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Abstract

Intrinsic image decomposition factorizes an observed

image into its physical causes. This is most commonly

framed as a decomposition into reflectance and shading,

although recent progress has made full decompositions

into shape, illumination, reflectance, and shading possible.

However, existing factorization approaches require depth

sensing to initialize the optimization of scene intrinsics.

Rather than relying on depth sensors, we show that depth

estimated purely from monocular appearance can provide

sufficient cues for intrinsic image analysis. Our full intrin-

sic pipeline regresses depth by a fully convolutional network

then jointly optimizes the intrinsic factorization to recover

the input image. This combination yields full decomposi-

tions by uniting feature learning through deep network re-

gression with physical modeling through statistical priors

and random field regularization. This work demonstrates

the first pipeline for full intrinsic decomposition of scenes

from a single color image input alone.

1. Introduction

Intrinsic image decomposition seeks to factorize an ob-

served image into its physical causes such as reflectance,

shape, and illumination, as shown in Figure 1. Each cause

is represented as an “image” of a given physical quantity.

Most successful approaches to this problem have focused

on the decomposition of an image into a reflectance image

and a shading image, the product of which should reproduce

the image in question. The essence of these approaches is

to express constraints corresponding to knowledge of the

physics of scene formation, searching for an underlying

pixel-wise factorization of observed brightness into under-

lying scene components subject to appropriate global con-

straints. The full recovery of scene intrinsics, in contrast

to this more limited “shading and reflectance problem”, is

a significantly harder problem which has accordingly seen

less progress. Due to the difficulty of this problem, recent

methods have exploited observed depth information for a

scene to recover an intrinsic factorization. While powerful,

Figure 1. A full intrinsic decomposition of a scene from a single

input image (top left) into depth (top right), reflectance (bottom

left), and shading (bottom right). A fully convolutional network

first estimates the depth, then a constrained intrinsic factorization

stage jointly optimizes the intrinsic decomposition.

such methods are limited in that they can only be applied to

scenes where depth observations are available, or alterna-

tively, very strong prior constraints can be enforced. Such

methods have not been applicable to scene-level intrinsic

factorization of static scene images, and to our knowledge

no method for reliably inferring scene intrinsics including

scene depth (or surface normal information) from a single

monocular image has previously been reported.

Monocular inference of depth via spatial appearance

cues is a long-standing goal of computer vision. Many

methods have been proposed with limited success, includ-

ing methods which regress local patches across modalities

or hallucinate depth textures by patch matching. These ap-

proaches were often limited either to effective local match-

ing while ignoring the holistic content of a scene or could

match the “gist” of a scene while missing the fine details.

The recent advent of end-to-end, deep fully convolutional

networks provides a new tool for this task, allowing train-

ing with large amounts of paired appearance and target im-

ages to learn a direct regressor to targets including semantic

labels and depth [22, 21].
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Figure 2. The full intrinsics pipeline. First, fully convolutional

nets predict physical properties from the input image. The input

image and FCN outputs are then fed into the constrained factor-

ization stage. The decomposition is jointly optimized over re-

flectance, shading, and other intrinsic factors.

Our pipeline takes a single color image as input, infers

monocular depth, and decomposes the image and the in-

ferred depth into intrinsic reflectance and shading by joint

optimization. The pipeline is illustrated in Figure 2 and de-

scribed in detail in Section 3. For depth inference, we in-

clude an FCN for monocular depth regression based on the

recent DCNF-FCSP network [21] as it is the state-of-the-art

for indoor scenes. This network is trained end-to-end for

depth estimation from a single image by fine-tuning from

image classification pre-training, which demonstrates a role

for recognition in transfer learning to reconstruction. Incor-

porating direct, data-driven depth regression by FCN into

physics-constrained intrinsic factorization methods makes

it possible to decompose intrinsics for a scene without depth

input. For factorization, we experiment with approaches

that previously required Kinect depth inputs to provide full

intrinsic decomposition: the Scene-SIRFS method of Bar-

ron and Malik [2] and the albedo and component shading

factorization method of Chen and Koltun [8].

The first stage leverages fully convolutional networks for

the direct regression of physical properties of the scene such

as depth, and then the factorization stage solves the de-

composition of image appearance into intrinsic components

constrained by inferred depth and other physics-based con-

straints.

We show that the inferred depth produced from a con-

vnet using just a single monocular image is a strong enough

cue to obtain surprisingly accurate initialization for these

models, and that the resulting depth and intrinsic models are

quite close to the quality obtained using ground truth Kinect

observations. See Section 4 for implementation details and

experimental results.

