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Abstract

We present a novel system to help visually impaired peo-

ple to move efficiently and safely in indoor environments by

mapping input from a depth camera to spatially localized

auditory cues. We propose a set of context-specific cues

which are suitable for use in systems that provide minimal

audio feedback and hence reduce masking of natural sounds

compared to the audio provided by general-purpose sense

substitution devices. Using simple but effective heuristics

for detecting the floor and the side walls, we propose au-

ditory cues that encode information about the distances to

walls, obstacles, the orientation of the corridor or room,

and openings into corridors or rooms. But the key to our

system is the use of a spatial sound engine that localizes

the generated sounds in 3D. We evaluate our system, com-

paring with [7, 16]. Our preliminary pilot study with ten

blindfolded participants suggests that our system was more

helpful for spotting smaller obstacles on the floor, though

neither system had a significant edge in terms of walking

speed or safety.

1. Introduction

The increasing ability to automatically understand the

environment based on visual data will have huge implica-

tions for assistive technologies for the visually impaired.

Technology is advancing rapidly on three fronts: camera

sensing, automatic real-time analysis and understanding of

the data, and in non-visual forms of output to the user.

In this paper, we investigate the combination of a head-

mounted depth camera as input, software to interpret the

depth image, and a 3D sound engine to provide spatially-

localized auditory cues to the user. Our goal is to improve

the efficiency and safety of visually impaired users as they

walk around indoor environments. In particular, we (i) ad-

dress the problem of avoiding obstacles which may slow a

user down even when using a cane, and (ii) aim to increase

the spatial awareness of the user and overcome the problem

of veering [9] by giving information about the orientation

of corridors and the proximity of walls.

Camera technology is progressing on many fronts. In

this work we exploit advances in depth sensing: small low-

power depth cameras are now becoming available, and these

greatly simplify the problem of understanding the 3D struc-

ture of the local environment. While currently of limited

use outdoors, there are important indoor scenarios that can

benefit today from depth sensors, and we expect that depth

sensing will advance to the point where it can be applied

more broadly.

Existing vision substitution technologies can be divided

into two categories depending on whether they interpret the

input image before generating the non-visual output. The

first category aims for a general-purpose sense substitution,

by converting the raw visual information into output, using

e.g. sound [7, 15, 16]. As these systems do not interpret

the visual information before generating the non-visual out-

put, they rely on the brain’s plasticity to learn the non-trivial

mapping of the resulting sound patterns into a mental repre-

sentation of the environment. While versatile, such general-

purpose sense substitution approaches are potentially tiring

on the user who is constantly bombarded with information.

The second category, of which our approach is a member,

instead tries to provide output cues only for specific pat-

terns, such as obstacles [2, 5, 6], obstacle-free paths [12],

and walls, by generating cues based on an interpretation

of the input image. These interpretations typically abstract

the complexity of the raw input image and thus help reduce

sensory overload. Minimizing audio feedback also avoids

masking natural sounds which is one of the key drawbacks

of general-purpose sense substitution systems with audio

output.

Non-visual output technology, which includes auditory

and haptic [13], is also advancing. We follow many ap-

proaches in using sound, but go beyond traditional stereo in

using a 3D spatial sound engine: the sounds in our system

are localized in 3D space to coincide with the 3D position of

1 26



Figure 1. Our prototype. In the experiment, the laptop was carried

by the experimenter walking behind the participant.

the real obstacle, wall, or corridor. We hope this might allow

for a more precise and intuitive understanding of location

information from sound than other mappings, especially for

visually impaired users who may have superior sound lo-

calization abilities [14]. Also, spatial sound based on Head-

Related Transfer Functions (HRTFs) becomes more suitable

for use in assistive technology as simpler techniques for

generating personalized HRTFs are developed [1, 3, 17]. To

our knowledge, existing work that uses a 3D spatial sound

engine [4, 8] has only used a direct mapping from uninter-

preted input to output, and our approach is the first to com-

bine depth sensing, high-level interpretation of the image,

and a spatial sound engine.

