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Abstract

Wearable cameras can gather first-person images of the

environment, opening new opportunities for the develop-

ment of systems able to assist the users in their daily life.

This paper studies the problem of recognizing personal con-

texts from images acquired by wearable devices, which finds

useful applications in daily routine analysis and stress mon-

itoring. To assess the influence of different device-specific

features, such as the Field Of View and the wearing modal-

ity, a dataset of five personal contexts is acquired using four

different devices. We propose a benchmark classification

pipeline which combines a one-class classifier to detect the

negative samples (i.e., images not representing any of the

personal contexts under analysis) with a classic one-vs-one

multi-class classifier to discriminate among the contexts.

Several experiments are designed to compare the perfor-

mances of many state-of-the-art representations for object

and scene classification when used with data acquired by

different wearable devices.

1. Introduction and Motivation

Wearable devices capable of continuously acquiring im-

ages from the user’s perspective have become more and

more used in the last years. Part of this success is due

to the availability of commercial products which, featuring

small size and extended battery life, are affordable both in

terms of costs and usability. The egocentric data acquired

using wearable cameras jointly offers new opportunities and

challenges [1]. The former are related to the relevance of

the egocentric data to the activity performed by the users,

which makes its analysis interesting for a number of appli-

cations [2, 3, 4, 5]. The latter concern the large variability

exhibited by the acquired data due to the inherent camera

instability, the non-intentionality of the framing, the pres-

ence of occlusions (e.g., by the user’s hands), as well as the

influence of varying lighting conditions, fast camera move-

ments and motion blur [1]. Figure 1 shows some examples

of the typical variability exhibited by egocentric images.

Despite the recent industrial interest in these technolo-
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Figure 1. Some egocentric images of personal contexts. Each column

reports four different shots of the same context acquired using wearable

cameras during regular user activity. The following abbreviation holds:

coffee v. machine - coffee vending machine.

gies, researchers have explored the opportunities offered by

wearable cameras ever since the 90s. Applications include

recognizing human activities [2, 3, 5], improving user-

machine interaction [6], context modelling [7, 8], video

temporal segmentation and indexing [9], and video summa-

rization [10, 11]. Wearable and mobile devices have been

also employed in applications related to assistive technolo-

gies, such as, food-intake monitoring [12], providing assis-

tance to the user on object interaction [4, 13], estimating

the physiological parameters of the user for stress monitor-

ing and quality of life assessment [14], providing assistance

to disabled or elders through lifelogging and activity sum-

marization [15, 16].

Visual contextual awareness is a desirable property in

wearable computing. As discussed in [2], wearable com-

puters have the potential to experience the life of the user

in a “first-person” sense, and hence they are suited to pro-

vide serendipitous information, manage interruptions and

tasks or predict future needs without being directly com-

manded by the user. In particular, being able to recognize

the personal contexts in which the user operates at the in-

stance level (i.e., recognizing a particular environment such

as “my office”), rather than at the category-level, (e.g., “an

office”), can be interesting in a number of assistive-related
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scenarios in which contextual awareness may be beneficial.

Possible applications could include daily routine analysis,

stress monitoring and context-based memory reinforcement

for people with memory impairment. Other applications

could focus on assessing the mobility of elders inside their

homes in the context of ageing-in-place, as well as provid-

ing assistance on the possible interactions with the objects

available in a specific environment.

In this paper, we study the problem of recognizing per-

sonal contexts from egocentric images. We define a per-

sonal context as:

a fixed, distinguishable spatial environment in

which the user can perform one or more activities

which may or may not be specific to the context

According to the definition above, a simple example of per-

sonal context consists in an office desk, in which the user

can perform a number of activities, such as typing at the

computer or reading some documents. In addition to the

general issues associated with egocentric data (e.g., occlu-

sions, fast camera movement, etc.), recognizing contexts of

interest for a person (i.e., personal contexts) poses some

unique challenges:

• few labelled samples are generally available since it is not

feasible to ask the user to collect and annotate huge amounts

of data for learning purposes;

• the appearances of personalized contexts are characterized

by large intra-class variability, due to the different views ac-

quired by the camera as the user moves in the environment;

• personalized contexts belonging to the same category (e.g.,

two different offices) tend to share similar appearances;

• given the large variability of visual information that will be

acquired by an always-on wearable camera, the gathering of

representative negative samples for learning purposes (i.e.,

images depicting scenes which do not belong to any of the

considered contexts to be recognized) is not always feasible.

