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Abstract

As a non-verbal communication mean, head gestures

play an important role in face-to-face conversation and rec-

ognizing them is therefore of high value for social behavior

analysis or Human Robotic Interactions (HRI) modelling.

Among the various gestures, head nod is the most common

one and can convey agreement or emphasis. In this paper,

we propose a novel nod detection approach based on a full

3D face centered rotation model. Compared to previous

approaches, we make two contributions. Firstly, the head

rotation dynamic is computed within the head coordinate

instead of the camera coordinate, leading to pose invariant

gesture dynamics. Secondly, besides the rotation parame-

ters, a feature related to the head rotation axis is proposed

so that nod-like false positives due to body movements could

be eliminated. The experiments on two-party and four-party

conversations demonstrate the validity of the approach.

1. Introduction

1.1. Head Nods

Head gestures have long been studied by psychologists.

As the most common one, nod is often used in face-to-face

conversation and has semantic functions. For listeners, they

mainly nod to signal yes to a question, or show their inter-

est, agreement and approval to the information they receive.

Other functions may include enhancing communicative at-

tention, or anticipating an attempt to capture the floor by

occurring in synchrony with the others speech as conversa-

tional feedback [4, 5], along with other cues like gaze [2].

For speakers, they usually perform nods to emphasize their

speech and in general convey the feeling of conviction or

excitement. Therefore, the detection of head nods is a valu-

able module for social behaviors analysis and the study of

social relations (e.g. [6]) and HRI design.

1.2. Related Work

A number of works on head gesture detection have been

proposed. Head gestures are a series of head rotations per-

formed around the neck. Among them, a head nod is the

movement where the head is rotating up and down along

the sagittal plane one or several times.

Kapoor et al. [1] present a technique to recognize head

nods and shakes based on two Hidden Markov Models

(HMMs) using 2D coordinate results from an eye tracker.

In [12], the AdaBoost algorithm and anthropomorphic mea-

sures are applied to detect user’s face and locate eye zone,

respectively. Head movements are then derived from the

eye location, and are then used within a discrete HMM to

detect head nods and shakes.

Some works have been developed based on 3D head

trackers. The approach in [8] models a nod as a velocity

pattern of the pitch angle. The pattern is extracted when

the 3D head tracker changes from a negative threshold to a

maximum positive threshold within a certain time interval.

The authors in [13] describes another method in which 5

head states (up, down, left, right and still) are distinguished.

Then the head nod and shake are further recognized with

two HMMs.

These approaches show good performance in simple sce-

narios where listeners use exaggerated head gesture to an-

swer yes or no. But their performance drops significantly in

detecting nods in natural face-to-face conversations where

nods are more subtle and less explicit, because these meth-

ods tend to define nods as a sequence of head positions,

which is a noisy feature to extract.

To better characterize and exploit the nod oscillating

nature, other approaches use frequency features from the

Fourier transform applied to head velocities. For instance,

Morency et al. [7] use them as well as contextual features

like lexical information or prosodic cues from an embod-

ied conversational agent (ECA) to predict head nods of hu-

mans, in a scenario involving a human interacting with an

ECA. Nguyen et al. [9] develop a multimodal method us-

ing frequency feature and audio based self-context by tak-

ing into account the influence of the speaking status of peo-

ple on the dynamics of the head gestures. In this approach,

the head velocities are computed at three arbitrarily defined

points in a bounding box of a face tracker, using a robust

and multiresolution optical flow computation method. [10].
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The authors apply a Fourier transform with Gaussian tem-

poral window to these velocities. Fourier features are then

used to train two separate classifiers, one for speakers and

the other one for listeners. Compared to [8] [13] [1] [12],

frequency features result in a better description of fine

head movements. These two approaches have shown good

performance in the context of human-computer interaction

(HCI) [7] and natural conversation [9]. The features char-

acterizing the context, in which nods occur, have also been

proved useful for improving the detection.

A main limitation of all these methods is the constraint

linked to the position of the camera. They assume that in

the training and test video, interlocutors have a similar head

pose, and very often a frontal one. Therefore, these ap-

proaches cannot achieve pose invariance when camera po-

sition changes, or when people faces are oriented in more

variable direction, e.g. when observing people in multiparty

situations.

