
Accurate Human-Limb Segmentation in RGB-D images for Intelligent Mobility

Assistance Robots

Siddhartha Chandra1,2 Stavros Tsogkas2 Iasonas Kokkinos1,2

siddhartha.chandra@inria.fr stavros.tsogkas@centralesupelec.fr iasonas.kokkinos@inria.fr

1 INRIA GALEN, Paris, France 2 Centrale Supélec, Paris, France

Abstract

Mobility impairment is one of the biggest challenges

faced by elderly people in today’s society. The inability

to move about freely poses severe restrictions on their in-

dependence and general quality of life. This work is dedi-

cated to developing intelligent robotic platforms that assist

users to move without requiring a human attendant. This

work was done in the context of an EU project involved in

developing an intelligent robot for elderly user assistance.

The robot is equipped with a Kinect sensor, and the vision-

component of the project has the responsibility of locating

the user, estimating the user’s pose, and recognizing ges-

tures by the user. All these goals can take advantage of a

method that accurately segments human-limbs in the colour

(RGB) and depth (D) images captured by the Kinect sen-

sor. We exploit recent advances in deep-learning to develop

a system that performs accurate semantic segmentation of

human limbs using colour and depth images. Our novel

technical contributions are the following: 1) we describe a

scheme for manual annotation of videos, that eliminates the

need to annotate segmentation masks in every single frame;

2) we extend a state of the art deep learning system for

semantic segmentation, to exploit diverse RGB and depth

data, in a single framework for training and testing; 3) we

evaluate different variants of our system and demonstrate

promising performance, as well the contribution of diverse

data, on our in-house Human-Limb dataset. Our method is

very efficient, running at 8 frames per second on a GPU.

1. Introduction

Mobility impairment is widespread among elderly peo-

ple today. Recent studies indicate that 20% of people be-

tween the age of 70 − 85 years, and 50% of people above

the age of 85 years report difficulties accomplishing basic

activities of daily life [21]. Mobility impairment not only

Figure 1. Our system takes RGB or RGB-D images as input and

produces a parsing of the person’s limbs, torso, and head.

restricts independence severely, it is also detrimental to the

self-esteem of the individuals and drastically limits their

quality of life. Studies in demographics show that mobility

impairment among people over the age of 65 is constantly

increasing in industrialized countries [5]. The goal of this

work is the design and implementation of intelligent mo-

bility assistance robots, or nurse-type robots, that help the

user accomplish basic everyday tasks such as standing up,

sitting down, and moving about, avoiding stationary phys-

ical obstacles. Users would be able to interact with these

robots through pre-determined gestures, and be able to draw

the robot closer, or farther, and indicate the type assistance

they need. The computer vision component of such sys-

tems would exploit information, in the form of RGB-D im-

ages, from Kinect-sensors to allow the system (a) locate the

user, (b) estimate their pose, and (c) understand their ges-

tures. All these tasks involve recognizing landmarks/parts

on the human body. While locations of these parts would

give the system a fair indication of the user’s location, the

relative orientations of these parts would enable the system

to recognize pose/ gesture. To this end, we develop a deep-

learning based solution to human-limb segmentation, which

provides accurate pixel-wise class labels to each pixel in the

images captured by the camera. Figure 2 shows one prac-
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tical usecase of our solution. Human-limb segmentations,

in conjunction with the depth field, can be used to estimate

3 −D surfaces of body parts of the user. Normals of these

surfaces can be used to determine if the user’s pose is un-

stable. In case of instability, the robot can assist the user

achieve a stable position by exerting a physical force of the

optimal magnitude in the optimal direction.

Our contributions are threefold. We first create the

Human-Limb-dataset from videos captured by a Kinect sen-

sor, and devise a scheme for annotating pixelwise class-

labels that does not require us to annotate every single

frame in the video. Second, we combine the state of the

art Deeplab network for semantic segmentation [6] in RGB

images, with the state of the art Alexnet-HHA network [13]

on object detection in depth images to train a single network

with the objective of pixelwise semantic segmentation in

RGB-D images. Finally, we explain how we can re-purpose

a deep CNN using Caffe [14], to use diverse data (RGB +

depth fields) in a unified framework for training and testing.

Importantly, our method is also very efficient, running at 8

frames per second.