2. System description

2.1. Physical setup

A time-of-flight depth camera is mounted to the front of a

hard hat, pointing forwards and slightly down. The camera

and headphones for audio feedback are connected to a lap-

top which runs the software that analyzes the depth images

and generates the 3D sound scape (see Figure 1). This setup

is clearly impractical for deployment (weight, ergonomics,

appearance, and the blocking of ambient sounds), but it

proved a useful prototype for our investigations and we be-

lieve a more appropriate form-factor would not be difficult

to build using even today’s technology, given suitable in-

vestment.

2.2. Preprocessing

Depth frames from the camera are downsampled by a

factor of 4 in each dimension to reduce both noise and

the amount of processing necessary in later steps of the

pipeline. This results in an input image of 94x66 pixels,

which is still ample to compute the auditory cues in our

system. The value of a pixel in the downsampled frame is

set to the average of the corresponding pixels in the orig-

inal frame. If more than half of the corresponding pixels

in the original frame have an ‘invalid’ depth measurement

(e.g. the pixel is too far from the sensor), the pixel in the

downsampled frame is also set to be invalid.

2.3. Detecting the floor and side walls

In order to give abstract auditory cues about indoor struc-

ture, the system heuristically classifies the points in the

downsampled frame according to whether they belong to

the floor, the right wall, or the left wall. To do so in a robust

and fast way, we exploit the strong prior knowledge about

the location and orientation of these planes relative to the

camera, and make use of local normals for fast plane de-

tection (for a performance comparison between a method

based on local normals and full RANSAC, see [18]).

The local normal at a point is computed by taking the

cross product of the differences between the camera space

points at neighboring pixel positions. The local normal at

~p(x, y) (denoting the camera space point at pixel coordinate

(x, y), with the origin being the top-left of the frame) is

calculated using:

~n(~p(x, y)) = (~p(x, y + 1)− ~p(x, y − 1))

× (~p(x− 1, y)− ~p(x+ 1, y))
(1)

We check that ~p(x, y) in fact lies on the lines connecting

~p(x, y−1) and ~p(x, y+1), and ~p(x+1, y) and ~p(x−1, y).
If not, this point is considered not to have an estimate of the

local normal. This condition avoids issues at the intersec-

tion of two planes, for example.

Finding the floor. To find the floor, one iteration over the

depth frame is performed and all pixel (x, y) are identified

that satisfy the following two conditions:

θmin ≤ θ ≤ θmax (2)

where θ is the elevation angle of ~n(~p(x, y)), and

h−
ht

2
≤ d ≤ h+

ht

2
(3)

where d is the plane-origin distance of the plane defined

by the point ~p(x, y) and the local normal ~n(~p(x, y)), h is a

predefined estimate of the height of the camera, and ht is

the width of the tolerance interval.

For the first condition (2), we chose θmin = 65◦ and

θmax = 165◦. It expresses that the local normal at this

point is pointing up, slightly forward, or backwards. The

thresholds are chosen to cover cases in which the camera is

in parallel with the floor (θ ≈ 90◦), rare cases in which it

points slightly up relative to the floor plane, but parts of the

floor are still visible (θ < 90◦), e.g. when the floor is tilted
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downwards, and cases in which the camera is oriented down

towards the floor (θ > 90◦).

For the second condition (3), we set h = 1.8m and

ht = 1m. It expresses that the point lies on a plane whose

distance to the camera indicates that it is the floor plane.

It excludes points lying on tables, for instance, which have

the same direction orientation as the floor plane, but define a

plane whose plane-origin distance is smaller. Given the val-

ues of h and ht for our system, we relied on the assumption

that the camera is always on a distance of 1.3m to 2.3m to

the floor. This assumption might seem unnecessarily weak,

but it should be taken into account that the plane-origin dis-

tance estimate will not be accurate because small errors at

local normals due to noise in the depth measurements at dis-

tant points can lead to large inaccuracy in the plane-origin

distance estimate.

