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Abstract

Assistive solutions for a better shopping experience can

improve the quality of life of people, in particular also of

visually impaired shoppers. We present a system that visu-

ally recognizes the fine-grained product classes of items on

a shopping list, in shelves images taken with a smartphone

in a grocery store. Our system consists of three compo-

nents: (a) We automatically recognize useful text on prod-

uct packaging, e.g., product name and brand, and build a

mapping of words to product classes based on the large-

scale GroceryProducts dataset. When the user populates

the shopping list, we automatically infer the product class

of each entered word. (b) We perform fine-grained product

class recognition when the user is facing a shelf. We dis-

cover discriminative patches on product packaging to dif-

ferentiate between visually similar product classes and to

increase the robustness against continuous changes in prod-

uct design. (c) We continuously improve the recognition ac-

curacy through active learning. Our experiments show the

robustness of the proposed method against cross-domain

challenges, and the scalability to an increasing number of

products with minimal re-training.

1. Introduction

Shopping, especially grocery shopping, is a frequent ac-

tivity in people’s life. Smart devices like smartphones and

smart glasses provide various opportunities for improving

shopping experience. Through applying advanced com-

puter vision tools to images taken with the user’s smart de-

vice, a better understanding of the user’s surrounding envi-

ronment in a store can be achieved. In this work, we focus

on the classification of products on shelves around the user

in a grocery store. Recognizing the products that the user

is facing can be used in recommending related products, re-

viewing prices, and assisting the user in navigating inside

an unfamiliar store. Assisted navigation in stores is essen-

tial for improving the autonomy and independence of the

visually impaired in performing their shopping activities.

When populating a shopping list, users frequently write

the names or the brands of products instead of their respec-

tive classes (e.g., Coca-Cola instead of soft drink). Since

our goal is to recognize the product classes, we need to map

product names/brands to their respective classes in a scal-

able and efficient manner with no supervision from the user.

To be applicable in real-world settings, a grocery prod-

uct recognition system needs to differentiate between a

large number of fine-grained product classes. Fine-grained

recognition in computer vision targets the problem of sub-

ordinate categorization, e.g., recognizing specific classes of

birds [28], cars [12], or flowers [20]. Fine-grained gro-

cery product recognition introduces additional challenges

to the general object recognition task. For instance, several

product classes are visually similar in the overall shape of

the product (e.g., water, juice, and oil-vinegar classes have

bottle-shaped products). Also, some product classes pos-

sess large variability in the shape of their products which is

hard to capture in a single model (e.g., cheese and bakery).

Several classification methods rely on the availability of

large datasets that cover the objects in various shapes, oc-

clusions, and orientations. The performance of such meth-

ods improves by increasing the number of training images

that are from the same distribution of the test images [25].

However, in real-world applications like in the domain of

robotics or assistive systems for the visually impaired, gath-

ering such datasets is a time-consuming task that does not

scale well. A product recognition system needs to be ro-

bust against cross-domain settings where test images are in

different conditions from the training images. Testing im-

ages come from different stores with different imaging con-

ditions resulting from the variability of prospect users and

imaging devices. An ideal system would need to be trained

once and used in multiple stores and scenarios.

In this paper, we address the problem of large-scale fine-

grained product recognition in cross-domain settings. The

designed method should satisfy the following requirements:

• Scalability to a large number of product classes and prod-

uct instances; require no or minimum re-training when

adding new products to the dataset or changing the pack-
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Figure 1. Sample training images from the GroceryProducts [7]

dataset. Training images are downloaded in ideal studio conditions

from the web.

Figure 2. Sample testing images from the GroceryProducts [7]

dataset. Testing images are taken with a smartphone in real gro-

cery stores with blur, occlusions, and specularities.

aging of some of the existing products.

• Robustness to cross-domain settings; to be applicable in

real-world settings with thousands of supermarkets and

millions of users with different characteristics and health

conditions.

• Autonomy; automatically recognize the product classes

corresponding to strings of product names or brands en-

tered by the user with no supervision on the input.