1.3. Main Contribution

In this paper, unlike previous approaches with 3D head

tracker that extracts angular velocities directly by differen-

tiating the Euler angles obtained from the pose expressed

in the camera coordinate system, we propose to calculate

the relative rotation at each instant with respect to the head

pose at some instance before. The Euler angles from this

relative rotation matrix are extracted. As they represent an-

gular changes between two frames, they can be considered

as a representation of angular velocities when using small

time intervals. The advantage of this approach is that the

measures are independent of the pose of the person with re-

spect to the camera. This avoids some possible observation

mismatches between training and testing due to the person

being seen in a different pose with respect to the camera.

Furthermore, to fully characterize a rotation, only using

the Euler angles (or visual velocities) is not sufficient. Peo-

ple may move their upper body back and forth, generating

in this way oscillatory pose angles. The main difference

is that here the rotation axis might be located around the

pelvis rather than around the neck. Thus, our system also

propose a feature related to rotation axis for classification.

This feature could help distinguishing from which part of

the body the rotation comes from, so that rotation move-

ments not originating from the neck can be excluded.

The rest of the paper is organized as follows. In section 2

we describe our head nod detection method with 3D rotation

model. In section 3, the experimental process is described.

The results are discussed in section 4 and the conclusion is

given in section 5.

Figure 1. Overview of nod detection system.

2. Head Nod Detection with Relative Rotation

and Distance to Rotation Axis

The overall procedure of the approach is shown in Fig.1.

The head pose represented by a rotation and a translation

of the face with respect to the camera coordinate system is

first obtained from a 3D head tracker at each frame. Then

the head rotation dynamic characterized by the head rota-

tion Rt1t2 and translation Tt1t2 is computed within the head

coordinate frame. In the next phase, two sets of features are

extracted. First, similar to the work of Nguyen et al. [9], our

system applies a Fourier transform with Gaussian window

to the rotation angles derived from Rt1t2 . Second, rotation

axis features are also extracted from the relative translation

and rotation. Finally, a SVM classifier is applied to all fea-

tures. A more detailed description of each step is given be-

low.

2.1. Head Tracker

In order to estimate the head pose, the method in [3]

is used. The method relies on a 3D Morphable Model

(3DMM) to generate person specific 3D face templates. It

is realized by fitting the 3DMM to a set of instances of the

target to reduce the influence of the noise. The face tracker

itself is based on the Iterative Closest Points (ICP) algo-

rithm using point-to-plane constraints and the personalized

template.

2.2. Relative Head Transform

Given a point P in the 3D space, we denote as Xcs(P ),
the coordinates of this point in the coordinate system CS. In

the face tracking system, there are two coordinate systems:

the world coordinate system Xw which is fixed and located

1 meter away from the camera, and the face coordinate sys-

tem X
f
t (P ), where t is the time since the face coordinate

varies with time t. In the face coordinate system, the z axis

is defined as the front direction of a person, whereas the x

and y axis are defined as the side direction and the vertical

direction respectively (see Fig.2).

For a point Pt, the outputs of the tracker relate the

face coordinate and camera coordinate. The correspond-

ing transformation for every frame is represented by a 3× 3
rotation matrix Rt and a translation vector Tt, defining:

Xw(Pt) = RtX
f
t (Pt) + Tt . (1)
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Figure 2. World and face coordinate system used by the head

tracker.

We are interested in defining the transformation between the

face coordinate systems at time t1 = t−m and time t2 = t.

Let us consider a face point P and let us denote by Pt1 and

Pt2 its position in the 3D space at time t1 and t2. As the

point is rigidly attached to the face, we have:

X
f
t1
(Pt1) = X

f
t2
(Pt2) . (2)

The point Pt2 at t2 can be expressed in the face coordinate

system at t1 according to the transformation in Eq.3:

X
f
t1
(Pt2) = R−1

t1
(Xw(Pt2)− Tt1)

= R−1
t1

(Rt2X
f
t2
(Pt2) + Tt2 − Tt1)

= R−1
t1

Rt2X
f
t2
(Pt2) +R−1

t1
(Tt2 − Tt1)

= Rt1t2X
f
t1
(Pt1) + Tt1t2

(3)

This equation represents the rigid rotation of a face point

expressed in the coordinate system of the face at t1. Thus

the relative transformation between t1 and t2 which is rep-

resented by the relative rotation matrix Rt1t2 and relative

translation Tt1t2 is given by:

Rt1t2 = R−1
t1

Rt2 ,

Tt1t2 = R−1
t1

(Tt2 − Tt1)
(4)

2.3. Feature vector extraction

In this part, we present our encoding into features the

transformation matrices Rt′−m,t′ defined for each time step

t′ of a short time window [t−∆, t+∆] into features.