The camera space points satisfying these two conditions

are then agglomeratively clustered into groups of points

considered to lie on the same plane. Two points are consid-

ered to lie on the same plane if their corresponding normals

are approximately parallel, and the difference between the

points is perpendicular to the direction of their normals. The

largest set of such points is taken to define the floor plane.

Finding the side walls. Firstly, all pixels are found that

satisfy

−
θt

2
≤ θ ≤

θt

2
(4)

or

180◦ −
θt

2
≤ θ ≤ 180◦ +

θt

2
(5)

where θ is the elevation angle of ~n(~p(x, y)), and θt is the

width of the tolerance interval. We chose θt = 90◦. (4) or

(5) is met for all points which have local normals that are

pointing roughly horizontally. The large tolerance interval

allows for inaccuracy in local normal estimates and possible

tilting of the head. The set of these points is clustered into

planes using the same procedure as for the floor.

Among these planes, the estimate of the left wall is cho-

sen as the largest plane satisfying

φmin ≤ φ ≤ φmax (6)

where φ is the azimuthal angle as measured in the XZ-plane,

with 0◦ corresponding to the x-axis which points to the right

of the camera. Additionally, if the floor is known, it is veri-

fied that

(avg{~p | ~p lies on the candidate left wall })x

< (avg{~p | ~p lies on floor })x .
(7)

For the first condition (6), we set φmin = −45◦ and

φmax = 20◦. This ensures that the plane normal is pointing

roughly to the right, allowing more room for pointing to the

back, which occurs when the camera does not point in the

Figure 2. Result of the image plane detection. On the top left, the

input frame is shown, with invalid measurements shown in red,

and valid measurements ranging light gray (close) to black (far

away). The remaining figures (in clockwise order) show which

pixels are classified as belonging to the floor, the right wall, and the

left wall. While there are some misclassifications, our approach

is sufficiently robust to serve as the basis for generating auditory

cues, e.g. about distances to walls or obstacles on the floor.

direction in which the wall is oriented, but is rotated towards

it. The second condition (7) checks that the x-coordinate av-

erage of the points on the candidate left wall lies to the left

of the average of the floor points.

Analogous conditions are applied to find the right wall.

If both a right wall and a left wall were found, it is verified

that the two purported side walls are facing each other by

checking that their dot product is close to 0. If that is not

the case, only the side wall with more points on it is kept.

Extension step. The resulting estimates of the floor and

side walls were found to reliably pick out points on the re-

spective structures, but they often did not include all pix-

els which belong to them. One reason for that is that the

local normals are not meaningful at the edge of such struc-

tures where the adjacent pixels belong to other planes; how-

ever, we still want to include points at these positions. To

overcome this issue, a single iteration over the frame is per-

formed which determines for each ~p(x, y) whether it lies on

the same plane as the points currently recognized as belong-

ing to the floor or one of the side walls. This is considered

to be the case if the point lies on the same plane as ran-

domly sampled triples of points known to be on the floor

or the respective side wall. The point is then added to the

set of pixels of the floor or the respective side wall. An ex-

ample of the system’s output of the final floor and side wall

estimates is shown in Figure 2.

2.4. Generating 3D sound

The downsampled frame is passed to a set of depth-

to-sound conversion routines, each of which implements

a mapping from the current (and possibly previous) depth
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frame to a set of sound descriptions. All sound descriptions

contain the position of the sound in camera space, i.e. XYZ-

coordinates relative to the position of the camera. A spatial

sound engine generates audio on the basis of the sound de-

scriptions. Positions of sounds in space are continuously

updated during playback. For example, when the location

of an obstacle relative to the user changes during playback

of the sound for obstacles, the sound will move accordingly.

Thereby, the sensory-motor coupling that people know from

natural sounds, e.g. between the perceived sound and a ro-

tating movement of their head, is simulated by our system.