• Runtime efficiency; the designed solution should be effi-

cient to run within seconds.

Our proposed method simultaneously and effectively ad-

dresses the above issues. In Figure 3, we show an overview

of our system, which consists of three components that im-

prove the shopping experience of the user: (a) Text recogni-

tion on product packaging; automatically recognize useful

text on a grocery product packaging like the name and brand

of the product using text detection and OCR techniques ap-

plied on the training images of grocery products. This in-

formation is then used to assist the user by automatically

recognizing the product class once a word is entered into

the shopping list application. This procedure is scalable to

a continuously increasing number of grocery products as it

only relies on the ground truth classes of training images

without any bounding boxes or additional information from

the user. (b) Product class recognition; recognize the fine-

grained class of a shelves image taken with a smartphone in

a real grocery store. Our system works in cross-dataset set-

tings where training images are in different conditions from

testing images. We use the GroceryProducts dataset pro-

posed in [7], which contains 26 fine-grained product classes

with 3235 training images downloaded in ideal condition

from the web, and 680 test images taken with smartphones

in real stores. Sample images are shown in Figures 1 and

2 and more details are presented in the following sections.

The evaluation of our system shows the effectiveness of dis-

criminative patches in capturing meaningful information on

product packaging. (c) Recognition improvement by user

feedback; continuously improve the accuracy of our system

through applying active learning techniques.

2. Related Work

Our system is related to the problem of fine-grained ob-

ject recognition in computer vision. Several approaches

have been proposed for recognizing sub-ordinate categories

of birds [28, 2, 5, 30], flowers [20, 19], and other classes

[8, 21, 12]. The techniques used in these methods along

with the representation of images are significantly different

from our target domain of grocery products.

Product recognition has gained increasing interest in the

past few years [7, 10, 15, 18, 22, 26, 29] due to the fast ad-

vancements in computer vision techniques and the availabil-

ity of computationally powerful mobile devices like smart-

phones and watches. Image retrieval is used in [10] and [15]

to retrieve images visually similar to a query image. Both

the query images and the training images contain a single

product from the same dataset. In [22], image retrieval is

also targeted but in cross-dataset settings through query ob-

ject segmentation combined with iterative retrieval. Both

the training images and query images contain a single prod-

uct but with different background conditions. Through seg-

menting the product, better results are achieved. There are

several commercial product search engines for single prod-

uct recognition, like Google Goggles1 and Amazon Flow2

that achieve good performance for planar and textured cat-

egories like CD or book covers.

Closely related to our system are approaches that fo-

cus on grocery product recognition [7, 18, 29]. A gro-

1www.google.com/mobile/goggles/
2http://flow.a9.com/
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Figure 3. Overview of our system. It consists of three main components: (a) text recognition on product packaging, (b) visual recognition

of fine-grained product classes, and (c) recognition improvement by user feedback.

cery product dataset of 120 product instances is proposed

in [18]. Each product is represented by an average of 5.6

training images downloaded from the web and test images

are manually segmented from video streams of supermarket

shelves. Each test image contains a single segmented prod-

uct. A baseline approach of SIFT [16], color histogram, and

boosted Haar-like [27] feature matching is performed.

In [7], a much larger dataset of 26 grocery product

classes is proposed with 3235 training images of product

instances and 680 test images of supermarket shelves. The

dataset is gathered in cross-domain settings where training

images are downloaded from the web with each image con-

taining a single product instance in ideal studio conditions,

while test images contain supermarket shelves taken with a

smartphone in real stores. The real-world test images suffer

from various image degradations such as blur, occlusions,

background objects, and different lighting conditions from

the training images. We use this dataset in our experiments.

In our earlier paper [7], we proposed a system that targets

instance-level retrieval of specific products present in a test

image through a pipelined approach of class ranking, dense

pixel matching, and global optimization. We achieved mean

average precision of around 23.5%, which is challenging to

apply in assistive tools. Our improved system described in

this paper, on the other hand, targets fine-grained product

class recognition through automatic discovery of discrimi-

native patches in product images. Additionally, we perform

text recognition on product packaging for mapping strings

to product classes, and apply active learning to continuously

improve the classification performance. The second com-

ponent of our system is complementary to [7], where we

achieve better product classification performance.

