distribution would equally be valid, as introduced in Sec-

tion 2.2. The results presented in this paper were also gen-

erated using pseudorandom Hadamard-derived binary sens-

ing matrices, with entries [−1, 1] and [0, 1], leading in both

cases to results close to those obtained using a Gaussian

sensing matrix. Consequently, we can rewrite Eq. 5 as fol-

lows:

[ ~Y γ ]γ∈Γ = [AγAγAγ ~Xγ ]γ∈Γ (7)

where, AγAγAγ denotes the 2D matrix obtained from the 3D AAA

matrix for the channel γ, being AγAγAγ = ΦΦΦΨγΨγΨγ . Note that

this is close to a Multiple Measurement Vector (MMV)

formulation, but not equivalent, since in general Aγi 6=
Aγj , ∀γi, γj ∈ Γ, γi 6= γj . Nevertheless, the formulation in

Eq. 7 allows us to integrate crucial a priori information on

the sparsity of the signal, in a MMV manner. Such informa-

tion is that the matrixXXX is expected to be k joint sparse, fol-

lowing the definition of joint sparsity given in [11], where

k = | supp( ~Xγ)|, ∀γ ∈ Γ. Handling the joint sparsity in

our algorithm allows accounting for the physically plausi-

ble fact that real illumination sources rarely emit monochro-

matic light of wavelength coincident to that of one single

channel, i.e., if one light source is active, it is active in all

channels. This way, we increase the robustness of the es-

timation and promote sparsity, at the same time we avoid

unrealistic lighting configurations.

The algorithm we present here builds upon the ORMP

algorithm [23], extending it to handle an arbitrary number

of channels. In contrast to existing MMV extensions, we

keep a different measurement matrix per channel, but we

jointly estimate the index of the dictionary atom to be in-

cluded in the temporal support at each iteration. For clar-

ity, the pseudo-code for this ORMP for Joint Sparse Inverse

Lighting (JSIL-ORMP) is given in Algorithm 1.

Algorithm 1 Order Recursive Matching Pursuit for Joint

Sparse Inverse Lighting (JSIL-ORMP)

Initialize: RRR(0) = YYY ,XXX(0) = 000,Ω0 = ∅, k = 0
1: while (‖RRR(k)‖2 > εtol)and(∆norm‖RRR(k)‖2 >

ε∆)and(|Ωk| < smax) do

2: k := k + 1
3: Diag. normalization matrix: NγNγNγ |nγ

i,i =
1

‖PPPγ⊥

Ωk
~A
γ
i
‖2

4: GGG(k) = [ ~Gγ ]
(k)
γ∈Γ = [NγNγNγ(AγAγAγ)T ( ~Rγ)(k−1)]γ∈Γ

5: ik = argmax
i 6∈Ωk−1

gi,j>0,∀j∈[1,nch]

‖~gi‖2

6: Update support: Ωk = Ωk−1 ∪ ik

7: XXX
(k)

Ωk = [ ~Xγ
Ωk ]

(k)
γ∈Γ = [AγAγAγ†

Ωk
~Y γ ]γ∈Γ

8: Calculate orthogonal projectors:

PPP
γ⊥
Ωk := (IIIm −AγAγAγ

ΩkAγAγAγ†
Ωk), ∀γ ∈ Γ

9: Update residual:

RRR(k) = [PPP γ⊥
Ωk

~Y γ ]γ∈Γ = [ ~Y γ −AγAγAγ
ΩkXXX

(k)

Ωk ]γ∈Γ

10: end while

where, RRR(k) is the residual matrix at iteration k and Ωk the

temporal support. In line 4, GGG(k) ∈ R
natoms×nch provides,

for each channel, the normalized correlations between the

current residual vector and the columns of the measurement
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matrix. The normalization is provided by the diagonal ma-

trix NγNγNγ ∈ R
natoms×natoms , whose diagonal elements are

n
γ
i,i =

1

‖PPPγ⊥

Ωk
~A
γ
i
‖2

, being ~A
γ
i the ith column ofAγAγAγ and PPP

γ⊥
Ωk

the orthogonal projection operator for the channel γ. The

selection of the new support element to be added to Ωk is

carried out in line 5. Note the natural handling of the non-

negativity of light, achieved by simply requiring that all the

elements of the ith row of GGG(k), ~Gi ∈ R
nch , are positive,

i.e., gi,j > 0, ∀j ∈ [1, nch]. This automatically avoids se-

lecting dictionary atoms that are negatively correlated with

the residual for some of the channels and assures that no

negative values will appear in the coefficient vectors, i.e.,

xi,j ≥ 0, ∀i, j ∈ [1, natoms] × [1, nch]. In line 8, IIIm de-

notes the identity matrix of sizem andAγAγAγ†
Ωk) is the Moore-

Penrose pseudoinverse ofAγAγAγ
Ωk .

The following stopping conditions are contemplated:

1. The residual norm is lower than a threshold, εtol.

2. The normalized variation of residual norm,

∆norm‖RRR(k)‖2 = (‖RRR(k−1)‖2−‖RRR(k)‖2)
‖RRR(k−1)‖2

, is lower

than a threshold, ε∆.