Our completely unoptimized implementation runs at in-

teractive rates (about 15 frames per second). The conversion

from depth data to sound takes less than 70ms, and every

other frame provided by the depth camera can be fully pro-

cessed to update sound parameters. The performance of the

system was measured on the laptop used in the prototype

with an Intel Core i7 2.70 GHz CPU running Windows 10.

2.5. Auditory cues

Side walls. The system checks which of the walls recog-

nized as left or right wall has the closest visible point on it,

and then plays a sinusoid located at that point if it is closer

than a threshold set to 1.5m in the experiment. If the user

gets closer to the side wall, the sound gets louder because

the sound engine simulates it getting closer. This effect is

manually enhanced in our system by scaling the amplitude

of the sound. This keeps the sound very quiet at distances

exceeding 1m, and quickly increases its volume if the user

is in danger of walking into the side wall.

Focal area. The system identifies the closest point in a re-

gion covering approximately the central 15% of the frame.

It gives an auditory cue if the closest depth in this area is

less than 1m. In such cases, the user is probably walking

towards a wall, or an obstacle on head height. This cue is

non-abstract since it has a simple relation to the raw depth

data. Consequently, it is versatile: for instance, the user can

determine whether there is a wall to the right by rotating

the head to the right and listening for that cue. The specific

sound for this cue was chosen to be a voice repeatedly say-

ing ‘stop’ until the closest point in the central area exceeds

the threshold again.

Vanishing point. If the system has recognized the floor

and at least one of the right or left wall, it provides a cue to

indicate the orientation of the corridor or room. The cue is

located in the direction of the vanishing point, which is es-

timated by taking the direction to which the line of intersec-

tion between the recognized wall and floor converges. As

the vanishing point is located at infinite distance from the

user and would hence be inaudible, the sound position was

set to 5m in front of the user (in the ideal direction of the

vanishing point estimate). This is intended to overcome the

problem of veering. If the user keeps that sound in a direc-

tion immediately to the front of her, she would walk straight

towards the end of the corridor, without being in danger of

walking into side walls. A low cello note was used as sound

for this cue, with a frequency one fifth below the pitch of

the sound for the side wall so that simultaneous playback of

the two sounds did not result in unpleasant dissonance.

Estimation of the vanishing point of the current indoor

structure was used in an existing project for guidance of vi-

sually impaired people [12]. However, rather than directly

providing a cue about the vanishing point, they use it in con-

junction with other information to compute a suggested free

walking path. Their approach for vanishing point detection

relies on detecting lines in the image frame, e.g. at wall in-

tersections or tiled floors. Given that our system needs to

estimate the floor and side wall positions, it is computation-

ally cheaper to estimate the vanishing point based on that

information.

Openings. Cues are provided if a side wall opens up.

For instance, if the corridor makes a right turn, a cue lo-

cated at the end of the right wall will be generated, while

at T-junctions, cues are given for both sides. To detect such

openings, the system scans rows of pixels, starting at the

corresponding end of the frame, e.g. from right to left to de-

tect openings of the right wall. It searches for the last pixel

classified as belonging to the wall, i.e. the end of the wall

in this row. It then keeps searching for the first point which

lies on the same plane as the side wall. This point does not

have to be classified as part of the side wall, only as lying on

the same plane as it. For instance, when the corridor makes

a turn, the next point lying on the same plane as the side

wall will be part of the wall which would be to the left after

the turn is taken. The distance between these two points, the

last on the wall and the first on the same plane, is computed

and used as an estimate of the width of the opening. If the

estimated width exceeds 0.5m, the opening detection test

succeeded at this row. This is done for the central 15% of

the rows, and if the test succeeds for more than half of them,

a cue is given. Taking multiple rows into account provides

robustness against noise. In the experiment, the sound for

this cue was chosen to be a voice saying ‘opening left’ or

‘opening right’, located in space at the end of the side wall.