In this study, we perform a benchmark of different state-

of-the-art methods for scene and object classification on the

task of recognizing personal contexts. To this aim, we built

a dataset of egocentric videos containing five personalized

contexts which are relevant to the tasks of routine analy-

sis and stress monitoring. Figure 1 shows some examples

of the acquired data. In order to build a plausible training

set, the user is only asked to take a ten-seconds video of

the personal context of interest to be monitored by mov-

ing the camera around to cover the different views of the

environment. To assess the influence of device-specific fac-

tors such as wearing modality and Field Of View (FOV),

we acquire the dataset using four different devices. In or-

der to compare the performances of different state-of-the-

art representations, we propose a benchmark classification

scheme which combines in cascade a one-class classifier to

detect the negative samples and a multi-class classifier to

discriminate among the personal contexts. The experiments

are carried by training and testing the benchmark classifica-

tion scheme on data arising from different combinations of

devices and representations.

The remainder of the paper is organized as follows: in

Section 2 we discuss the related works; Section 3 presents

the devices and the data used in the experiments; Section 4

summarizes the considered state-of-the-art representation

techniques; in Section 5 we define the experimental set-

tings, whereas in Section 6 we discuss the results; Section 7

concludes the paper and gives insights for further works.

2. Related Works

The notion of personal context presented in Section 1

is related to the more general concept of visual context,

which has been thoroughly studied in the past decade. In

particular, in [17] is described a procedure for organizing

real world scenes along semantic axes, while in [18] is

proposed a computational model for classifying real world

scenes. Efficient computational methods for scene under-

standing have also been proposed for mobile and embedded

devices [19, 20]. More recently, Convolutional Neural Net-

works (CNNs) have been successfully applied to the prob-

lem of scene classification [21]. Our work is also related

to the problem of recognizing human activities from ego-

centric data, which has been already studied by Computer

Vision researchers. In [3], daily routines are recognized in

a bottom-up way through activity spotting. In [2], some

basic tasks related to the Patrol game are recognized from

egocentric videos in order to assist the user. In [5], Con-

volutional Neural Networks and Random Decision Forests

are combined to recognize human activities from egocen-

tric images. Also systems for recognizing personal con-

texts have already been proposed. In [7], personal locations

are recognized based on the approaching trajectories. In

[8], images of sensitive spaces are detected for privacy pur-

poses combining GPS information and an image classifier.

In [22], an unsupervised system for discovering recurrent

scenes in large sets of lifelogging data is proposed.

Differently than the aforementioned works, we system-

atically study the performances of the state-of-the-art meth-

ods for scene and object representation and classification

on the task of personal context recognition. We assume that

only visual information is available and that the quantity of

labelled data is limited (see challenges in Section 1).

3. Wearable Devices and Egocentric Dataset

We built a dataset of egocentric videos acquired by a sin-

gle user in five different personal contexts. Given the avail-

ability of diverse wearable devices on the market, we se-

lected four different cameras in order to assess the influence

of some device-specific factors, such as the wearing modal-

ity and the Field Of View (FOV), on the considered task.

Specifically, we consider the smart glasses Recon Jet (RJ),

two ear-mounted Looxcie LX2, and a wide-angular chest-
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Wearing Modality Field Of View

Glasses Ear Chest Narrow Wide

RJ X X

LX2P X X

LX2W X X

LX3 X X

Table 1. A summary of the main features of the devices used to acquire

the data. The technical specifications of the cameras are reported at the

URL: http://iplab.dmi.unict.it/PersonalContexts/

mounted Looxcie LX3. The Recon Jet and the Looxcie LX2

devices are characterized by narrow FOVs (70◦ and 65, 5◦

respectively), while the FOV of the Looxcie LX3 is consid-

erably larger (100◦). One of the two ear-mounted Looxcie

LX2 is equipped with a wide-angular converter, which al-

lows to extend its Field Of View at the cost of some fisheye

distortion, which in some cases requires dedicated process-

ing techniques [23, 24]. The wide-angular LX2 camera will

be referred to as LX2W, while the perspective LX2 camera

will be referred to as LX2P. Table 1 summarizes the main

features of the cameras used to acquire the data. Figure 2 (a)

shows some sample images acquired by the devices under

analysis.