3. The cardinality of the temporal support, |Ωk|, reaches

the maximum sparsity, smax.

If the algorithm ends due to a negative ∆norm‖RRR(k)‖2,

XXX
(k−1)

Ωk−1 is delivered as solution, in order to avoid a degra-

dation of the result due to a wrong last support element.

Otherwise, the output of the algorithm is alwaysXXX
(k)

Ωk . The

method is robust to variations in the thresholds εtol, ε∆. In

our case of study, we have observed that even in the most

conservative scenario of setting both to zero, the sparsity of

the signal is not spoiled. One more case in which the algo-

rithm stops is when no candidate for new support member

is found in line 5. This case was found to be uncommon in

practice and omitted in Algorithm 1.

5. Results

In this section we evaluate our approach and put it in con-

trast to that of [27], taken as reference. For both methods the

same rendering parameters, i.e., 3D shape, reflectance, tex-

ture and rendering method, are identical. In the cases of 100

cone images, the same illumination cone was used by our

method and the method in [27]. Our approach is evaluated

in four different cases, using 100 and 10000 cone images,

with and without an initial face contour-preserving blurring

step. In the following, we refer to these cases as CS-100,

CS-100-blurred, CS-10000 and CS-10000-blurred. The ini-

tial step of Gaussian blur is used in [27] to remove texture

that cannot be recovered from the cone images and provides

an initial dimensionality reduction. Although included for

comparison, a blurring srep is not required in our approach.

In all CS cases, m = 1000 measurements are performed,

which, in non-blurred images, means a dimensionality re-

duction of more than 98%. We set the maximum sparsity

to smax = 20, although this limit was never reached, even

when using natoms = 10000 cone images. The tolerance

on the l2 norm of the residual is set to εtol = 0, pursuing

maximum accuracy, and the threshold on residual norm re-

duction to ε∆ = 1e−3, which is, in practice, very conserva-

tive. Our alogorithm was executed twice per experimental

case, with different random sensing matrices, to check for

stability. Variations in Root Mean Square Error (RMSE)

were found to be negligible and the best result was chosen.

5.1. Evaluation on real data

We use six different face images, taken under both real

life and controlled lighting conditions, as input data to

demonstrate the performance of our method. In each input

image, different kinds of illumination effects are present.

The results are given in Figure 1. Image 1 is from [28]. In

image 1 the illumination is ambient light, still some specu-

lar highlights are visible on the forehead, nose and cheek.

Image 2 was taken under controlled lighting conditions and

shows low saturation and low frequency multilateral illu-

mination. In image 3, blueish specular highlights on the

cheek on the left side of the image and some low intensity

highlights under the chin are observable. The nose throws

a dominant cast shadow on the face. In image 4 and 5, both

low and high frequency illuminations are present simulta-

neously on different sides of the face. In image 4, there is

a strong low-frequency illumination on the right side, while

on the left side there is an area of low-intensity and high-

frequency illumination. In image 5, the dominant illumina-

tion areas on the left and right side of the face are of dif-

ferent frequency and colors. Image 6 shows specular high-

lights on several face areas. There is a cast shadow under

the nose and an attached shadow on the right side of the im-

age, under the chin and the cheek. Note the colorful light

within the attached shadow under the chin.

In general, the case CS-100 appears to deliver more re-

liable results in all experiments. Because our method pro-

motes sparsity, it reconstructs the illumination setup with

lower number of lights. As a downside, this might lead

to ghost shadows or too bright highlights. On the positive

side, lower number of lights allows for shorter rendering

times and more realistic reconstruction of extreme specular

highlights and cast shadows. Distributions of light sources,

showing color and location around the face are given in Fig-

ure 2 for two cases, for reference and proposed method. For

image 6 (last row) a sparsity enhancement of more than 80%

is achieved, at negligible cost in terms of RMSE.

In Table 1 we provide the RMSEs between the images

rendered using the estimated lighting and the originals. We

use the l2 norm only for allowing comparison between algo-
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Original Result

of [27]

CS-100 CS-100-

blurred

CS-

10000

CS-

10000-

blurred
1

2

3

4

5

6

Figure 1. Experimental results for the six different real images of

faces considered in this paper. The reconstruction results are orga-

nized by columns, from left to right, as follows: the first column

shows the original input image, the second shows the result ob-

tained using the method presented in [27] and le last four columns

present the results of the proposed algorithm in four different re-

covery scenarios: Using natoms = {100, 10000} cone images,

both with and without applying an initial step of ad hoc Gaussian

blur and decimation. Input image 2 is courtesy of c©Barrie Spence

2013

[27] CS

2

6

Figure 2. Map of active light sources obtained with the method in

[27] (left column) and with the proposed method (right column),

for the input images 2 and 6. The results of our method are using

10000 cone images in 2 and 100 in 6.

rithms, but note that cannot be considered an optimal quan-

titative measure for illumination estimation. Note that, even

with much fewer light sources, we get RMSEs that are very

close to those achieved in [27], still slightly higher, in gen-

eral.