Figure 3 gives a visual summary of our framework. We

begin with a brief review of recent advances in semantic

segmentation, followed by describing our contributions, and

finally report empirical results on the Human-Limb dataset.

Figure 2. Human-limb segmentations, alongside depth, can be ex-

ploited to fit surfaces corresponding to parts of the body. Normals

to these surfaces can then be estimated, and these normals give an

indication of the stability of the user’s pose. In the event of the

user being in an unstable pose, the robot can use knowledge of

these normals to help the user gain a stable pose by exerting the

necessary physical force in the optimal direction.

2. Related Work

Semantic segmentation of body parts, and fine-grained

semantic segmentation have attracted increased interest in

recent years. Bo and Fowlkes [3] sequentially merge super-

pixels obtained from an oversegmentation, to form larger

parts, such as head, arms, clothes etc., and parse pedes-

trians. Simple constraints, (such as that head appears

above upper body and that hair appears above head) en-

force a consistent layout of parts in resulting segmentations

In [9] Eslami et al. introduced the Shape Boltzmann Ma-

chine (SBM), an hierarchical generative model that can gen-

erate realistic samples from the underlying object shape dis-

tribution. This model was extended to deal with multiple re-

gion labels (parts) in [8] and coupled with a model for part

appearances.

Lu et al. formulate car parsing as a landmark identi-

fication problem [20]. In [25] the authors draw inspira-

tion from previous work on hierarchical models for ob-

jects [15, 16, 26, 27] and propose a mixture of composi-

tional models that represent horses and cows in terms of

their boundaries and the boundaries of semantic parts. Their

algorithm starts by segmenting large parts first, such as

head, neck, torso, and moves on to segment legs, which are

deformable and thus much more difficult to segment.

Many works have used depth images to complement

RGB information for scene labelling. Ren et al. convert

local similarities (kernels) to patch descriptors, and incor-

porate context information using superpixel MRFs and seg-

mentation trees [22]. Couprie et al. [7] adopt a multiscale

convolutional neural network to learn features directly from

RGB-D images, whereas Wang et al. attempt to learn vi-

sual patterns from RGB and depth in a joint manner via

an unsupervised learning framework [18, 24]. They sam-

ple RGB-D patches and feed them as input to a two-layer

stacked structure. The output of their method is a collection

of superpixels that combine features from different sampled

patches. As a final step, they train linear SVM classifiers to

assign scene labels to each superpixel.

Gupta et al. generalize the popular contour detection and

hierarchical segmentation gPb algorithm [1] to make effec-

tive use of depth information. In [12], they design features

based on local geometric contour information, shape, size

and appearance of superpixels, and train classifiers to assign

each superpixel a semantic class label. In [13], they follow

an object-centric approach. They propose a three-channel

encoding of a raw depth field, and modify R-CNN [11] so

as to exploit this new type of information. Detection ob-

tained from this modified R-CNN system are then used to

compute additional features for superpixels and improve the

semantic segmentation system of [12].

Recently, Banica and Sminchisescu modified CPMC [4]

to account for both intensity and depth discontinuities [2].

A pool of figure-ground segmentations is created and a

ranker is trained to distinguish which of those segments cor-

respond to objects. A ranking process selects a valid and

compact subset of segments, while local, hand-crafted fea-

tures, as well as learned CNN features, are used to classify

the retained segmentation masks.

Our work combines ideas from [12, 13] and recent works

on semantic segmentations of objects that employ deep

convolutional neural networks [6, 19]. We augment the

Deeplab system to take advantage of depth information, and

change the labelling task from object segmentation to hu-
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Figure 3. Our method combines RGB and depth information to train a fully convolutional deep neural network for human limb semantic

segmentation.

man limb parsing. Training and testing is performed using

a single network that can seamlessly switch from only using

RGB or depth images to the augmented RGB-D inputs.

3. Dataset

Our data-acquisition setup consisted of a Kinect sensor

mounted on top of a passive rollator, as in [21]. The record-

ing process involved capturing RGB-D videos using the

open-source Robotics Operating System (ROS) software

capturing human subjects in a set of predefined use-cases

and scenarios. Example colour and depth images are shown

in Figure 4, along with manually annotated ground-truth.