Obstacles. Small obstacles on the floor, like bins, are

potentially hard to notice with non-abstract auditory cues

of general-purpose sense substitution devices because they

never lead to small depth values: since they are on the floor,

they leave the field of view of the depth camera before they

get depth values which are small compared to those at other

parts of the frame, e.g. points at side walls. Even if the depth

camera was pointing downwards with an obstacle immedi-

ately in front of the user, the distance would still be more

than 1.5m due to the height of the camera.

However, using the information of which pixels belong

to the floor, such obstacles can be detected, even if they
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Figure 3. Output generated by the obstacle detection subsystem.

On the left, the input frame is shown, with invalid measurements in

red. On the right, all pixels classified as belonging to the obstacle

are marked in green. The camera space point corresponding to the

closest of these pixel is chosen as the position of the 3D auditory

cue.

never occupy a large proportion of the frame and never lead

to small depth values. The algorithm for obstacle detection

firstly searches for all pixels which satisfy three conditions.

Firstly, they must not be classified as part of the floor. Sec-

ondly, they must have floor pixels to the left and right of

them. This means that structures attached to side walls are

not considered as obstacles on the floor. Thirdly, they must

have a pixel above them which is further away, i.e. the depth

camera must be able to see a point behind them. Without

this third condition, obstacle warnings would be given for

structures like walls meeting in an angle greater than 180◦.

The set of pixels satisfying these three conditions are con-

sidered to belong to obstacles. The pixels are then grouped

into regions of adjacent pixels, and only groups of a cer-

tain minimal size are kept as representing obstacles. This

reduces the number of false positives due to noise. A cue

is provided at the closest obstacle pixel. Since the sound

is located in space at the position of the obstacle, the user

can figure out where the obstacle is and in what direction to

walk to pass it. A voice repeating ‘obstacle’ was chosen as

sound for this cue.

2.6. Stabilizing sounds

A common problem of the conversion procedures of

depth frames into sounds is that they sometimes tend to pro-

duce sounds with quickly changing parameters, either due

to noise or due to unfavorable surroundings (e.g. two obsta-

cles at roughly the same distance). This can result in both

unpleasant and confusing audio feedback. To overcome this

issue, we implemented sound stabilization methods which

can be used by different conversion routines. These take a

set of proposed sound descriptions and return a set of de-

scriptions of stabilized sounds, usually based on looking at

the change of sound parameters through time. For example,

a stabilization routine might average the position parame-

ter of a sound over the duration of the last 500ms, or mute

sounds if their position changes too quickly. In the sys-

tem, such sound stabilization routines are chained, with the

stabilized output of the previous stabilization routine being

further stabilized according to other criteria by the follow-

ing stabilization routine.

2.7. Comparison with MeloSee [7, 16]

In order to compare our system, which gives rather ab-

stract cues, to a system aiming for general-purpose sense

substitution, the MeloSee system was reimplemented [7,

16]. MeloSee uses a straightforward mapping of depth to

sound: the visual field is split up evenly into a grid of 8x8

‘receptive fields’. Each of the receptive fields can produce

a sinusoidal sound, depending on its ‘activation’. The acti-

vation of a receptive field is proportional to the average of

the depth values at ten pixels within it, chosen randomly,

but fixed across executions in a configuration file. This esti-

mate of the average depth is mapped to sound intensity, with

a receptive field producing no sound if the average depth in

that receptive field exceeds 2.5m. Each receptive field has

fixed parameters for binaural panning and sound frequency.

Binaural panning depends on the horizontal position of the

receptive field in the depth image and frequency on its ver-

tical position, with receptive fields at the top of the depth

frame corresponding to sinusoids of high frequency. The

frequencies for the eight possible vertical positions of re-

ceptive fields are chosen to lie on a just intonation scale

from C4 to C5.

A difference to the original implementation of the system

is that due to the better range of the depth camera in our

prototype, our system works at distances as close as 20cm,

while their prototype was limited to a minimal distance of

50cm.