ID [27] CS-100 CS-10000

1 3.065e-2 3.210e-2 3.106e-2

2 1.464e-1 1.582e-1 1.473e-1

3 1.077e-1 1.110e-1 1.037e-1

4 5.767e-2 5.965e-2 6.045e-2

5 7.175e-2 7.396e-2 7.194e-2

6 1.012e-1 1.059e-1 1.047e-1

Table 1. Root Mean Square Error (RMSE) between the image ren-

dered using the estimated lighting and the original image. Images

are rendered with average face texture to focus on the effects of

illumination. The first column contains the results obtained ap-

plying the method in [27], the second and third columns summa-

rize the results obtained using the proposed method, with 100 and

10000 cone images, respectively.

In terms of execution time, our method has shown to be,

at least, twice as fast as that of [27]. Additionally, if run-

time is an important parameter, a simpler version of our

algorithm building on OMP can be adopted to avoid the

orthogonal projection at each iteration. Such modification

allows for runtimes at least two orders of magnitude lower

than those for the method in [27] using 100 cone images and

opens the door for a real time implementation. Moreover,

the proposed algorithm does not require parameter tuning.

5.2. Robustness to noise

Methods operating in pixel domain, apart from suffering

from overwhelming dimensionalities, are typically sensitive

to noise. Using a pseudorandom mapping as dimension-

reduction method allows for filtering out random noise,

since random variables are poorly correlated between each

other. Unfortunately, pseudorandom mappings also tend to

decrease the power of the signal and the signal-to-noise ra-

tio may be significantly reduced in the compressed domain.

For this reason, an analysis of the performance of the pro-

posed method under a wide range of noise levels becomes

necessary.

We consider the addition of zero-mean Gaussian noise

to the input color images. In order to allow comparison

to ground truth, we use the realistic illumination recovered

from the images in Section 5.1 to generate six synthetic face

images. For each image, six levels of noise are considered,

yielding SNRs from 40 dB to 0 dB, with 10 dB step size,

plus a noiseless case. The analysis is carried out for the

four experimental cases considered, namely CS-100, CS-

100-blurred, CS-10000 and CS-10000-blurred. Very simi-

lar values and exactly the same trend was observed for the
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four cases. Figure 3 shows the RMSE between the image

rendered using the recovered lighting and the original noise-

less image, for different SNRs of the input image, in the

case of CS-100. The RMSEs obtained for the noiseless im-

ages are very close to those obtained for the 40 dB cases and

are omitted. Figure 4 illustrates the quality of the recovered

lighting from noisy input images for Image 3 in the CS-100

case (red line in Figure 3). Note the faithful recovery of the

illumination for SNRs of the input image as low as 10 dB,

as well as the correct estimation of the main light directions

in the 0 dB case, thanks to our robust joint-support estima-

tion. Provided that random noise is not correlated between

channels, estimating the sparse joint support in a multichan-

nel manner increases the robustness to noise.

Figure 3. Root Mean Square Error (RMSE) between the image

rendered using the estimated lighting and the original noiseless

image, for different noise levels in the input image. The results

were obtained using 100 cone images, without initial blurring step

(CS-100). The plots show very accurate recovery for SNRs as low

as 10 dB in all cases.

0 dB 10 dB 40 dB

Figure 4. Recovered illuminations from noisy input images for the

Image 3, using CS100. The first row shows the input images, cor-

rupted with different levels of zero-mean Gaussian noise, showing

SNRs of 0, 10 and 40 dB. The second row shows the recovered

illumination from the noisy images.

5.3. Dependence of error on compression rate

All results summarized in Figure 1 were obtained using

the same number of measurements, m = 1000. In order to

study the stability of our method with the number of mea-

surements, we repeat the experiments for different values

of m ∈ [50, 1000], with step size of 50. This covers com-

pression rates between 98.2% and 99.9% in the non-blurred

cases. Figure 5 shows the RMSE between the image ren-

dered using the estimated lighting and the original image,

for each value ofm considered, in the case of CS-100. Note

the higher error obtained for excessively low values of m

and the high stability almost all along the considered range.

Figure 5. Root Mean Square Error (RMSE) between the image

rendered using the estimated lighting and the original image, for

different number of measurements, m ∈ [50, 1000]. The results

were obtained using 100 cone images, without initial blurring step

(CS-100). The plots show stable recovery for compression rates

higher than 99% in all cases.

6. Conclusions and Future Work

In this paper, we have presented a novel approach for

inverse lighting of faces using CS. Our recovery algorithm

is a greedy method based on the ORMP [23], which nat-

urally handles the non-negativity of light sources in multi-

channel images. A joint support selection schema provides

enhanced robustness to uncorrelated noise.

Experimental evaluation with challenging real images

shows that our method is able to provide a much sparser

illumination setup than previous methods also based on an

illumination cone, often one order of magnitude sparser,

while achieving equivalent performance in terms of RMSE.

The dimensionality reduction provided by the stochastic

sensing, higher than 98% for the images in this paper, al-

lows reduced runtimes, handling large input images and a

high number of cone images.
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