2.3.1 Rotation Frequency Features

At each time step t′, we can extract from Rt′−m,t′ the three

euler angles: roll, pitch, and yaw denoted by (αt′ , βt′ , γt′)
which are defined as the rotations around z-, x- and y-axis

(Fig.3). We define αt−∆T :t+∆T as the sequence of α obser-

vations within the temporal window [t−∆T, t+∆T ] (and

similarly for β, γ), that is:

αt−∆T :t+∆T = [αt−∆T , . . . , αt+∆T ]. (5)

Figure 3. Euler angles defined in the head coordinate system.

In addition, we define a Gaussian window as:

W2∆T+1 = [G(−∆T ), . . . , G(∆T )]

with G(n) = e−
1

2
(n

σ
)2 .

(6)

In order to characterize the oscillatory nature of head nods

around time t, we apply a Fourier transform along with a

Gaussian window to these three angle series, leading to:

A−∆f :∆f = DFT (αt−∆T :t+∆T ·W2∆T+1),

B−∆f :∆f = DFT (βt−∆T :t+∆T ·W2∆T+1),

Γ−∆f :∆f = DFT (γt−∆T :t+∆T ·W2∆T+1)

(7)

We then compute the norm of the output of the Fourier

transform, which is defined as follows for A:

|Ak| =
√

Re(Ak)2 + Im(Ak)2. (8)

Finally, we take the positive part of the normalized fre-

quency spectrum to avoid redundancy from the three angle

series and concatenate them to obtain the vector used as fre-

quency features for the frame located at the center of the

window:
frot
m (t) = [|A0|, · · · , |A∆f |,

|B0|, · · · , |B∆f |,

|Γ0|, · · · , |Γ∆f |]

(9)

Remember that the m in frot
m refers to the frame gap be-

tween the two frames needed to compute the relative rota-

tion Rt′−m,t′ .

2.3.2 Rotation Axis Features

Only looking at the angles is not enough to describe a head

movement. Indeed there can be some motions leading to

similar angle changes like back and forth motion with the

upper body, but which are not head nods. In this paper,

our goal is to capture that head rotations are done around

an axis located near the neck. To do so, we compute the

distance between the face and the rotation axis as additional

but important feature characterizing the relative rotation.

Finding the distance d to the rotation axis. Let us con-

sider a rigid transformation defined by the rotation R and

3138



Figure 4. Head rotation around a fixed axis.

translation T . By definition, the rotation axis is the set of

points invariant to the rigid transformation, which can there-

fore be obtained by solving the following equations:

X = RX + T,

(I −R)X = T
(10)

There are three cases when solving for the above equation:

1. R = I and T 6= 0. In this case, the set of points is

empty. In practice, we will consider the distance to be

at infinity and set the axis distance d to a large value.

2. R = I and T = 0. In this case, the set of points is the

3D space. We consider that the distance is 0, and set

d = 0.

3. R 6= I and T 6= 0. In this case, the equation provides

the rotation axis we are looking for.

Since we have a rotation around a fixed axis, the solution

of Eq.10 is a line in the 3D space which means that I − R

is a singular matrix. To identify this axis, we can extract

the direction of this line, and one point P ∗ from this line.

For the latter one, we can use the least square solution as a

particular solution of the equation. In our resolution, we use

(I −R) + ǫI instead of I −R to stabilize the computation

and avoid spurious values caused by noise (where ǫ is very

small, we took 0.0001 in our calculation).

The null space of I − R indicates the direction of the

axis. In other words, to identify the axis direction, we can

search for the unitary eigenvector −→u correspongding to the

eigenvalue 1 of R, as every rotation matrix must have this

eigenvalue (the other two being complex conjugates of each

other), which can be found by solving:

R−→u = −→u (11)

Then the distance between the origin O of the face coordi-

nate system and the axis can be calculated as:

d = ‖
−−→
OP ∗‖ sin(δ) with δ = arccos

( −−→
OP ∗ · −→u

‖
−−→
OP ∗‖‖−→u ‖

)

.