It remains an open question whether a pure convnet

could learn how to completely factorize an image and in-

vert image formation; while it may be possible, given the

very limited amount of real-world training data available

for many intrinsic image factors (shading, reflectance, illu-

mination) we believe that physical modeling via the design

of priors and regularization is currently necessary.

In the context of end-to-end learning, explicit factoriza-

tion can be interpreted as a means to constrain model ca-

pacity. We view the combination of direct depth regres-

sion training and explicit factorization incorporating known

physical constraints of image formation to be an opportune

design choice which makes tractable the goal of monocular

full intrinsic image recovery for general scenes.

Our results show that hallucinated depth suffices for

monocular intrinsic image decomposition, and open the

door for new classes of visual inference methods which now

leverage full scene intrinsics—estimates of scene depth, re-

flectance, and illumination—for a variety of goals, includ-

ing recognition, relighting, and animation. These tasks

heretofore had been limited to scenes observed by a Kinect

sensor or equivalent model; our pipeline allows relatively

accurate estimates (compared to Kinect-based ground truth)

to be obtained using a single forward pass through a fully

convolutional network followed by a factorization optimiza-

tion.

2. Related Work

The “intrinsic images” problem, as originally outlined

by Barrow and Tenenbaum [3], is the task of unraveling a

single observed image into the constituent “images” which

together conspired to create that observed image. This is

a fundamental task in computer vision, as “un-rendering”

an image requires reasoning about the shape and surface
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orientation of the underlying scene, the colors and material

properties of the objects in that scene, and the global illumi-

nation which lit that scene. And just as it is a fundamental

problem, it is also an extremely difficult problem, which has

led many researchers to pursue solutions to sub-problems of

this broad task.

As a full decomposition into shape, reflectance, and

shading is our goal, physics and learning-based approaches

to intrinsic images are relevant to our method, as is monoc-

ular shape and depth estimation, and prior approaches to

deep image factorization.

2.1. Classic approaches

One of the earliest such approaches to this task was

shape-from-shading [13], well surveyed here: [30]. Shape-

from-shading only addresses the subset of the intrinsic im-

age problem in which that all objects assumed to be smooth

and white, and the illumination is assumed to be known.

Reasonable shape-from-shading algorithms can be derived

from first-principles using just the physics of image forma-

tion, but more successful algorithms rely on smoothness as-

sumptions [15], hinting that even this simplified problem is

best addressed in a statistical or learning-based framework.

A parallel line of research into this problem as been the

“shading vs reflectance” subset of the intrinsic image prob-

lem, often confusingly referred to as “intrinsic images”.

The first algorithm for this task was Land and McCann’s

“Retinex” algorithm [20], which was used effectively by

Horn [14]. Despite it’s age and simplicity, Retinex was the

most effective intrinsic image algorithm for a considerable

time [9].

2.2. Learning and optimizationbased methods

Modern attempts at this problem have employed statis-

tical and/or learning-based approaches [5, 26] with some

success, and very recent work has seen significant progress

through the use of modern optimization techniques and

large, well-labeled datasets [6].

Several attempts have been made at subsets of the in-

trinsic image problem using related machinery. Yu et al.

assume the geometry of the scene to be known, and try to

recover illumination and reflectance [29]. Blanz and Vet-

ter make the very strong assumption that the image con-

tains a specific object category (such as a human head) and

try to recovery shape by modeling the variation within that

object category [7]. Barron and Malik’s SIRFS model re-

laxes nearly all of the assumptions made in prior intrin-

sic image work, and from a single image (of a segmented

object) solves for a complete model of shape, shading, re-

flectance, and illumination [2]. But SIRFS was found to

perform poorly at the task of recovering coarse shape, which

requires reasoning about more than simple statistical priors

on shapes and reflectance. This issue can be ameliorated by

incorporating some external knowledge of the shape of the

scene, such as a depth map from some active depth sensor

[1] but this is not a satisfying conclusion in our goal for a

complete intrinsic image algorithm which requires as input

only a single RGB image.

The work of [27] combines Scene-SIRFS [1] with se-

mantic reasoning, and shows that improved reasoning about

intrinsics can improve semantic segmentation. Recent work

on an efficient optimization-based approach introduced a

heterogeneous illumination model [8]; given a Kinect depth

map, this method would recover shading and reflectance

and would infer both indirect illumination and direct illu-

mination, beyond the conventional model in [1] and others.

We incorporate and experiment with the models of [1] and

[8] in our framework as described below.