Our Human-Limb dataset consists of six recorded videos,

each containing a different human subject performing a sit-

stand-sit activity several times. These six videos correspond

to 2618 RGB-D frames in total. We split the dataset into

1399 training and 1219 testing frames: images of three hu-

man subjects are used to construct the training set, while

images of the remaining three subjects are used to construct

the testing set. We annotate each of these images with 7

labels, namely, (1) head, (2) torso, (3) left upper arm, (4)

right upper arm, (5) left lower arm, (6) right lower arm, and

(7) background. In Section 3.1, we describe the scheme

we employed for efficient annotation, exploiting the visual

similarity of frames in a video.

3.1. Annotation

Annotating a video/sequence of frames with pixel-wise

labels can be a tedious task. One key observation specific to

this task is that videos typically contain a lot of visually sim-

ilar frames. While consecutive frames in a video are usually

similar, in our recordings, the human subjects perform the

same task (sit-stand-sit), repeatedly, increasing redundancy

among frames.

To avoid annotating very similar frames more than once,

we use a clustering-based approach to reduce the dataset

into a set of representative frames. We annotate each of

these representative frames using the open source image ed-

itor GIMP (www.gimp.org). Finally, the ground truth la-

bels for each frame in the dataset are transferred from the

annotation of the visually most similar frame from the set

of representative frames.

The clustering approach we use to determine the repre-

sentative frames consists of the following steps: we begin

by computing HOG [10] features on all colour image frames

in our dataset. Next, we compute euclidean distances in the

HOG space between each pair of frames, and lastly, we em-

ploy a greedy strategy to group frames into clusters,using a

threshold on the distance in the HOG space: any two frames

within a distance less than dthresh are merged into the same

cluster. The hyper-parameter dthresh is manually picked,

ensuring that all the frames in each cluster look very sim-

ilar. One frame from each cluster is randomly picked to

be the cluster representative. Figure 5 shows some example

clusters returned by our algorithm. On average, we obtained

28 clusters per video in our dataset. In the end we made a
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Figure 4. Example images from the dataset. Row 1 shows the RGB

images. Row 2 shows the depth images. Row 3 shows the depth

images encoded to 3 channel HHA [13], and Row 4 shows the

pixelwise ground truth class labels.

final pass of the full dataset, to visually assess the quality of

the transferred annotations.

4. Human-Limb Segmentation in RGB-D Im-

ages

Given the dataset of RGB-D images and pixelwise class-

labels, we now describe our deep learning framework for

human-limb segmentation. Our approach builds on top of

the Deeplab network [6], which is a state of the art method

for semantic segmentation on RGB images. In this work,

we propose an extension to the Deeplab architecture, that

allows it to exploit RGB-D images. We begin by describing

the original network, followed by our extension.

4.1. Deeplab Network for Semantic Segmentation
in RGB images

In recent years, Convolutional Neural Networks have

shown unprecedented performance in object classification

Figure 5. Example clusters returned by our clustering method,

which puts two images together in the same cluster if the euclidean

distance between them in the HOG space is below a threshold. We

exploit the visual similarity of images in the same cluster by anno-

tating one image from the cluster and propagating its annotation to

other images in the cluster.

and detection [11, 17, 23], and they have already become

the standard learning machinery for many other computer

vision tasks. Recently, it was shown that CNNs can also be

used in a fully convolutional setting for semantic segmenta-

tion [6, 19].

One of the challenges faces when using convolutional

networks for semantic segmentation is the downsampling

factor. Due to repeated max-pooling and downsampling,

the spatial resolution of an input image is reduced as it is

propagated through the network. The popular Alexnet [17]

has a down-sampling factor of 16. This means if we use

a 128 × 128 image as input, we will get 8 × 8 activations

(ignoring the last dimension for brevity–we are only con-

cerned with the spatial dimensions in this example). While

this is not a problem for tasks like image classification and

object detection, it is undesirable for tasks such as image

segmentation where we require a class label for each of the

128 × 128 pixels. Output maps typically have to be scaled

16 times in a post processing procedure, thus introducing

approximation errors. The Deeplab network proposed by

Chen et al. [6], reduces the down-sampling factor to 8 by in-

troducing holes in the convolution kernel. In this work, we

build on the fully convolutional Deeplab CNN and adapt it

for the semantic segmentation of human limbs. A schematic

representation of the Deeplab network is shown in Figure 6.