Axis features. We can apply the above to the relative

transformation defined by Rt′−m,t′ and Tt′−m,t′ and obtain

Figure 5. Distance of the relative axis of the relative rotation to the

head frame origin.

the distance dt′ . Then, to summarize the axis information

within the interval [t−∆T, t+∆T ], we take the maximum

and average of the distance in the temporal window and de-

fine the axis features as:

faxis
m (f) = [max(dt−∆T,t+∆T ),mean(dt−∆T,t+∆T )]

This feature can be used to eliminate false positives caused

by body motion. Indeed, such motions like leaning for-

ward and back, adjusting the sitting position, standing up

and sitting down, may exhibit angular changes similar to

nods. Our expectation is that the distance to the axis will be

able to distinguish them from nods since nods are rotation

around the neck, and these body motions usually have their

axis distance much farther, as illustrated in Fig.5.

2.4. Classification

For the window [t−∆, t+∆], we concatenate the Fourier

features introduced in Section 2.2 as well as the maximum

and average of the distance obtained in Section 2.3 into a

single feature vector. Then, the system performs the classi-

fication of nods with this vector using a support vector ma-

chine (SVM). A support vector machine constructs a hyper-

plane which maximize its distance to the nearest training-

data point of any class, since, in general, the larger the mar-

gin the lower the generalization error of the classifier. Some

kernel functions can be used to implicitly project the data in

a higher dimensional space where the date becomes more

separable. The SVM classifier is applied at every frame.

To filter out spurious detection, we applied a smoothing fil-

ter which eliminates detection events of very short duration

(less than 7 frames).

3. Experimental Setting

In this section, we will present the design of our exper-

iments, including the data we used, the parameter setting,

training and evaluation method.

3.1. Dataset

In our experiments, two datasets are used.

Ubimpressed dataset. Acquired with a Kinect 2 sensor at

30fps, it consists of videos of job interviews. The camera is

set about one meter away from the interlocutor and makes

a little angle with the front direction (see Fig.6, left, people
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Figure 6. Ubimpressed sample (left) and view of the KTH-Idiap

corpus setting (right).

Figure 7. Sample images of the KTH-Idiap corpus.

are seen from below and the side). The dataset comprises

12 videos, each containing different people, for a total time

duration of 60 minutes.

KTH-Idiap corpus [11]. It features four people: one inter-

viewer, and 3 interviewees who are applying for a funding

grant. People are seated around a round table and each per-

son was filmed by a Kinect 1 camera (See Fig.6, right). The

video frame rate is also 30 fps. Since the conversation hap-

pend around a round table, the participants tend to look at

each other and turn their sides to the camera in the videos

(See examples of people in Fig.7). While full videos last

around one hour, for the experiment we selected 5 minute

excerpts from the videos of 9 different people.

3.2. Annotation

All the head nods were annotated manually. We anno-

tated 13874 frames, for a total of 543 head nods in the two

datasets (see Tab 1). The average duration of a nod is 25.5

frames (≈ 0.85s). Nods in KTh-Idiap are longer on average

because there are more continuous multi-nods.

Since head nods might be difficult to define and different

people hold different opinions towards ambiguous ones, we

annotated two classes of nods: obvious and subtle, accord-

ing to the amplitude and duration of the rotation movement.

Around 50% of the nods were considered as obvious.

Table 1. Nod statistics for Ubimpressed and KTH-Idiap dataset.

#Nods #Nod Frames #Obvious Nods Average Duration

Ubimpressed 407 10252 201 25.2

KTH-Idiap 136 3622 83 26.6

Total 543 13874 284 25.5

3.3. Parameter Setting

The algorithm comprises several parameters. First, we

looked at the parameter m, the time interval (measured as

the number of the spacing frames) used to compute the rel-

ative rotation mentioned in section 2.2. In general, larger m

might be more robust against the noise of the head tracker

but may lead to detectors which are less sensitive to move-

ment details. In our experiment we tried with m = 1, 3, 5, 7.

Another parameter is the size of the Gaussian window

2∆T + 1. In our experiments, we chose 31 frames (about

1 second) so ∆T = 15. Note that the resulting window

duration is larger than the duration of 90% of the annotated

nods.

Apart from that, we chose the LIBSVM package as the

SVM library tool. SVM parameters were chosen via 5-fold

cross validation within the training set with a grid search.