3. Preliminary mobility evaluation

3.1. Study design

We wanted to evaluate the ability of our system to help

visually impaired users follow a route based on a verbal

description without losing orientation or colliding with ob-

stacles or walls. We chose to do a preliminary compari-

son of our system against MeloSee [7, 16], a system aim-

ing for general-purpose sense substitution, in order to un-

derstand whether a raw, general-purpose sense substitution

approach or an interpreted, specific sense substitution ap-

proach would be more helpful. Since we compared our sys-

tem against a general-purpose sense substitution system in a

scenario without a cane, all five sounds of our system were

switched on.

Tasks. Blindfolded participants carried out two tasks in

which they had to walk along routes in a real floor lay-

out, finding possibilities to make turns and evading static

obstacles. The type of task—following verbally described

routes in real indoor environments—was chosen to evaluate

the use of the systems to master challenges that visually im-

paired people might encounter. Each participant carried out

both tasks using a different system for each task. Hence,
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Figure 4. A sketch of the floor layout in which blindfold partici-

pants carried out the two tasks. The expected walking paths for

the first and second task are shown by the dashed and dotted ar-

row, respectively. The positions of small and large obstacles are

indicated by ‘S’ and ‘L’.

each participant used both our system and MeloSee, but not

both systems on the same task. We do not assume the tasks

to be comparable as we wanted to use realistic routes on real

floor layouts with obstacles. As such, we could not assume

them to be equally difficult.

The order of the two tasks was kept fixed, but the or-

der of the systems used, and hence which system was used

for which task, was randomized across participants. Par-

ticipants were asked to solely rely on the audio feedback

provided by the systems and not use their hands to feel

where walls are. They were instructed to walk as quickly

as they were comfortable with, avoiding the need of the ex-

perimenter to intervene. Interventions were made when the

participant was about to walk into a wall or an obstacle,

or when she lost orientation after missing the possibility to

make a turn she was instructed to take.

Participants knew that there could be obstacles of various

sizes. However, the number, location and size of obstacles

were not known to the participants. Figure 4 and Figure 5

show the floor layout and a corridor with a small and a large

obstacle.

Protocol. Before the participant was blindfolded, the au-

dio feedback of the two systems was explained, but not

demonstrated to her. Also, general usage advice for both

systems was given. For instance, the importance of head

movements was emphasized for the MeloSee system, as

suggested in their paper [16]. Then, the two routes they

had to walk were verbally described to them.

After this introduction, participants were blindfolded and

the respective first system was switched on. Thus, partici-

pants never had simultaneous visual impression of the sur-

roundings and auditory feedback. They were given a short

Figure 5. The corridor in the last part of the second task. Partici-

pants had to evade a small and a large obstacle on different sides.

structured introduction to the first system while they were

hearing its sounds. This familiarization period lasted for

about two minutes, in which they were lead through two

situations: firstly, walking straight towards a wall, starting

from a distance of about 3m, until being close enough to

reach out and touch it, and, secondly, walking with a wall

to their side while veering and coming closer to it.

They were then lead to the beginning of the first task

and the task description was repeated to them. After car-

rying out the task, the system was swapped, they received

the structured introduction for the other system, and carried

out the second task using that system. Immediately after the

experiment, they filled out a questionnaire.

Participants. Ten participants took part in a pilot study,

aged between 18–26. They were not paid for their partic-

ipation. Participants were expected to have seen the floor

layout a small number of times before as it was carried out

in the basement area of the building they had been working

in for about six weeks. Thus, they could have potentially re-

lied on visual memory, except for obstacle avoidance. How-

ever, as they were blindfolded before being lead to the area

of the task, they did not have an immediate visual impres-

sion of the room, and generally reported that they had been

completely disoriented.

Data analysis. Two measures were recorded: the time

needed by a participant to walk the route, and the total num-

ber of interventions necessary. No distinction was made

between the kinds of interventions (orientation lost, obsta-

cles, walls). Thus, this measure aggregates several mobility

safety aspects.