A system that targets grocery product detection in video

streams is proposed in [29]. The system tries to find items

on a shopping list in video streams of supermarket shelves.

Keypoints in the image are recommended to search for

products. The system uses the dataset of 120 products pro-

posed in [18]. The authors, however, restrict the search

space for each test image to 10 products only, by limiting

the number of possible items on a shopping list. Further-

more, they assume that training images of the items on the

list are given as an input to the system during query time,

which is challenging to scale in real settings with thousands

of products. Product detection is performed using naı̈ve

Bayes classification of SURF [1] descriptors. Our system is

different in several ways. First, we do not restrict the num-

ber of items present on the shopping list. Instead, we auto-

matically map each item on the list to its fine-grained prod-

uct class through our proposed text-recognition-on-product-

packaging approach (Section 3.1). Accordingly, our method

is scalable to a continuously increasing number of prod-

ucts, where no user input is needed for populating the list.

Second, instead of naı̈ve Bayes classification, our approach

for product recognition relies on discovering discriminative

patches on product packaging that differentiate between vi-

sually similar products. Finally, we evaluate our system on

a much larger dataset, which significantly affects the prod-

uct recognition accuracy; while each product class in [18]

is represented by an average of 5.6 images of the same spe-

cific product, each product class in [7] is represented by

an average of 112 specific products (each specific product

is represented by a single image), which is challenging to

capture by a single model.

3. Product Recognition for Assisted Shopping

In Figure 3, we give an overview of our system. It con-

sists of three components that assist the users in their shop-

ping activities. The first component (Fig. 3a) aims at auto-

matically recognizing useful text on grocery product pack-

aging like the name and brand of the product using text de-
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Figure 4. Histogram of word occurrences on the product packaging

in the “Coffee” category in the dataset.

tection on the training images of grocery products. We only

use the ground truth classes of training images without any

bounding boxes or supervision from the user, which is scal-

able when new products are added. The second component

(Fig. 3b) recognizes the fine-grained class of an image of

supermarket shelves. Training images are in different con-

ditions from testing images, which is more challenging for

the recognition process. Images are either opportunistically

taken by our application when we detect that the phone is in

an upright position through measurements from the prox-

imity and acceleration sensors, or explicitly taken by the

user with the smartphone camera. Finally, in the third com-

ponent (Fig. 3c) we apply active learning to continuously

improve the accuracy of our system.

In the following sections, we describe the design and im-

plementation details of each component of our system.

3.1. Text Recognition on Product Packaging

Users usually write the names or brands of products in-

stead of their respective classes (e.g., corn flakes instead of

cereal) when populating a shopping list. As our goal is to

recognize the product classes, we need to efficiently map

words in the list to their respective classes with no supervi-

sion from the user. To achieve this goal, we automatically

recognize the text on each product packaging in our training

set and compute a histogram to represent how many times

each word is encountered in a given class. This histogram

is used to measure the confidence of mapping a given word

to a corresponding class and is used to rank the possible

classes for a given word.

Recognizing text using Optical Character Recognition

(OCR) techniques in natural images requires segmenting

text regions from the rest of the image. Applying OCR

techniques to whole product images failed to retrieve any

useful information. To automatically recognize text regions

Figure 5. Our shopping assistant. The user enters a textual string

that is matched against the pre-computed keyword database, and a

filtered list of classes is shown to the user.

on each product packaging, we use the approach presented

in [9]. The input image first needs to be preprocessed by

converting it to grayscale, padding, and normalizing it by

subtracting the image mean and dividing by the standard

deviation. Then the text/no-text classifier in [9] is applied

on the intermediate image. The output of the classifier is a

score for each pixel representing how likely it contains text

as shown in Figure 3a on the top. To create bounding boxes

of text regions, we first mask out all pixels with a classifica-

tion score of 10 or below to leave only high-scored pixels.