Note that in all cases, the feature vectors were z-normalized

(i.e. the mean was subtracted and the result was divided by

the standard deviation).

3.4. Performance Measure

The performance of the head nod detector is measured

at the frame and event levels. At the frame level, we used

the standard precision, recall and F-score measures. At the

event level, we first need to match recognized events with

the ground truth. To do so, suppose that there is a nod event

e
gt
i (ground truth) happening in the time interval I

gt
i =

[tgti,s, t
gt
i,t] and a detected nod event edj in Idj = [tdj,s, t

d
j,t]

(see Fig.8). Then the event matching precision, recall, and

F-score between e
gt
j and edi are defined as:

P ov
i,j =

|Igti ∩ Idi |

|Igti |
, Rov

i,j =
|Igti ∩ Idi |

|Idi |
, F ov

i,j =
2P ov

i,j ·R
ov
i,j

P ov
i,j +Rov

i,j

.

The events are said to match if their F-score is above a

threshold (in that case e
gt
i is considered detected and edi is

considered correct). One difficulty arises in the case of long

lasting multiple nods, which are difficult to annotate (as a

single long nod, as separate short ones). In order to account

for this situation, we set the threshold as 0.1

Then, given the matched events, we can compute the
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Figure 8. Nod matching.

Figure 9. Transition frames around nod start and ends were not

used for training

event-level precision, recall and F-score as follow:

Pevent =
#
{

edj |∃i, F
ov
i,j > threshold

}

#ed
,

Revent =
#
{

e
gt
i |∃j, F ov

i,j > threshold
}

#egt
,

Fevent =
2Pevent ·Revent

Pevent +Revent

.

(12)

3.5. Test Classifier

Training classifiers. As very subtle head nods can be sim-

ilar to non-nod movements during speaking, only obvious

nods were used to collect the training samples1. Further-

more, to avoid introducing noise in the learning stage, we

defined as transition frames 7 frames before and after the

onset and offset frames of a nod, and did not use them as

training samples (either as negative or positive samples).

Note that by using only the central part of the nods as train-

ing data, we can guarantee that in general the most part (at

least three quarters) of the Gaussian window used to com-

pute the frequency overlaps the nods (See Fig.9).

Negative samples were chosen randomly, and more neg-

ative samples were chosen than positive ones since the

space of negative gestures is larger than the space of pos-

itive ones. At the end we had 3100 positive samples and

10000 negative samples in the Ubimpressed data.

Tested classifiers. We trained 3 different support vector

machines, with 3 different feature sets:

1. Baseline: this corresponds to the work in [8, 13, 7],

where the Fourier transform outputs of sequences of

1Note that this only concerns training. Subtle nods were kept in the test

set for evaluation.

Table 2. Results of Ubimpressed data.

EventLevel FrameLevel

Precision Recall F-score Precision Recall F-score

linear SVM, m = 3
Baseline 0.8 0.83 0.81 0.8 0.73 0.76

RelRot 0.81 0.83 0.82 0.8 0.72 0.76

RelRot-AxisDist 0.81 0.83 0.82 0.78 0.75 0.76

RBF SVM, m = 3
Baseline 0.84 0.8 0.82 0.84 0.68 0.75

RelRot 0.85 0.81 0.83 0.84 0.68 0.75

RelRot-AxisDist 0.87 0.8 0.84 0.83 0.7 0.76

linear SVM, m = 5
Baseline 0.81 0.83 0.82 0.82 0.74 0.78

RelRot 0.84 0.83 0.84 0.82 0.75 0.78

RelRot-AxisDist 0.82 0.85 0.83 0.8 0.77 0.78

RBF SVM, m = 5
Baseline 0.86 0.79 0.82 0.86 0.7 0.77

RelRot 0.86 0.8 0.83 0.87 0.71 0.78

RelRot-AxisDist 0.87 0.82 0.84 0.86 0.73 0.79

Euler angle differences computed using the pose ma-

trix defined with respect to the camera frame are used

as feature.

2. Relative rotation (RelRot): In this case, the Fourier

features fm(t) = frot
m (t) of the angle extracted from

the relative rotation matrix are used, as shown in sec-

tion 2.2.

3. Relative rotation + axis distance (RelRot-AxisDist):

in addition to the rotation features, the average and

maximum of the distance to the rotation axis is used.

That is, fm(t) = [frot
m (t), faxis

m (t)].