2.3. Shape inference methods

Coarse shape recovery from an image appears to be a

fundamentally hard both for algorithms [4] and for humans

[18]. This is because the local appearance of an image patch

is indicative of just the local shape of that patch. Resolving

a complete holistic model of the depth of a scene requires

integrating many independent cues which are often hard to

analytically model and difficult to combine, such as con-

tours and occlusion [28, 17], object support relationships

and size priors [12], and even semantic knowledge [10].

Furthermore, because of the interconnected nature of the

three dimensional world and the projective nature of im-

age formation, reasoning about shape must be done glob-

ally, and global inference problems are difficult to make

tractable. Accordingly, most recent approaches to predict-

ing coarse depth have framed the problem as one of learn-

ing and inference [11, 23, 16], relying on large datasets and

learning machinery to abstract away the difficult analytical

nature of this problem. As of late, given the resurgence of

interest in convolutional networks, training a convnet to di-

rectly estimate per-pixel depth has been found to be effec-

tive [21]. The insight of our work is to combine the recent

success of convnet-based depth-estimation algorithms with

the also-recent success of intrinsic image algorithms at re-

covering intrinsic image measures other than depth. Com-

bining these two formerly disparate lines of work gives us,

for the first time, an effective method for complete intrinsic

image estimation.

2.4. Deep network approaches

Deep learning models are trained end-to-end to capture

structure in the input but generally lack explicit representa-

tions of this structure. Instead, factors of variation are cast

as “nuisance” variables to discount instead of decompose.

Exceptions that define factorized deep models show promis-

ing but preliminary decompositions for the constrained set-

ting of faces. The deep Lambertian network [25] factorizes
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identity, albedo, and illumination through a conditional re-

stricted boltzmann machine (RBM) for a generative model

of face appearance. The convolutional inverse graphics net-

work [19] decomposes a face into pose, lighting, and other

hidden factors by training a variational auto-encoder with a

carefully constructed curriculum of training set transforma-

tions. These models are restricted to laboratory images of

faces that are low resolution, closely cropped, and lack the

complexity of real world imagery. However these models

have potential extensions to natural images.

3. Intrinsics Pipeline

Our pipeline connects a deep architecture for local phys-

ical prediction with joint intrinsic optimization. This com-

bines fully convolutional networks (FCNs, [21, 22]) to es-

timate physical properties and a constrained intrinsic fac-

torization (CIF) stage to optimize these estimates based on

image formation factorization principles. While the physi-

cal FCNs can make efficient, direct predictions of intrinsics

joint optimization is needed for a consistent decomposition.

The constrained intrinsic factorization stage takes the ob-

served input and FCN-inferred physical properties and out-

puts a set of intrinsic factors that reproduce the input image.

These intrinsic factors may include refinements of the initial

physical predictions that result from joint optimization.

This pipeline merges end-to-end feature learning with

explicit factorization via physics-based vision. The fully

convolutional network stage learns and infers pixel-to-pixel

mappings of physical properties such as depth from sensed

pixels. The constrained intrinsic factorization stage encodes

visual knowledge through natural image priors and physics-

inspired regularization. The quality and suitability of the

inferred intrinsics is the focus of this work, but we note that

in principle end-to-end learning is possible as the operations

of both the FCN and CIF stages of our architecture are dif-

ferentiable.

3.1. Fully Convolutional Physical Prediction

A fully convolutional network (FCN) is a model de-

signed for spatial prediction problems. Every layer in an

FCN computes a local operation on relative spatial coordi-

nates. In this way, an FCN can take an input of any size

and produce an output of corresponding dimensions. This

model family is a natural choice for pixel-to-pixel map-

pings: for intrinsic image decomposition this could take

the form of inferring depth, shadow, or specularity maps

from the input image. In this usage the FCN mapping is

P = fd (f... (f1 (I))) where P ∈ R
m×n×o is the output

map of physical properties and I ∈ R
m×n×k is the input

image; these predictions P can serve as intrinsic factors F

in Equation 1.

FCN inference and learning are performed on a whole

image at a time by dense feedforward computation and

backpropagation. The network is trained by presenting

paired input and truth images for the pixel-to-pixel map-

ping, such as a registered color image and depth map pair

from a sensor like the Kinect. Correlated properties can be

jointly predicted by learning a single network that regresses

different physical quantities from a shared feature represen-

tation. Although this approach requires sensed or anno-

tated ground truth for training, there is no need for hand-

engineer low-level features or structures since the model is

learned end-to-end. Feedforward inference produces fast

initial physical estimates.