The considered five personal contexts arise from the

daily activities of the user and are relevant to assistive appli-

cations such as quality of life assessment and daily routine

monitoring: car, coffee vending machine, office, TV and

home office. Since each of the considered context involves

one or more static activities, we assume that the user is free

to turn his head and move his body when interacting with

the context, but he does not change his position in the room.

In line with the considerations discussed in Section 1, our

training set is composed of short videos (≈ 10 seconds)

of the personal contexts (just one video per context) to be

monitored. During the acquisition of the context, the user

is asked to turn his head (or chest, in the case of chest-

mounted devices) in order to capture a few different views

of the environment. The test set consists in medium length

(8 to 10 minutes) videos of normal activity in the given per-

sonal contexts with the different devices. Three to five test-

ing videos have been acquired for each context. We also ac-

quired several short videos containing likely negative sam-

ples, such as indoor and outdoor scenes, other desks and

other vending machines. Figure 2 (b) shows some nega-

tive samples. Most of the negative-videos are used solely

for testing purposes, while a small part of them is used to

extract a fixed number (200 in our experiments) of frames

which are used as “optimization negative samples” to opti-

mize the performances of the one class classifier. The role

of such negative samples is detailed in Section 5. At training

time, all the frames contained in the 10-seconds video shots

are used, while at test time, only about 1000 frames per-

class uniformly sampled from the testing videos are used.

In order to perform fair comparisons across the dif-

ferent devices, we built four independent, yet compli-
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Figure 2. (a) Some sample images of the five personal contexts acquired

using the considered wearable devices. Images from the same contexts

are grouped by columns, while images acquired using the same device are

grouped by rows. The following abbreviation holds: coffee v. machine

- coffee vending machine. (b) Some negative samples used for testing

purposes.

ant, device-specific datasets. Each dataset comprises data

acquired by a single device and is provided with its

own training and test sets. Figure 2 (a) shows some

sample images included in the dataset. The device-

specific datasets are available for download at the URL:

http://iplab.dmi.unict.it/PersonalContexts/.

4. Representations

We assume that the input image I can be mapped to a

feature vector x ∈ ℜd which can be further used with a

classifier through a representation function Φ. Specifically,

we consider three different classes of representation func-

tions Φ: holistic, shallow and deep. All of these represen-

tations have been used in the literature for different tasks

related to scene understanding [18, 21] and object detec-

tion [25, 26]. In the following subsections we discuss the

details of the considered representations and the related pa-

rameters.

4.1. Holistic Representations

Holistic representations aim at providing a global de-

scriptor of the image to capture class-related features and

discard instance-specific variabilities. Holistic representa-

tions have been used mainly for scene classification [18,

20]. In this work, we consider the popular GIST descrip-

tor proposed in [18] and use the standard implementation

and parameters provided by the authors. In these settings,

the GIST descriptors have dimensionality d = 512.
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4.2. Shallow Representations

Representations based on encoding of local features

(e.g., dense-multiscale or keypoint-based SIFT descrip-

tors) have recently been referred to as shallow representa-

tions as opposed to the deep representations provided by

CNNs [26]. We consider the Improved Fisher Vector (IFV)

scheme to encode dense-multiscale SIFT features extracted

from the input image according to the approach discussed

in [25, 26]. The IFV can be considered the state-of-the-art

in shallow representations for object classification [25, 26].

Motivated by the geometric variability exhibited by egocen-

tric images (e.g., image rotation), in addition to the dense-

multiscale extraction scheme proposed in [25], we also con-

sider a keypoint-based extraction scheme with the aim of

improving the rotational and translational invariance prop-

erties of the representation. In this case, the SIFT descrip-

tors are computed according to the keypoint locations and

scale extracted by a standard SIFT keypoint detector. When

dense SIFT features are extracted, the input images are re-

sized to a normalized height of 300 pixels (keeping the

original aspect ratio), while no resizing is performed when

sparse SIFT keypoints are considered. Following [25],

the SIFT descriptors are component-wise square-rooted and

decorrelated using Principal Component Analysis (PCA) in

order to reduce their dimensionality to 80 components. We

also consider the spatially-extended local descriptors dis-

cussed in [26] in our experiments. This variant simply con-

sists in concatenating the normalised spatial coordinates of

the location from which the descriptor is extracted with the

PCA-reduced SIFT descriptors, obtaining a 82-dimensional

vector as detailed in [26]. As discussed in [25], we train

a Gaussian Mixture Model (GMM) with a number of cen-

troids K = 256 on the PCA-decorrelated descriptors ex-

tracted from all the images of the training set (excluding the

negatives). We also performed experiments using a larger

number of centroids equal to K = 512. The IFV rep-

resentation is obtained concatenating the average first and

second order differences between the local descriptors and

the centres of the learned GMM (the reader is referred to

[25] for the details). Differently from [26], we do not L2

normalize the IFV descriptor in order to employ different

normalization methods as discussed in Section 5. The di-

mensionality of the IFV descriptors depends on the number

of clusters K of the GMM and on the number of dimensions

D of the local feature descriptors according to the formula:

d = 2KD. Using the parameters discussed above, the num-

ber of dimensions of our IFV representations ranges from a

minimum of 40960 to a maximum of 83968 components.

The VLFeat library1 is used to perform all the operations

involved in the computation of the IFV representations.

1VLFeat: http://www.vlfeat.org/.

4.3. Deep Representations

Convolutional Neural Networks (CNNs) have demon-

strated state-of-the-art performances in a series of tasks in-

cluding object and scene classification [21, 26, 27]. They

allow to learn multi-layer representations of the input im-

ages which are optimal for a selected task (e.g., object clas-

sification). CNNs have also demonstrated excellent trans-

fer properties, allowing to “reuse” a representation learned

for a given task in a slightly different one. This is gen-

erally done extracting the representation contained in the

penultimate layer of the network and reusing it in a clas-

sifier (e.g., SVM) or finetuning the pre-trained network

with new data and labels. We consider three publicly

available networks which have demonstrated state-of-the-

art performances in the tasks of object and scene classifica-

tion, namely AlexNet [27], VGG [26] and Places205 [21].

AlexNet and VGG have different architectures but they

have been trained on the same data (the ImageNet dataset).

Places205 has the same architecture as AlexNet, but it has

been trained to discriminate contexts on a dataset containing

205 different scene categories. The different networks al-

low us to assess the influence of both network architectures

and original training data in our transfer learning settings.

To build our deep representations, we extract for each net-

work model the values contained in the penultimate layer

when the input image (rescaled to the dimensions of the

first layer) is propagated into the network. This consists in

a compact 4096-dimensional vector which corresponds to

the representation contained in the hidden layer of the final

Multilayer Perceptron included in the network.

5. Experimental Settings

The aim of the experiments is to study the performances

the state-of-the-art representations discussed in Section 4

on the considered task. For all the experiments, we refer

to the benchmark classification pipeline illustrated in Fig-

ure 3. The classification into the 6 different classes (the

“negative” class, plus the 5 context-related classes) is ob-

tained using a cascade of a one-class SVM (OCSVM) and a

regular multi-class SVM (MCSVM). The OCSVM detects

the negative samples and assigns them to the negative class.

All the other samples are fed to the MCSVM for context dis-

crimination. Following [25, 26], we transform the input fea-

ture vectors using the Hellinger’s kernel prior to feed them

to the linear SVM classifiers. Since the Hellinger’s kernel

is additive homogeneous, its application can be efficiently

implemented as detailed in [25]. Differently from [25, 26],

we do not apply the L2 normalization to the feature vec-

tors, but instead we independently scale each component of

the vectors in the range [−1, 1] subtracting the minimum

and dividing by the difference between the maximum and

minimum values. Minima and maxima for each compo-

nent are computed from the training set and reported on the

test set. This overall preprocessing procedure outperforms
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Figure 3. Diagram of the proposed classification pipeline.

or gives similar results to the combination of other kernels

(i.e., gaussian, sigmoidal) and normalization schemes (i.e.,

L1, L2) in preliminary experiments.

For the OCSVM, we consider the method proposed

in [28]. Its optimization procedure depends on a single pa-

rameter ν which is a lower bound on the fraction of outliers

in the training set. In our settings, the training set consists

in all the positive samples from the different contexts and

hence it does not contain outliers by design. Nevertheless,

since the performances of the OCSVM are sensitive to the

value of parameter ν, we use the small subset of negative

samples available along with the training set, to choose the

value of ν which maximizes the accuracy on the training-

plus-negatives samples. It should be noted that the negative

samples are only used to optimize the value of the ν param-

eter and they are not used to train the OCSVM.

The multiclass component has been implemented with a

multiclass SVM classifier. Its optimization procedure de-

pends only on the cost parameter C. At training time, we

choose the value of C which maximizes the accuracy on

the training set using cross-validation similarly to what has

been done in other works [25, 26].