4. Experimental Results

Experiments are conducted on the two datasets sepa-

rately. In section 4.1 we present the results obtained on

the Ubimpressed dataset. Then in section 4.2, we apply the

trained classifier on KTH-Idiap dataset to test the general-

ization performance.

4.1. Ubimpressed Data

A leave-one-person cross validation experiment was per-

formed among the Ubimpressed dataset. That is, the SVM

classifier was trained with samples from 11 videos and

tested on the last one by applying nod detector to the en-

tire video. All the videos make turns to be the test sample.

We used both radial basis function kernel and linear kernel

for m = 1, 3, 5, 7.

Overall results. Table.2 reports the results. In general, we

obtain a F-score of 0.83 at the event level, and of 0.76 at

the frame level. In this latter case, we can notice the higher

precision and lower recall, which might be due to the use

of only obvious nods during learning, shown in section 3.5.

Overall, our results are quite high, when considering the

subtleness of most of the examples.

Influence of time interval m. Table.2 and Fig.10 report
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Figure 10. Event-level results in function of the time interval m.

Left: linear SVM results; Right: RBF SVM results.

Figure 11. Frame-level results in function of the time interval and

features. Top Left: linear SVM results; Top Right: RBF SVM

results; Bottom Left: linear SVM results (m = 5); Bottom Right:

RBF SVM results (m = 5).

the impact of changing the time interval used to compute

the relative rotations (and hence, approximation of angu-

lar speed). We can notice that in general, the best results

are obtained with m = 3 and m = 5, while results with

m = 1 are lower (affected by potential tracker instability).

With m = 7, results are more contrasted. These results are

confirmed by the precision-recall curve measured at frame-

level, shown at the top of Fig.11.

Model comparison. Table.2, Fig.10 and Fig.11 provide a

comparison of the different feature vectors. As can be seen,

the use of relative rotation features and axis distance pro-

duce slightly better results. Indeed, in the configuration of

Ubimpressed (see Fig.6), all people are seen from the same

viewpoint, and look towards the job interviewer, so we have

very similar head pose. Since we train and test from the

same dataset, the invariance does not bring much.

To validate that the relative rotation is more robust, we

generate a series of synthetic data by systematically ro-

tating the head, to simulate a change of viewpoint. To

do so, we transformed the sequence of head pose Rt into

R
′

t = RvpRt. R
vp can simulate a change of pitch and roll

(which can be due to being seen from below/above or with

an in-plane rotated camera). Thus we trained a model from

Figure 12. Results obtained by simulating on the test data a view-

point change. Left: change in pitch (looking from above/bottom).

Right: change in roll (looking with more in-plane rotation).

Figure 13. Weights for linear SVM, m = 3.

the original data and tested it on the held out video with the

modified viewpoint. The results are shown in Fig.12. While

the relative rotation are by definition not affected by such a

change, the sequence of Euler angles measured in camera

are affected, with a performance reduction of 10% at 20◦

viewpoint change. Such behavior is also observed on the

KTH data.

As motivated earlier, the distance to rotation axis could

be a useful feature to filter out false alarms due to body

movements. However, such behavior appears seldom in our

dataset, and thus can not alter much the overall results. Re-

sults are thus unconclusive here. In a context where the

participants have more degree of freedom (e.g. standing

people), it could lead to better performance improvements.

Finally, we show in Fig. 13 the weights of the linear

SVM. It can be seen that as expected, the filter reacts to rota-

tion around the pitch in the 1-4Hz range, while is negatively

affected by low frequency gestures around the yaw and roll

rotations axis, which reflects the fact that real nods should

only involve pitch, and not be a composite of rotations. In

addition, we can notice that the rotation axis distance fea-

ture (esp. the average one) also negatively vote against the

nod detection, as we could expect.

Error analysis. Qualitatively, most false positive errors are
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due to single stroke lowering or raising head gesture (with

a small overshoot/oscillation at the end due to momentum

control). False negatives come from very light nods or nods

accompanied by other gestures, esp. during speaking peri-

ods. Note that during speaking time, some very subtle head

gestures are difficult to label as nod or not, due to the pres-

ence of other head related motions/activities. Thus, some

annotations inaccuracy and the trembling of the head pose

tracker could influence the result.