Following that, we dilate the remaining pixel areas in 6 it-

erations as the remaining patches are usually of relatively

small sizes. Finally, we ignore all regions with a size of 230

pixels or less, since they likely correspond to short or non-

meaningful words such as weight declarations, or no text at

all. An example of detected bounding boxes on a product

are shown in Figure 3a on the top. Once the text regions are

segmented, we use the OCR method in [24] to recognize

the text in each bounding box. A histogram is then built to

represent the frequency distribution of words in each class.

The histogram of detected words for class “Coffee” in our

dataset is shown in Figure 4.

When the user writes a product name in the shopping

list, the corresponding class is automatically detected if the

word occurs in a single class only in the training set. Other-

wise, a filtered list of classes ranked by the histogram value

is shown to the user to choose from as shown in Figure 5.

This list typically contains around four classes only, which

significantly improves the user experience of populating the

shopping list.

3.2. Product Class Recognition of Shelves Images

Fine-grained grocery product classification poses several

challenges as discussed earlier. Such challenges are fur-

ther aggravated when considering cross-dataset settings in

which training images and test images have very different
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Figure 6. Top 10 discovered discriminative patches for the top 10

correctly classified product classes in the GroceryProducts dataset.

conditions in terms of blur, lighting, deformation, orienta-

tion, and the number of products in a given image.

Relying on low-level image features such as SIFT [16] or

HOG [4] faces difficulty in capturing meaningful image fea-

tures that are robust against such challenges. The recently

proposed mid-level image representations [23, 6, 11] have

achieved impressive results in object and scene classifica-

tion tasks as they provide a richer encoding of images. Such

methods try to discover discriminative patches of a given

class, which are patches that occur frequently in the im-

ages of the class while they rarely occur in images of other

classes. We argue that discriminative patches are beneficial

for fine-grained cross-dataset grocery product classification

for the following reasons: (1) several product classes may

share a common logo. Such image regions are confusing for

the classifier and degrades the performance of the system.

By extracting discriminative patches from each class, such

regions are discarded, which yields better results. (2) While

training images are taken in ideal studio conditions, testing

images suffer from deformations and occlusions which re-

sults in only partial matches between training and testing

images. Through relying on features from several image

patches instead of whole image, more robust representation

is achieved. (3) Several specific product items in a class

share common regions, e.g., many rice images contain a rice

bowl and many coffee images contain a cup of coffee on the

packaging. Capturing such regions and ignoring other less-

discriminative regions improves the informativeness of the

class model.

To discover discriminative patches on grocery product

packaging, we use the method of [23] to extract mid-level

discriminative patches from training images of each grocery

product class. The method iterates between clustering and

training discriminative SVM detectors. An SVM detector

trained on a cluster tries to find similar patches to those in

the cluster, which ensures the discriminative property of the

cluster. At each step, cross-validation is applied to avoid

overfitting. We use the same parameter settings as in [23].

HOG [4] descriptors of size 8x8 cells with a stride of 8 pix-

els per cell are computed at 7 different scales. For each

class, negative training images are random images from all

the other classes in the dataset. The algorithm outputs a few

thousand discriminative patches, which are then ranked by

the purity and discriminativeness of their clusters. We then

take the top 210 patch detectors of each grocery product

class to represent each class, as recommended by [23]. Fig-

ure 6 shows the top 10 discriminative patches for the top 10

correctly classified classes in the GroceryProducts dataset.

The next step is to represent each image by a single fea-

ture vector that is suitable for learning a standard SVM clas-

sification model. First, we run each patch detector on the

whole image. Then, we form a histogram with number of

bins equal to the number of classes in the dataset (26 in

our case). Each histogram bin contains the highest detec-

tion score of the most confident patch of that class, i.e., we

do two consecutive steps of max-pooling, first we take the

highest score of detecting each of the 210 patches of a class

then we take the highest score among all patches. Thus, the

histogram has much lower dimensionality than the related

ObjectBank [14] descriptor, which makes our descriptor

more computationally efficient. Furthermore, our descriptor

is not affected by increasing the number of patch detectors

per class, as only one value per class is stored in the his-

togram. To further ensure better runtime performance, we

run detectors at a single scale. These histograms are then

used to train 1-vs-all linear SVM classifiers for each gro-

cery product class.