The outlined training and testing pipeline is applied to

different combinations of devices and representations in or-

der to assess the influence of using different devices to ac-

quire the data and different state-of-the-art representations.

It should be noted that all the parameters involved in the

classification pipeline are computed independently in each

experiment in order to yield fair comparisons. We use Lib-

SVM library [29] in all our experiments.

6. Experimental Results and Discussion

In order to assess the performances of each component

of the classification pipeline depicted in Figure 3, we report

the overall accuracy of the system, as well as the perfor-

mance measures for the one-class and multi-class compo-

nents working independently. The overall accuracy of the

system (ACC) is computed simply counting the fraction of

the input images correctly classified by the cascade pipeline

into one of the possible six classes (five contexts, plus the

“negative” class). The performances of the OCSVM com-

ponent, are assessed reporting the True Positive Rate (TPR)

and the True Negative Rate (TNR). Since the accuracy of

the one-class classifier can be biased by the large number

of positive samples (about 5000), versus the small number

of negatives (about 1000), we report the average between

TPR and TNR, which we refer to as One-class Average Rate

(OAR). The performances of the MCSVM are assessed by-

passing the OCSVM component and running the MCSVM

only on the positive samples of the test set. We report the

Multi-Class Accuracy (MCA), i.e., the fraction of samples

correctly discriminated into the 5 contexts, and the per-class

True Positive Rates. Table 2 reports the results of all the ex-

periments. Each row of the table corresponds to a different

experiment and is denoted by a unique identifier in brack-

ets (e.g., [a1]). The GMM used for the IFV representa-

tions have been trained on all the descriptors extracted from

the training set (excluding the negatives) using the settings

specified in the table. The table is organized as follows:

the first column reports the unique identifier of the exper-

iment and the used representation; the second column re-

ports the device used to acquire the pair of training and test

sets; the third column reports the options of the representa-

tion, if any; the fourth column reports the dimensionality of

the feature vectors; the fifth column reports the overall ac-

curacy of the cascade (one-class and multi-class classifier)

depicted in Figure 3 on the six classes; the sixth column re-

ports the One-Class Average Ratio (OAR) of the OCSVM

classifier; the seventh and eighth columns report the TPR

and TNR values for the OCSVM; the ninth column reports

the accuracy of the MCSVM classifier (MCA) working in-

dependently from OCSVM on the five contexts classes. The

remaining columns report the true positive rates for the five

different personal contexts classes. To improve the readabil-

ity of the table, the per-column maximum performance indi-

cators among the experiments related to a given device are

reported as boxed numbers , while the global per-column

maxima are reported as underlined numbers.

In the reported results the performance indicators of the

MCSVM are in average better than the ones of the OCSVM.

This difference is partly due to the fact that one-class clas-

sification is usually “harder” than multi-class classification

due to the limited availability of representative counterex-

amples. Furthermore, it can be noted that many of the con-

sidered representations yield inconsistent one-class classi-

fiers characterized by large TPR values and very low TNR

values. This effect is in general mitigated when deep fea-

tures are used, which suggests that better performances

could be achieved with suitable representations. Moreover,

the performances of the one-class classifier have a large in-

fluence on the performances of the overall system, even in
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METHOD DEV. OPTIONS DIM. ACC OAR TPR TNR MCA CAR C.V.M. OFFICE TV H. OFF.

[a1] GIST RJ — 512 38,96 50,52 91,54 9,50 49,85 43,76 90,84 14,20 76,26 46,78

[b1] IFV RJ KS 256 40960 42,17 46,70 91,20 2,20 51,25 62,28 53,82 34,69 98,69 38,37

[c1] IFV RJ KS 512 81920 42,16 46,61 90,82 2,40 51,21 62,21 53,85 34,55 98,90 38,58

[d1] IFV RJ KS SE 256 41984 43,24 45,42 85,14 5,70 53,73 69,08 50,22 34,65 99,11 46,62

[e1] IFV RJ KS SE 512 83968 36,06 45,68 89,66 1,70 44,03 77,80 46,41 29,65 97,00 21,88

[f1] IFV RJ DS 256 40960 43,77 52,35 93,50 11,20 52,63 65,58 49,50 27,98 91,51 86,92

[g1] IFV RJ DS 512 81920 47,46 48,82 88,74 8,90 60,33 84,34 55,51 37,79 78,09 52,10

[h1] IFV RJ DS SE 256 41984 47,91 49,37 91,74 7,00 59,83 78,92 70,49 40,73 66,96 88,15

[i1] IFV RJ DS SE 512 83968 49,51 45,77 81,34 10,20 67,51 83,80 65,75 41,78 78,73 67,77

[j1] CNN RJ AlexNet 4096 49,26 48,17 67,03 29,30 79,50 93,07 97,10 57,25 94,00 62,10