The Deeplab network is based on the very deep model

for object classification by Simonyan et al. [23], after drop-

ping the fully connected layers. This results in a fully con-

volutional network, preserving spatial information that is

normally scraped away by fully connected layers. More

precisely, the Deeplab network consists of 16 convolutional

layers, interleaved with 5 pooling layers. It also has 15 nor-

malization layers, and 2 dropout layers. We initialize the
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weights using the VGG pretrained network and finetune the

network for semantic segmentation of human limbs. For

optimization, we use standard stochastic gradient descent,

minimizing a cross-entropy loss, averaged over all image

positions. As in [6], we also use the post-processing step

of applying a fully-connected CRF to obtain sharper masks,

rather than simply relying on the CNN coarse responses.

Our experiments indicate that using CRF leads to moderate

improvements in segmentation accuracy.

Deeplab Convolutional
Neural Network

Loss

RGB Image Pixelwise Annotations

Figure 6. Schematic representation of the Deeplab network, using

RGB images as input.

4.2. Alexnet­HHA Network for Semantic Segmen­
tation in depth images

The Deeplab network described in the previous subsec-

tion uses RGB images. However, we would like to exploit

the available depth frames in addition to the RGB images.

A straightforward approach to exploit depth information for

our task, would be to simply add the raw depth field as an

extra channel in the RGB input images during training. This

is problematic for two reasons: first, the range of values for

the depth channel is very different than the one for RGB in-

puts, which means that a calibration step could be needed

to account for this discrepancy during training. Second, in-

stead of taking advantage of the initialized weights in the

pre-trained model and simply finetune the network with a

few passes over the dataset, we would be forced to retrain

the full network, a procedure that usually takes several days.

Gupta et al. [13] propose an alternative approach: in-

stead of taking the depth fields at face value, they encode

each pixel value of the depth fields with a 3×1 vector repre-

senting horizontal disparity(H), height above the ground(H)

and the angle(A) the pixel’s local surface normal makes

with the inferred gravity direction. As a result, an M × N

depth field is transformed into an M ×N × 3, HHA encod-

ing, and values are linearly scaled to map observed values

across the training dataset to the 0 to 255 range. Authors in

[13] finetune the popular Alexnet [17] using HHA images

for the task of object detection. This representation encodes

properties of geocentric pose a CNN would have difficulty

learning directly from a depth image, especially when very

limited training data is available. Rows 2,3 in Figure 4 show

two example depth images and their corresponding HHA

representations respectively.

In this work, we take advantage of the pretrained

Alexnet-HHA in a similar way. We start by encoding the

depth frames in our dataset to the HHA representation, and

use them to finetune a modified version of Alexnet-HHA

for the task of semantic segmentation. We optimize per-

formance on the training set using the same cross-entropy

loss function as in [6]. The original Alexnet has 5 convo-

lutional layers, 3 pooling layers, and several normalization

and dropout layers. As stated in section 4.1, Alexnet has

a downsampling factor of 16. To retain a downsampling

factor of 8 while being able to use the pretrained network

weights, we discard any convolutional / fully connected lay-

ers after the second convolutional layer. A schematic repre-

sentation of the Alexnet-HHA network is shown in Figure 7.

Alexnet Convolutional
(conv1,2) Neural Network

Loss

HHA Image Pixelwise Annotations

Figure 7. Schematic representation of our modified Alexnet-HHA

network that uses a 3-channel encoding of the depth fields as input.

4.3. Human­limb Segmentation in RGB­D images

Having described our extensions of the Deeplab and

Alexnet-HHA networks for semantic segmentation in RGB

and depth images respectively, we now turn to the task of

combining them to train a single network which learns from

colour and depth images simultaneously. To this end we

combine the two networks by concatenating their penulti-

mate layers, and then using a single loss layer on top. A

schematic representation of our combined network is shown

in Figure 8.

Alexnet Convolutional
(conv1,2) Neural Network

HHA Image

Deeplab Convolutional
Neural Network

Loss
RGB Image

Pixelwise Annotations
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Figure 8. We combine RGB and HHA-encoded depth information

in a single deep network.