While FCNs can provide maps of physical properties,

these inferences may be noisy or inconsistent. Direct pre-

diction is not enough to guarantee a coherent decomposi-

tion.

3.2. Constrained Intrinsic Factorization

The constrained intrinsic factorization (CIF) stage rec-

onciles the input image with physical predictions through

explicit factorization. Solving the joint optimization over

intrinsic factors attempts to find a globally consistent image

decomposition. The output of this network is constrained to

reproduce the input image. The intrinsic factors are induced

by explicit priors and regularization. Designing this stage is

counter to the standard philosophy of end-to-end learning

of deep networks. However, we argue that there is no need

to re-discover relationships already known to natural image

statistics and optics. The general form of the CIF is

min
F1,...,Fn

n∑

i=1

ci(Fi) (1)

s.t. I = r(F1, . . . , Fn)

for intrinsic factors F , cost functions c, and a “rendering”

function r that composes the intrinsic factors to reproduce

the input image I . A product or logspace sum are standard

choices for r.

What costs and rendering should this net compute? We

have our choice of factors F from the rich literature on in-

trinsic decompositions. The essential constraint is that the

the reflectance and shading multiply to reproduce the image,

and this can be accomplished by a hard or soft constraint.

The hard formulation is to solve for reflectance or shading

alone then obtain the other by dividing the image. The soft

formulation is to define an energy that measures the depar-

ture of the reflectance-shading product from the observed

image. Either can be instantiated in a network by a de-

terministic element-wise arithmetic layer or difference and

norm layers respectively. With this constraint addressed,

further terms may be defined to bias the decomposition to

different properties such as smoothness of illumination.
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4. Experiments

We evaluate our full reflectance, shading, and depth

decompositions on the standard NYUDv2 dataset [24] of

RGBD images. For the experiments reported here we em-

ploy a single depth regression network for the fully convo-

lutional physical prediction network stage, and consider two

different intrinsics approaches for the constrained intrinsic

factorization stage.

We experiment with factorization approaches that previ-

ously required Kinect depth inputs to provide full intrinsic

factorization: the Scene-SIRFS method of Barron and Ma-

lik [2] and the heterogeneous factorization method of Chen

and Koltun [8]. Our model takes a single color image as in-

put, infers monocular depth, and decomposes the image and

the inferred depth into intrinsic reflectance and shading by

joint optimization. The intrinsic factors produced depend

on the choice of factorization method.

4.1. Dataset and experimental protocol

We evaluate our methods on NYU Depth version 2

dataset [24] by quantitative comparison with the prior meth-

ods and by visual inspection. This dataset has 1,449 curated

RGB-D images captured with the Microsoft Kinect as video

then post-processed. All parameters are tuned and hyperpa-

rameters selected on the 795 image trainval split. Results

here are reported over a randomly selected 100 image sub-

set of the 654 image test split for reasons of computational

convenience and limited space.1 Direct evaluation of in-

trinsics on this dataset is not possible without ground truth

reflectance and shading; we resort to an oracle comparison

to results with Kinect input. 2

4.2. FCN depth regression implementation

We include a fully convolutional network for monocu-

lar depth in our architecture based on the recent DCNF-

FCSP network [21] as it is the state-of-the-art for indoor

scenes on the NYUDv2 [24] dataset. This net is trained

end-to-end for depth estimation from a single image. Deep

convolutional neural fields (DCNF) fuse convolutional net-

works and CRFs in a jointly learned architecture with unary

and pairwise potentials. The fully convolutional superpixel

(FCSP) variant of the model incorporates superpixel pool-

ing into a fully convolutional network for fast inference that

respects local image structure. We utilize the FCSP model

in the experiments reported here, following the exact train-

ing protocols in [21].

1Additional images are shown in the supplemental material file, includ-

ing comparisons on the set of 16 images shown in [1]’s supplementary

material.
2The dataset in [6] is appealing in that it has ground truth human es-

timates of reflectance gradients, but is limited in that it does not include

depth ground truth. Nonetheless, further experimentation using our DIN

framework on [6] is an appealing avenue of future work.

Table 1. FCN depth regression in the DIN improves intrinsic pre-

diction. The mean-squared-error of intrinsics from our DIN model

relative to that obtained with oracle Kinect depth is low, and out-

performs models not using a FCN. The mean methods are scene-

SIRFS and Chen & Koltun given the mean depth image over the

trainval set as input. DIN-SIRFS and DIN-CK are instantiations of

our model for the corresponding constrained intrinsic factorization

methods. See text for details.
r-MSE s-MSE rs-MSE Avg.