4.2. KTH­Idiap Corpus Results

We first evaluated the generalization capabilities of our

model and used the nod models trained on Ubimpressed

data and tested them on the KTH-Idiap sequences. Results

are reported in Table 3. Two main remarks can be made.

First, results are lower than on the Ubimpressed data overall

(F-score of 0.72 vs 0.84 for events), which can due to mul-

tiple factors. Most importantly, as people are more distant

to the sensor, and are less facing the camera, tracking (re-

member that our tracker only relies on depth information)

is more difficult and results in noisier head pose sequences.

Furthermore, as there are four people, people behave more

often as observers, producing some very light nods, often

from a side view, which makes their recognition very chal-

lenging. Secondly, we can notice that the use of the relative

head rotation features results in better performance (0.72 vs

0.68 for events), demonstrating their greater invariance to

viewpoint and pose changes.

Finally, we also trained the classifiers on KTH-Idiap

dataset using a one-person leave out scheme. Results are

shown in Table 4. Surprisingly, results are not necessarily

higher than with the model trained on Ubimpressed data,

(0.68 vs 0.72 at the event level). This might be due to the

use of noisier head pose tracking features during training,

which affects the recognition behavior (see the drop in pre-

cision). Nevertheless, note that the proposed features still

usually perform better than the baseline, especially at the

event level.

5. Conclusion

In this paper, we developed a head nod detection sys-

tem. The system exploits the 3D oscillatory characteristics

of nods by relying on the Euler angles extracted from the

relative rotation matrix expressed in the camera frame and

on the distance of the rotation axis to the face origin. Com-

pared to previous approaches, the method improves the de-

tection and provides accurate results, even in the case of

subtle nods. It is possible to extend this method to other

head gestures like head shake. Future work can consist of

further exploring the role of the rotation axis for recogni-

tion, e.g. by testing the system with standing people. In ad-

dition, investigation on the exploitation of a temporal model

Table 3. Results of KTH-Idiap data, with nod detector trained on

Ubimpressed data.

EventLevel FrameLevel

Precision Recall F-score Precision Recall F-score

linear SVM, m = 3
Baseline 0.73 0.63 0.68 0.72 0.44 0.55

RelRot 0.75 0.69 0.72 0.78 0.47 0.59

RelRot-AxisDist 0.74 0.69 0.72 0.79 0.48 0.6

RBF SVM, m = 3
Baseline 0.83 0.54 0.66 0.86 0.38 0.53

RelRot 0.83 0.62 0.71 0.87 0.42 0.57

RelRot-AxisDist 0.81 0.62 0.7 0.86 0.42 0.57

linear SVM, m = 5
Baseline 0.74 0.63 0.68 0.76 0.46 0.58

RelRot 0.75 0.7 0.72 0.81 0.5 0.61

RelRot-AxisDist 0.73 0.69 0.71 0.82 0.5 0.62

RBF SVM, m = 5
Baseline 0.81 0.57 0.67 0.86 0.43 0.57

RelRot 0.83 0.61 0.7 0.87 0.44 0.59

RelRot-AxisDist 0.83 0.63 0.72 0.87 0.45 0.59

Table 4. Results of KTH-Idiap data, trained on KTH-Idiap data.

EventLevel FrameLevel

Precision Recall F-score Precision Recall F-score

linear SVM, m = 3
Baseline 0.54 0.8 0.65 0.6 0.59 0.59

RelRot 0.54 0.79 0.64 0.59 0.58 0.59

RelRot-AxisDist 0.54 0.79 0.64 0.59 0.58 0.59

RBF SVM, m = 3
Baseline 0.57 0.77 0.65 0.57 0.57 0.57

RelRot 0.6 0.8 0.68 0.59 0.58 0.59

RelRot-AxisDist 0.6 0.8 0.68 0.59 0.58 0.59

linear SVM, m = 5
Baseline 0.53 0.79 0.63 0.6 0.61 0.61

RelRot 0.57 0.8 0.66 0.61 0.61 0.61

RelRot-AxisDist 0.57 0.8 0.66 0.61 0.61 0.61

RBF SVM, m = 5
Baseline 0.55 0.77 0.64 0.57 0.6 0.58

RelRot 0.6 0.79 0.68 0.59 0.62 0.61

RelRot-AxisDist 0.6 0.79 0.68 0.59 0.62 0.61

(e.g. CRF) as well as multiple instance learning would be

helpful.
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