To encode spatial information of the extracted features,

we use the spatial pyramid image representation [13], which

has shown significant improvements to the bag-of-words

model in object as well as scene classification tasks. We

use 2-level spatial pyramid representation. For each im-

age region, we compute the histogram of detection scores

described above. Then, we concatenate the histograms

from all the image regions, resulting in a histogram of

length NumberOfClasses× (1× 1+ 2× 2) dimensions.

The resulting histograms are then used to train 1-vs-all lin-

ear SVM classifiers for each grocery product class, resulting

in much improved performance over the whole image his-

tograms as they encode richer information about the spatial

arrangement of patches in a given image.

In the evaluation section, we show the superior perfor-
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mance of using discriminative patches in fine-grained prod-

uct classification over other traditional methods like bag-of-

visual-words [3] and low-level image features.

3.3. Adaptive Threshold for User Notification

We designed our system to be robust against misclas-

sification. This happens for example when the query im-

age contains only background, e.g. floor or ceiling, without

any products, or contains product classes that are not in the

dataset. Our system only notifies the user of a recognized

product if its classification score is higher than a specified

threshold. Higher thresholds means that we only notify the

user of a product if we are highly confident about the classi-

fication result, which results in higher precision at the cost

of lower recall values. To find a suitable certainty score,

we computed a precision-recall curve when gradually in-

creasing the SVM classification score. In Section 4.4, we

perform an analysis of the resulting curve. There are sev-

eral ways to find a suitable value, e.g. by user satisfaction

studies.

3.4. Recognition Improvement by User Feedback

Human users interact constantly with our system, con-

tinuously delivering images from the testing domain. These

new input images can be used for enhancing the recognition

accuracy while maintaining minimal supervision from the

user. While our system is generally robust to cross-domain

settings, further improvements are expected when images

from the test domain are involved in the training process.

Active learning [17] allows us to select a subset from the

user-provided images to be manually labeled. By selecting

the images with the least confident classification score (i.e.,

those nearest to the learnt SVM hyperplane), the SVM clas-

sifier can be re-trained with this additional information to

better discriminate the training data. Active learning allows

us to select only few images to be labeled, which signifi-

cantly lowers the amount of manual supervision maintain-

ing high user satisfaction and scalability of our system.

3.5. Implementation Details

The shopping assistant has been tested on an LG Nexus

5 running Android Lollipop 5.1. The phone features an 8

MP camera. Images are captured at a resolution of 3264 x

2448 pixels. Featured sensors that are used within the ap-

plications are the camera, proximity sensor with two states

and accelerometer.

We used the following parameters for our algorithms: the

1-vs-all SVM classifiers were trained using a radial basis

function (RBF) kernel with C = 2048 and λ = 2. The initial

threshold for the discriminative patch detectors was fixed at

-1.5.

4. Evaluation

4.1. Dataset

For all our experiments, we use the GroceryProducts

dataset from [7]. It contains 3235 training images of

‘Food’ grocery products that are organized in 26 hierarchi-

cal classes as shown in the axes of Figure 7. The number of

training images in each fine-grained class varies from 25 to

415 images with an average of 112 images per class. Each

specific product instance in a class is represented by exactly

one training image, frontal view taken in ideal studio con-

ditions. Figure 1 shows examples of training images from

the dataset. The testing set is taken with a smartphone in

real supermarkets. The testing set consists of 680 anno-

tated test images of supermarket shelves of ‘Food’ products.

Each test image contains multiple products ranging from 6

to 30 products per image. Testing images were taken in real

stores and thus have noise and various degradations such as

blurriness, occlusions, specularities, and background (e.g.,

shelves, price tags, ceilings, and floors). Figure 2 shows

examples of testing images from the dataset.