For each of our two tasks, we have data from five dif-

ferent participants for each of the two systems: from the

total ten participants, five used MeloSee on the first task

and five used our system. We evaluated whether there was a

significant difference in the mean travelling time and num-

ber of interventions necessary for the two systems using

an unpaired t-test (equivalent to one-way ANOVA for two

groups), separately for each task. Thereby, we treat the two
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MeloSee Our System

Mean time (Task 1) 2:51 ± 1:11 2:44 ± 1:25

Mean interventions (Task 1) 1.4± 1.11 1.2± 1.04
Mean time (Task 2) 2:56 ± 0:37 3:15 ± 1:06

Mean interventions (Task 2) 2.2± 2.04 0.8± 1.04

Table 1. Mean time needed to complete the task (in minutes) and

the mean number of interventions, with 95%-confidence intervals.

For each system and task, data was collected from five different

participants.

tasks as two distinct between-subject experiments, not as-

suming the tasks to be equally difficult.

The questionnaire asked for the level of agreement to

eight different comparative statements, such as “I found the

sounds used in the first system less intrusive than those in

the second system.” on a 5-point Likert scale from “strong

disagreement” to “strong agreement”. Again, ANOVA was

applied to test for significant differences in the mean re-

sponses given for the two systems. In addition, the ques-

tionnaire asked for general comments on the comparative

advantages and disadvantages of the two systems. Re-

sponses from the ten participants were aggregated, replac-

ing the “first” and “second” system of each participant with

“MeloSee” or “our system” depending on which system that

participant used first.

3.2. Results

The mean time to walk the routes and the mean number

of interventions necessary are given in Table 1. No con-

clusions can be drawn at a significance level of 0.05 about

one system allowing faster or safer performance in one of

the tasks. Generally, a large intersubject variability was

observed. For example, travelling times between different

subjects in the first task ranged by a factor of 2 for both

MeloSee and our system.

For none of the questionnaire questions, a significant de-

viation of the mean from 3, the midpoint on the 5-point

Likert scale, was observed. Again, the responses of the sub-

jects to the comparative questions between the two systems

showed a large intersubject variability.

In particular, based on the feedback on the questionnaire,

neither our system with all five sounds switched on, nor

MeloSee was found to be superior to the other system in

terms of intrusiveness of sounds. The mean agreement of

the ten responses to the statement “I found the sounds used

in our system less intrusive than those in MeloSee.” (with

the system names being replaced by “the first system” and

“the second system”) was 3.5± 1.03, where 3 is the neutral

midpoint of the scale.

In the open questions, some users reported to have re-

lied on the sound at the vanishing point. It was pointed out

that this gave them a feeling of orientation without vision

that MeloSee lacks. Explicit contextual cues about obsta-

cles and openings were found helpful. On the other hand,

the versatility of MeloSee’s audio feedback was praised, al-

though, in comparison to our system, it was pointed out that

there is the danger of becoming used to a constant, fairly

loud sound-level, so that dangerous situations like coming

close to a wall are not easily recognized.

3.3. Discussion

All participants were able to navigate the intended routes

with few safety issues regardless of system used. The re-

sults do not suggest that one system enables better mobility

than the other. However, the number of participants was low

and there was high intersubject variability which suggests

that significance is unlikely to be achieved. It is possible

that some sighted people feel anxious when walking with-

out sight and therefore walk more slowly than others who

feel more confident using other senses. This suggests that

an important next step is to test the two systems on compa-

rable routes with blind participants.

The results suggest that participants were aware of ob-

stacles with our system and could make use of the spatial

sound to get an idea of the location of the obstacle and on

which side to pass it. Although no statistical significant con-

clusion can be drawn about the number of interventions nec-

essary in the second task being lower with our system than

with MeloSee, none of the participants using MeloSee re-

ported to have recognized the smaller of the two obstacles,

even if they passed the obstacle without the need of an in-

tervention. Since the obstacle was a bin in a corridor, the

experimental setup made it possible to evade it by chance.