[k1] CNN RJ Places205 4096 55,19 53,02 80,14 25,90 78,02 97,29 98,43 69,69 96,14 50,86

[l1] CNN RJ VGG 4096 54,54 53,78 63,35 44,20 85,26 94,54 89,83 77,10 90,54 73,27

[a2] GIST LX2P — 512 48,62 61,53 96,56 26,50 54,15 74,15 99,81 30,41 82,68 32,02

[b2] IFV LX2P KS 256 40960 51,19 55,68 79,26 32,10 70,93 60,17 98,40 56,65 98,97 55,16

[c2] IFV LX2P KS 512 81920 63,83 54,97 95,64 14,30 76,90 59,84 97,23 68,39 96,92 72,17

[d2] IFV LX2P KS SE 256 41984 50,66 56,43 79,16 33,70 69,75 58,80 98,29 54,87 98,96 53,10

[e2] IFV LX2P KS SE 512 83968 59,08 50,54 97,48 3,60 71,99 58,29 98,03 60,93 98,44 62,11

[f2] IFV LX2P DS 256 40960 46,62 52,10 88,10 16,10 61,73 71,33 75,65 26,08 62,62 56,10

[g2] IFV LX2P DS 512 81920 50,59 52,20 90,00 14,40 65,15 77,70 68,41 31,21 72,75 66,59

[h2] IFV LX2P DS SE 256 41984 41,79 47,22 80,64 13,80 57,61 74,62 76,88 32,42 71,65 39,86

[i2] IFV LX2P DS SE 512 83968 56,24 55,85 94,00 17,70 68,29 77,34 84,29 37,44 88,29 52,78

[j2] CNN LX2P AlexNet 4096 48,16 51,31 66,31 36,30 76,10 80,54 78,98 50,45 100,0 70,66

[k2] CNN LX2P Places205 4096 54,84 57,30 60,89 53,70 87,14 99,19 92,20 63,38 99,88 96,45

[l2] CNN LX2P VGG 4096 50,74 57,40 56,39 58,40 86,02 98,60 81,04 74,11 99,75 80,21

[a3] GIST LX2W — 512 61,27 60,02 93,66 26,37 73,91 87,51 100,0 80,05 83,84 48,29

[b3] IFV LX2W KS 256 40960 55,47 61,89 89,92 33,87 67,27 55,46 99,30 38,77 98,78 61,73

[c3] IFV LX2W KS 512 81920 54,82 63,41 88,46 38,36 66,93 57,55 99,30 40,58 99,26 57,14

[d3] IFV LX2W KS SE 256 41984 49,73 50,08 88,38 11,79 66,53 63,29 99,69 42,45 99,28 47,94

[e3] IFV LX2W KS SE 512 83968 55,08 54,90 91,52 18,28 67,95 53,43 99,80 46,75 100,0 55,86

[f3] IFV LX2W DS 256 40960 59,62 52,77 94,36 11,19 72,81 87,40 95,28 66,94 97,33 48,22

[g3] IFV LX2W DS 512 81920 60,50 52,77 95,86 9,69 73,15 75,52 90,04 73,72 99,81 53,60

[h3] IFV LX2W DS SE 256 41984 57,88 49,01 87,84 10,19 74,33 82,26 93,71 74,33 99,60 51,99

[i3] IFV LX2W DS SE 512 83968 62,65 54,59 96,40 12,79 75,74 69,61 97,51 79,32 98,85 58,93

[j3] CNN LX2W AlexNet 4096 71,23 70,00 81,46 58,54 91,34 99,70 96,23 90,36 99,03 76,50

[k3] CNN LX2W Places205 4096 61,63 63,77 66,49 61,04 94,02 99,90 99,90 93,90 99,65 80,17