SIRFS, mean 0.0168 0.0197 0.0081 0.0139

FCN-SIRFS 0.0130 0.0109 0.0086 0.0107

CK, mean 0.0027 0.0031 0.0025 0.0027

DIN-CK 0.0018 0.0020 0.0023 0.0020

4.3. CIF implementation

For constrained intrinsic factorization we examine state-

of-the-art approaches that require depth input: the Scene-

SIRFS method of Barron and Malik [2] and the albedo

and component shading factorization method of Chen and

Koltun [8]. We refer to the resulting regression and factor-

ization pipelines as FCN-SIRFS and FCN-CK respectively.

FCN-SIRFS The SIRFS model [2] formulates a joint opti-

mization of shape, illumination, and reflectance from shad-

ing that is solved by multi-scale L-BFGS. The image is re-

produced by absorbing the hard constraint that I = R + S

by absorbing R into the objective and removing it as a free

parameter. This model is limited to uncluttered views of an

object under a single global illumination. Naı̈ve applica-

tion of the model to scenes gives degenerate solutions with

implausible shape and shading. Scene-SIRFS extends the

model to natural images and scenes by introducing mixtures

over shapes and lights that compose to explain the whole

scene. Scene-SIRFS optimizes a full decomposition over

shape, illumination, and reflectance; however, it requires a

depth input to initialize the shape.

FCN-CK The Chen & Koltun model [8] decomposes an

image into reflectance and a factorization of shading into

direct irradiance, indirect irradiance, and illumination color.

Further decomposing shading into these constituents leads

to simpler regularizers for each factor.

These regularizers are nonlocal CRFs defined on differ-

ent neighborhooods according to the reflectance or shading

factor. The image is reproduced by a soft constraint that

defines a cost for differences between the result and the ob-

served pixels. Altogether this formulation defines a simple

energy that can be minimized by least squares optimization.

4.4. Results

For a visual comparison of FCN-SIRFS and FCN-CK

decompositions with the previous methods given ground

truth depth results see the figures on the following pages.

For quantitative comparison, see Table 1 for measures of

the relative error of FCN and factorization outputs vs. in-
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trinsics from mean depth image input scored against the ora-

cle results of previous methods given the ground truth depth

from post-processed Kinect depth recordings. The relative

mean-squared-error of intrinsics from our FCN and factor-

ization model vs. performance without a deep network but

using mean scene depth input to the underlying factoriza-

tion method is shown. Performance is reported relative to

oracle intrinsics using ground truth Kinect depth inputs to

SIRFS [1] and CK [8] decompositions. r-MSE, s-MSE, and

rs-MSE are metrics for reflectance and shading error from

[1] and Avg. is their geometric average.

5. Conclusion

Hallucinated depth suffices for monocular intrinsic im-

age decomposition. The intrinsic outputs from ground truth

and hallucinated depth are visually similar and oracle ex-

periments verify that the hallucinated depth improves the

intrinsic results relative to mean depth input. To the best

of our knowledge this is the first report of a full scene in-

trinsics decomposition from a single input image without

further information. These results serve as a new baseline

for scene intrinsics.
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Input

scene-SIRFS FCN-SIRFS

True Depth FCN Depth

Chen & Koltun FCN-CK
Figure 3. Comparison of intrinsic decompositions given real Kinect depth sensor input and our network and factorization pipeline with

one input per column. The rows from top to bottom are: the input image, the SIRFS (left) and FCN-SIRFS (right) reflectance and shading,

the true (left) and hallucinated (right) depth, and the Chen & Koltun (left) and FCN-CK (right) reflectance and shading. The FCN-SIRFS

and FCN-CK outputs are similar to the respective decompositions of Barron & Malik [1] and Chen & Koltun [8] on real depth.
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Input

scene-SIRFS FCN-SIRFS

True Depth FCN Depth

Chen & Koltun FCN-CK
Figure 4. Comparison of intrinsic decompositions given real Kinect depth sensor input and our network and factorization pipeline with

one input per column. The rows from top to bottom are: the input image, the SIRFS (left) and FCN-SIRFS (right) reflectance and shading,

the true (left) and hallucinated (right) depth, and the Chen & Koltun (left) and FCN-CK (right) reflectance and shading. The FCN-SIRFS

and FCN-CK outputs are similar to the respective decompositions of Barron & Malik [1] and Chen & Koltun [8] on real depth.
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