In all our experiments, we do not rely on any bound-

ing boxes or annotations when classifying testing images

to ensure the autonomous behaviour of our system. The

ground truth labelling of testing images assumes one class

per image, i.e., each testing image contains products from

the same fine-grained class. We scale test images to a max-

imum height of 1080 pixels.

4.2. Evaluation Metrics

We evaluate the recognition performance of our system

using the average classification accuracy. To compute the

average accuracy over the testing set D, we define

accuracyD =
1

L

L∑

i=1

ki

ni

, (1)

where ki is the number of correctly classified images in

class i, L is the total number of classes and ni is the total

number of images in class i.

4.3. Classification Performance

To evaluate the performance of the visual recognition

component of our system (Section 3.2), we compute the av-

erage accuracy for the following variants of our system:

1. Full: discriminative patches + 2x2 pyramid + SVM

2. DP & SVM: discriminative patches on whole image +

SVM

3. DP & HS: discriminative patches + take the class of

the patch with highest score as the class of the image

(i.e., no SVM training)
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Method Accuracy(%)

Baseline 12.4

DP & SVM 41.8

DP & HS 46.6

DP & 2x2 Pyramid & HS 49.9

Full (DP & 2x2 Pyramid & SVM) 61.9

Table 1. Average classification accuracy of different variants of our

method and the baseline method on the GroceryProducts dataset.

4. DP & 2x2 Pyramid & HS: discriminative patches +

2x2 pyramid + take the class of the patch with highest

score in all 5 regions (1x1+2x2)

5. Baseline: 128-dimensional SURF descriptors quan-

tized by bag-of-words (BoW) model with 200 words

+ SVM

Table 1 shows the average accuracy of the different vari-

ants of our system and the baseline method. Our full sys-

tem achieves an average accuracy of 61.9%, which signif-

icantly outperforms the average accuracy of 12.4% of the

baseline method. Using spatial pyramid representation re-

sults in a notable improvement in the performance of our

system, where it improves the average accuracy by around

20%. To examine the quality of the discovered discrimina-

tive patches, we report results when using the class of the

highest scoring patch among all patches of all classes as the

class of the image (DP & HS). We achieved an average ac-

curacy of 46.6%, which impressively outperforms using an

SVM classifier (DP & SVM) by around 5%. Accordingly,

the discovered patches are of high quality and represent the

data well. The classification accuracy when taking the class

of the highest scoring patch in all image regions using 2x2

spatial pyramid (DP & 2x2 Pyramid & HS) is inferior to us-

ing an SVM classifier (Full), as the histogram used for clas-

sification encodes richer image information through spatial

context.

Figure 7 shows the confusion matrix of classification ac-

curacy over all the 26 classes of the dataset. The top 10 cor-

rectly classified classes are Coffee, Pasta, Tea, Cereals, Wa-

ter, Rice, Sauces, Snacks, Biscuits, and Soups. Such classes

have distinct product packaging that yield highly discrimi-

native patches as shown in Figure 6. For example, Coffee

class is characterised by the cup of coffee on most products,

and pasta bags usually are transparent showing the uniquely

textured pasta inside.

Failure cases include Bakery, Chips, Ice Tea, and Milk

classes. Reasons for the poor performance varies from one

class to the other. For instance, Bakery class lacks the

presence of logos or discriminative figures on the packag-

ing. Products vary in texture and shape, and are highly de-

formable which makes it challenging to match training im-

ages with testing images. Chips packaging is often made up

Figure 7. Confusion matrix of the classification results for the 26

fine-grained classes of the GroceryProducts dataset.

Figure 8. Precision-recall curve for thresholding the SVM classi-

fication score. Our method yields high precision of over 90% for

recall values up to 50%, as shown by the flatness out our curve.

of plastic foil which is prone to reflections and deformations

that hinder patch detection. If we inspect the Ice Tea class,

we observe that it has been misclassified as Soft Drinks in

75% of the test cases. This is explained by the common

shape and general appearance of both classes. Also, they of-

ten share the same manufacturer which makes it more chal-

lenging to differentiate between them. Milk class is mostly

confused with Yoghurt due to similar packaging shape.