4.4. Learning from RGB, HHA, RGB+HHA images

Proliferation of depth sensors is a recent phenomenon.

Consequently, we have a lot of publicly available datasets

with colour images, and comparatively fewer depth image

datasets. From a technical standpoint, it is desirable to have

a single network that can exploit RGB-D images, or re-

sort to using only one type of information when the other

is not available. To incorporate this flexibility in our net-

work, we implement a novel adaptiveConcatenation layer
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in Caffe [14]. The adaptiveConcatenation layer accepts a

flag alongside each image which indicates whether the in-

put image is RGB only, HHA only or RGB+HHA. During

the feed-forward phase, the adaptiveConcatenation layer

ignores penultimate layer activations of the HHA compo-

nent if the image is RGB only, and ignores the penultimate

layer activations of the RGB component if the layer is HHA

only. Similarly, during the back-propagation phase, if the

image is RGB only, the loss is back-propagated only to the

Deeplab network component. If the image is HHA only,

the loss is back-propagated only to the Alexnet-HHA com-

ponent. Otherwise, the loss is backpropagated through both

components of the network. In our experiments, we demon-

strate the utility of this layer, by using images of outdoor

scenes from RGB only INRIA person database to augment

our training set with more background examples.

5. Experiments

We use our method for the task of semantic segmenta-

tion of human limbs. All experiments are conducted on

the Human-Limb Dataset, which is described in detail in

section 3. We compare four different setups in our em-

pirical evaluation, (1) Deeplab network using RGB im-

ages, (2) Alexnet-HHA network using HHA images, (3)

Deeplab+Alexnet-HHA network (described in section 4.3)

using RGB+HHA images, and (4) Deeplab+Alexnet-HHA

network using RGB+HHA images from our dataset along-

side 1218 RGB images from the INRIA person database,

containing outdoor images for additional background ex-

amples. The last method uses the adaptiveConcatenation

layer introduced in section 4.4.

While training/testing all networks, we resize input im-

ages to 242 × 322 pixels. Since we have 7 labels (6 hu-

man body parts + 1 background label), our networks are

designed to output 7 scores per pixel, one corresponding to

each label. As pointed out in sections 4.1, 4.2, our networks

have a downsampling factor of 8. Due to this downsampling

of spatial dimensions, the size of the final output score map

is 31 × 41 × 7. Thus, during training we also downsam-

ple the ground truth label maps to 31× 41 pixels by nearest

neighbour interpolation, to avoid averaging artifacts. At test

time, we resize the output scores to the original image size

of 242 × 322 pixels via bilinear interpolation. To get the

labels, we compute the softmax probabilities of each label

from the scores, and pick the label with the highest proba-

bility. We also employ dense CRF to refine segmentations

provided by our networks, as in [6]. The dense CRF frame-

work serves as a post-processing step on our networks’ out-

put scores, before computing the softmax-probabilities for

class labels.

We report quantitative results of our evaluation in table 5.

We use the accuracy of segmentation as the evaluation met-

ric for our experiments. In table 5, we report results both

with and without the dense CRF. Our results indicate that

using dense CRF improves results, boosting the networks’

capability to capture fine details. Figure 9 shows some qual-

itative results on the test images.

Our implementation is built on top of the Caffe library,

and our testing time for RGB+HHA is about 8 frames-per-

second on an NVIDIA-Tesla K40 GPU.

Method Softmax Dense CRF

RGB 86.62 87.26

HHA 83.09 84.94

RGB+HHA 86.99 87.45

(RGB + HHA) + INRIA 88.12 88.84

Table 1. Segmentation Accuracies of our system for the four

combinations of input types. We also show the effect of post-

processing the scores using dense CRF on the performance of

these methods.

6. Discussion

In this paper we presented a method for combining infor-

mation from RGB images and depth images to train a sys-

tem for semantic segmentation of human body parts. Our

system is flexible, allowing us to take advantage of the two

types of inputs, or fall back on using just one type, when

the other is not available. We also introduced a novel set

of body part annotations, and used it to evaluate the perfor-

mance of our approach. We demonstrate promising results

and, as a future direction, we plan to explore the application

of body-part semantic segmentation for action recognition

and pose estimation.
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