[l3] CNN LX2W VGG 4096 66,02 71,91 69,29 74,53 94,42 100,0 99,60 93,79 99,64 81,91

[a4] GIST LX3 — 512 42,08 65,23 77,86 52,59 53,07 65,16 95,24 31,91 58,36 26,55

[b4] IFV LX3 KS 256 40960 40,51 49,88 82,50 17,27 62,07 67,21 90,19 46,31 99,15 20,47

[c4] IFV LX3 KS 512 81920 40,21 47,23 83,38 11,08 62,13 67,33 90,19 46,37 99,15 20,74

[d4] IFV LX3 KS SE 256 41984 41,48 47,61 85,64 9,58 61,49 66,07 89,35 47,04 98,87 16,61

[e4] IFV LX3 KS SE 512 83968 40,49 51,34 81,92 20,76 61,35 66,19 89,23 45,58 99,15 19,17

[f4] IFV LX3 DS 256 40960 59,07 61,20 93,46 28,94 68,81 78,72 83,11 47,00 92,49 73,08

[g4] IFV LX3 DS 512 81920 63,31 50,69 89,50 11,88 81,92 90,82 92,61 59,97 99,81 86,23

[h4] IFV LX3 DS SE 256 41984 67,54 58,78 92,32 25,25 82,70 88,61 84,00 66,67 99,29 89,39

[i4] IFV LX3 DS SE 512 83968 66,02 57,83 91,80 23,85 81,08 91,42 90,55 58,93 99,84 78,23

[j4] CNN LX3 AlexNet 4096 54,49 67,42 75,16 59,68 76,32 99,80 99,90 50,85 97,88 20,23

[k4] CNN LX3 Places205 4096 52,87 72,01 55,19 88,82 86,28 95,97 98,21 62,36 97,47 99,12

[l4] CNN LX3 VGG 4096 59,12 69,68 74,59 64,77 80,74 99,60 100,0 51,31 99,01 77,63

Table 2. The experimental results. For each experiment we report the corresponding device (DEV.), the options (if any), the dimensionality

of the feature vector (DIM.), the accuracy of the overall system (ACC), the One-class Average Rate (OAR), the one-class True Positive

Rate (TPR) and True Negative Rate (TNR), the Multi-Class accuracy (MCA) and the per-class true positive rates (last five columns).

The following legend holds for the options: SE - Spatially Enhanced [26], KS - keypoint-based SIFT feature extraction, DS - multiscale

dense-based SIFT feature extraction. Numbers in the OPTION column indicate the number of clusters of the GMM (either 256 or 512).

The following abbreviations are used in the last five columns: C.V.M. - coffee vending machine, H. OFF. - home office. The per-column

maximum performance indicators among the experiments related to a given device are reported as boxed numbers , while the global per-

column maxima are reported as underlined numbers. Results related to the one-class component are reported in red, while results related

to the multi-class component are reported in blue.

6



the presence of excellent MCA values as in the case of [j3],

[k3] and [l3]. For example, while the [l3] method reaches an

MCA accuracy equal to 94, 42% when only discrimination

between the five different contexts is considered, it scores a

OAR accuracy as low as 71, 91% on the one-class classifi-

cation problem, which results in the overall system accuracy

(ACC) of 66, 02%.

The results related to the MCSVM are more consistent.

In particular, the deep features systematically outperform

any other representation methods, which suggests that the

considered task can take advantage of transfer learning tech-

niques, given the availability of a small amount of labelled

data, i.e., we can use models already trained for similar

tasks to build the representations. Interestingly, the sim-

ple GIST descriptor, gives remarkable performances when

used on wide angle images acquired by the LX2W device

(i.e., experiment [a3]), where an MCA value of 73, 91%
is achieved. The different experiments with the IFV-based

representations highlight that the keypoint-based extraction

scheme (KS) has an advantage over the dense-based (DS)

extraction scheme only when the narrow FOV LX2P de-

vice is used, while dense-based extraction significantly out-

performs the keypoints-based extraction scheme when the

field of view is larger, i.e., for the LX2W and LX3 de-

vices. Moreover, when a dense-based extraction scheme is

employed, spatially-enhanced descriptors (SE) outperform

their non-spatially-enhanced counterparts. The use of larger

GMM codebooks (i.e., K = 512 clusters) often (but not al-

ways, as in the cases of [e1] vs [d1] and [i4] vs [h4]) allows

to obtain better performances. However, this come at the

cost of dealing with very large representation vectors (in

the order of 80K vs 40K dimensions).