4.4. Adaptive Threshold Analysis

Figure 8 shows the precision/recall curve when varying

the threshold of the SVM score. As we tighten the certainty
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score, the precision increases but at the cost of lower cov-

erage of recognized products (less recall). As can be seen

from the graph, our system achieves high precision values

of over 90% for recall values up to 50% which highlights

the usability of our system. Through user satisfaction stud-

ies, a suitable threshold can be specified that satisfies user

needs and convenience.

4.5. Active Learning Performance

To examine the effectiveness of active learning in im-

proving the recognition accuracy, we ran 3 different experi-

ments where we divide the original testing set of 680 images

into 2 disjoint sets: a learning set and a testing set. The test-

ing set is remained fixed and is used to test the performance

of the SVM classification. The learning set is used in the it-

erations of the active learning process, where we gradually

increment the number of labeled images from the learning

set that are used in re-training the SVM classifier. In each

of the 3 experiments, we vary the number of images in the

learning set and the testing set. For each iteration in the ac-

tive learning process, we executed 10 runs with randomly

selected learning sets and averaged the accuracy. Figure

9 shows the result for the first experiment with a maximum

learning set size of 180 images, a constant testing set size of

500 images, and iteration step size of 20 images. The initial

accuracy is 60.5%. It increases with an increasing learning

set up to a size of 140 images, after which it stagnates and

stays stable at 64.4%. Similar behaviors are observed with

the other 2 experiments. For the second experiment of a

learning set size of up to 280 images, a constant testing set

size of 400 images, and iteration step size of 20 images, the

accuracy increases again with increased size of the learning

set, stabilizes at around 160 images with 65.5% accuracy,

and decreases slightly to 65.2% after 220 images which can

be attributed to the addition of outlier images that confuse

the classifier. The final setting uses a learning set size of

up to 500 images, a constant testing set size of 180 images,

and iteration step size of 50 images. The initial accuracy

with no learned images is relatively low at 56.0%. It then

increases up to 64.0% with 450 learned images, after which

it drops slightly to 63.9% at 500 learned images.

The experiments show that our active learning procedure

succeeds in improving the recognition accuracy due to the

addition of more informative images to the training set, with

the advantage of minimal supervision to maintain user sat-

isfaction and computational efficiency.

4.6. Runtime Performance

We run our experiments on a machine with Intel Core i7-

4770 CPU running at 3.40 GHz and 16 GB RAM without

code optimization. Training of each of the 1-vs-all SVMs

takes around 16.8 seconds. Classifying a single image with

our proposed method including feature extraction time takes

Figure 9. Average classification accuracy for increasing number of

images used for learning in the active learning procedure. Testing

set size is fixed at 500 images, maximum learning set size is 180

images, and the iteration step size is 20 images.

on average 27.6 seconds and 106.9 seconds with the ad-

ditional use of 2x2 spatial pyramids, when using a single

thread. The main time consuming task in the classifica-

tion process is running the patch detectors. Accordingly,

the runtime of the classification process can be easily im-

proved through parallelization as the discriminative patch

detectors are completely independent.

5. Conclusion and Future Work

We presented a product recognition system that rec-

ognizes the fine-grained product classes of supermarket

shelves images taken with a smartphone in real grocery

stores. We have shown that we can improve the user’s

shopping experience through visual recognition of prod-

uct classes of items on a shopping list, in addition to un-

supervised mapping of textual strings on the shopping list

to their corresponding product classes. Through discov-

ering discriminative patches on training product images,

we achieve robustness against cross-domain challenges and

against continuous design changes in product packaging. In

future work, we plan to implement the system on wearable

computers like Google Glass to achieve more natural inter-

action with our system and experiment with different imag-

ing conditions. We will also examine how much improve-

ment in the recognition accuracy can be achieved using a

sequence of images from video streams in grocery stores.To

be more useful for the visually impaired, we intend to inves-

tigate into instance-level retrieval, to recognize the specific

product desired by the user. To improve runtime efficiency,

we will work on improving the efficiency of the patch de-

tection algorithm.
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