However, it might be possible to make MeloSee more ef-

fective for small obstacles by increasing the range in which

it produces sounds to depths greater than 2.5m, so that a

small obstacle stays within the audible cone of the system

for a longer time, even if the participant does not look down

at the floor. On the other hand, increasing the threshold

of MeloSee results in smaller volume differences at closer

distances and thus might affect the performance in other re-

spects.

We had expected a difference in a sense of intrusion be-

tween the two systems, which we did not see. That our sys-

tem had all sounds switched on lead to almost constant au-

dio feedback, in particular about close walls and the vanish-

ing point. Switching on all sounds seemed necessary since

participants did not use a cane, but it meant that one of the

design goals of our system, less masking of natural sounds

when used in conjunction with a cane, could not come into

effect.

In general, while the tasks might somewhat capture the

indoor mobility challenges faced by visually impaired peo-

ple, it should be kept in mind that participants in our pi-

lot were not visually impaired, and it is expected that visu-
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ally impaired people have very different skills in handling

artificial sounds, just as they have very different skills in

handling natural sounds [14]. Also, participants only had a

short time to familiarize themselves with the systems, and

long-term use might greatly alter the achieved performance,

possibly increasing walking speed. For MeloSee, long-term

learning over a time in which the system was not used was

found to have a positive effect on the performance in a nav-

igation task [16].

4. Conclusions

When considering assistive technology that might be

adopted in the near future by more than just small groups of

the visually impaired community, it seems more likely that

visually impaired people are willing to use devices giving

minimal auditory feedback (i.e. only in very specific con-

texts, potentially on-demand) which transmits information

that they could not easily get using the white cane. An anal-

ogy can be made between ‘augmented vision’ for sighted

people, e.g. using smart glasses, and ‘augmented hearing’

for visually impaired people, using a system like ours. Both

types of technology make one sense more powerful by ar-

tificially inducing sensory perceptions on this sense to pro-

vide information which would normally not be accessible

to it. Just like sighted people want artificial visual informa-

tion to interfere as little as possible with the relevant nat-

ural visual information provided by the environment, visu-

ally impaired people might prefer artificial auditory infor-

mation that interferes as little as possible with relevant nat-

ural acoustic information.

In this paper, we suggested auditory cues which are suit-

able for such intelligent mobility aids that minimize inter-

ference. Also, we combined such abstract cues with spa-

tial sound to give location information, e.g. about obstacles,

in an intuitive way. Results from a pilot experiment indi-

cate that such specific cues would be useful to visually im-

paired people, possibly as useful in an indoor mobility set-

ting as sounds of general-purpose sensory substitution de-

vices, which have the disadvantage of being less suitable for

use in systems that minimize audio feedback.

There are many possible extensions of our system. Ad-

ditional spatially localized cues could be provided, e.g. for

faces. Going a step further, face recognition would allow

the system to inform the visually impaired user about who is

approaching her. Generally, object recognition techniques

are potentially useful in the area of assistive technology for

the visually impaired. In the specific scenario we have been

investigating, a classifier for obstacles (such as [2]) could

be integrated to inform the user about the type of obstacle in

front of her. Furthermore, it would be desirable to introduce

an interactive component to the system so that the user can

specifically require certain cues, e.g. about the orientation

of the room. Careful sound design, probably replacing spo-

ken voice by iconic sounds, has the potential of making the

system more pleasant to use, decreasing the cognitive load

on the user [11] and supporting the localization of structures

with spatial sound.

In terms of evaluation, only one preliminary pilot has

been conducted so far. Besides the obvious need to run

a larger study with visually impaired participants, differ-

ent audio output setups could be compared. Use of bone-

conducting headphones and restricting audio feedback to

one ear (see [14] for evidence that visually impaired peo-

ple are good at localizing spatial sound monaurally) are just

two ways in which future systems could potentially reduce

interference with natural sounds.
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