As a general remark, devices characterized by larger

FOVs tend to have a significant advantage over the narrow-

FOV devices. This is highlighted in Figure 4 which reports

the minima, maxima and average ACC values (accuracy of

the overall system) for all the experiments related to a given

device. These statistics clearly indicate that the LX2W cam-

era is the most appropriate (among the ones we tested) for

modelling the personal contexts of the user. The success of

such camera is probably due to the combination of the large

FOV and the wearing modality, which allows to gather the

data from a point of view very alike to the one of the user.

Indeed, the LX3 camera, which has a similar FOV, but is

worn differently, achieve the top-2 average and maximum

results.

We conclude our analysis reporting the confusion matri-

ces (Figure 5) and some success/failure examples (Figure 6)

for the best performing methods with respect to the four

considered devices. These are: [k1] CNN Places205 for the

RJ device, [c2] IFV KS 512 for the LX2P device, [j3] CNN

AlexNet for the LX2W device and [h4] IFV DS SE 256 for

the LX3 device. The confusion matrices reported in Fig-

ure 5 show that the most part of the error is introduced by

the negatives, while there is usually less confusion among
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Figure 4. Minimum, average and maximum accuracies per device. As can

be noted, all the statistics are higher for the LX2W-related experiments.

This suggests that the task of recognizing personal contexts is easier for

images acquired using such device.

the 5 contexts, especially in the case of [j3]. This confirms

our earlier considerations on the influence on the whole sys-

tem of the low performances of the one-class component

used for the rejection of contexts not of interest for the user.

It should be noted that a rejection mechanism (implemented

in our case by the one-class component) is crucial for build-

ing effective systems, not only able to discriminate among a

small set of known contexts, but also able to reject outliers

and that building such component can usually rely only on a

small number of positive samples with few or no represen-

tative negative examples. Moreover, there is usually some

degree of confusion between the office, home office and

TV classes. This is not surprising, since all these classes

are characterized by the presence of similar objects (e.g.,

a screen) and by similar user-context interaction paradigms.

Such considerations suggest that discrimination among sim-

ilar contexts should be considered as a fine-grade problem

and that the considered task could probably benefit from

coarse-to-fine classification paradigms. All the consider-

ations above are more evident looking at the samples re-

ported in Figure 6.

7. Conclusion and Further Works

We have studied the problem of recognizing personal

contexts from egocentric images. To this aim, we have ac-

quired a dataset of five personalized contexts using four dif-

ferent devices. We have proposed a benchmark evaluation

pipeline and we have assessed the performances of many

state-of-the-art representations on the considered task with

respect to the different devices used to acquire the data. The

results show that, while the discrimination among a limited

number of personal contexts is an easier task, detecting the

negative samples still requires some efforts. The best re-

sults have been achieved considering deep representations

and a wide angular, ear mounted wearable camera. This

suggests that the considered task can effectively take ad-

vantage of the transfer learning properties of CNNs and that

wide FOV, head mounted cameras are the most appropriate

to model the user’s personal contexts. Moreover, despite the

good performances of the discriminative component, there

is still some degree of confusion among personal contexts
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Figure 5. Confusion matrices of the four the best performing methods on the considered devices. Columns represent the ground truth classes, while rows

represent the predicted labels. The original confusion matrices have been row-normalized (i.e., each value has been divided by the sum of all the values in

the same row) so that each element on the diagonal represents the per-class True Positive Rate. Each matrix is related to the row of Table 2 specified by the

identifier in brackets. The following abbreviations are used: c.v.m - coffee vending machine, h.off - home office, neg. - negatives.
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Figure 6. Some success (green) and failure (red) examples and according to the best performing methods on the four considered devices. Samples belonging

to the same class are grouped by columns, while samples related to the same method are grouped by rows.

belonging to the same, or similar categories (e.g., office,

home office, tv). This suggests that better performances

could be achieved fine-tuning the CNN-based representa-

tion to the required instance-level granularity. Future works

will be devoted to overcome the limitations of the present

study by providing larger datasets also acquired by multi-

ple users and better exploring deep representations. More-

over, the spatio-temporally coherence between neighbour-

ing frames could be leveraged to provide meaningful repre-

sentations (e.g., by exploiting the 3D structure of the scene)

and to improve the classification results by disambiguating

the predictions for neighbouring frames. Finally, more at-

tention should be devoted to outlier-rejection mechanisms

in order build effective and robust systems.
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