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Abstract

In recent years, many systems for motion analysis of in-

fants have been developed which either use markers or lack

3D information. We propose a system that can be trained

fast and flexibly to fit the requirements of markerless 3D

movement analysis of infants. Random Ferns are used as

an efficient and robust alternative to Random Forests to

find the 3D positions of body joints in single depth images.

The training time is reduced by several orders of magnitude

compared to the Kinect approach using a similar amount of

data. Our system is trained in 9 hours on a 32 core worksta-

tion opposed to 24 hours on a 1000 core cluster, achieving

comparable accuracy to the Kinect SDK on a publicly avail-

able pose estimation benchmark dataset containing adults.

On manually annotated recordings of an infant, we obtain

an average distance error over all joints of 41 mm. Building

on the proposed approach, we aim to develop an automated,

unintrusive, cheap and objective system for the early de-

tection of infantile movement disorders like cerebral palsy

using 3D motion analysis techniques.

1. Introduction

When Microsoft released the low-cost commodity depth

sensor Kinect in conjunction with its body tracking func-

tionality [17], many researchers started developing medical

applications, e.g. for gait analysis [8], rehabilitation moni-

toring [5, 14], postural control assessment [6], or monitor-

ing of musculo-skeletal disorders [26]. One application that

can not utilize the tracking, although it involves the analy-

sis of human motion, is the automated examination of infant

movements, e.g. for early detection of cerebral palsy. The

body tracking was originally developed for the game con-

sole XBox and aims at handling a wide range of potential

gamers from children to adults. It therefore will not work

reliably for humans smaller than one meter, which makes it

unfeasible for tracking infants [18].

Cerebral palsy (CP) is a movement disorder that is

Figure 1: Pose estimation pipeline. For an input pixel, each

Random Fern outputs a probability distribution over body

part classes. After combination of distributions, the body

part class with highest probability is assigned to the in-

put pixel. Joint positions are inferred from estimated body

parts. Best viewed in color.

caused by abnormal development or damage to parts of the

brain, often during pregnancy. It leads to abnormal mus-

cle tone, reflexes, or motor development and coordination

[22]. For the diagnosis of cerebral palsy at the age of three

months, the General Movement Assessment (GMA) [7] is a

well-established instrument. This time-consuming exami-

nation must be performed by trained and experienced ex-
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perts (often doctors), who assess the spontaneous move-

ments of the infants. However, the outcome measures are

not standardized and represent the subjective opinion of the

examiner. Therefore, it is desirable to automate the process

of evaluating the quality of infant movements.

Several systems have been proposed to tackle this is-

sue. In order to assess the motions of the infants, the bod-

ily movements have to be captured. [16] use a marker-

based Vicon system, while [21] and [24] use a 2D opti-

cal flow-based approach. Other systems propose the at-

tachment of sensors directly to the infant’s limbs using ac-

celerometers [11] or electromagnetical sensors [13]. One

approach, utilizing the Kinect, fits a body model consisting

of basic shapes to the depth image [19]. Based on the mea-

sured movements, different methods are applied to predict

whether or not a child is afflicted by CP.

An ideal system for analyzing the motions of infants in a

clinical environment offers the following properties:

• It is cheap

• It is easy to set up

• It is usable by non-experts

• It is non-intrusive

• It is accurate and reliable

• It provides objective measures

We aim to provide a 3D motion analysis system that fulfills

all of these requirements. A first step towards this goal is the

development of a markerless body pose estimator in single

depth images for infants.

The contributions of our work are threefold. We imple-

ment a procedure for generating labeled depth images syn-

thetically for arbitrary body models. We develop a training

procedure for our pose estimation system that is several or-

ders of magnitude faster than [23] while maintaining com-

parable accuracy. We introduce a markerless and unintru-

sive system for infant body pose estimation.

2. Related work

Human body pose estimation is a very active field of

research in which many systems have been developed in

recent years. We divide the approaches into model-based

approaches which fit a detailed human body model to the

given data ([9], [27], [1], [12], [25]), and into discrimina-

tive approaches which aim to directly find body parts from

which joint positions are inferred ([23], [28], [4]).

Although there is a large variety of systems, we focus

our comparison on the Kinect approach due to the similar-

ity of characteristics to our work. The body tracking sys-

tem of the Kinect is based on an approach by Shotton et

al. [23], who combine binary depth comparison features us-

ing Random Decison Forests to assign a body part label to

each input depth pixel. Based on the detected body parts,

the joint positions are estimated. Unfortunately, the train-

ing of the forests is computationally very intense, requiring

one day on a 1000 core cluster using 1 million training im-

ages to train 3 trees of depth 20. Besides the costs of huge

computation units, many problems arise when distributively

processing such a large amount of data [3]. Therefore, it is

desirable to speed up and to simplify the training procedure,

not only to avoid these problems, but to be able to flexibly

adapt the system to different application requirements.

For this reason, we propose the use of random ferns,

which were introduced by [20] as an efficient and robust

alternative to random forests.

3. Methods

We use random ferns for fusing binary depth comparison

features to create a pixelwise body part classifier. Based on

the body parts, we estimate the positions of the body joints.

3.1. Binary Features

The task at hand is to correctly estimate the body part

class of each pixel of a depth image displaying a human.

We do this by applying depth comparisons between the cur-

rent input pixel and several pixels within a predefined neigh-

borhood radius. Each of these comparisons together with a

threshold is considered a feature. The outcome of the fea-

ture is either 1 or 0, depending on the result of the depth

comparison being greater than the threshold or not.

We use depth comparisons similar to [23], defined as

zφ(I, x) = dI(x)− dI(x+ φ · r(x)), (1)

where φ is the relative offset to given pixel x in image I ,

dI(x) returns the depth of x and r(x) = foc
dI(x)

is a normal-

ization factor for depth invariance, where foc is the focal

length of the depth sensor in pixels. A binary feature con-

sists of a depth comparison in combination with a threshold

τ , and is evaluated as

fφ(I, x) =

{

1, if zφ(I, x) > τ ,

0, else.
(2)

Each binary feature for itself is not very meaningful,

therefore we combine many features using so called ferns

to obtain an accurate estimation.

3.2. Ferns

We follow the formulation of [20].

Let ci, i = 1, . . . , H be the set of classes and let fj , j =
1, . . . , N be the binary features. We want to find

ĉ = argmax
ci

P (C = ci|f1, f2, . . . , fN ), (3)
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Figure 2: Generation of synthetic training data. Infant model is textured with colors correspondig to body parts. After

different poses are applied, labeled depth images are generated that serve as input for the fern training. Best viewed in color.

where C is a random variable representing the body part

class. Applying Bayes’ formula leads to

P (C = ci|f1, f2, . . . , fN ) = P (f1,f2,...,fN |C=ci)P (C=ci)
P (f1,f2,...,fN ) . (4)

In contrast to [20], who assume a uniform prior P (C),
we use prior probabilities depending on the number of pix-

els representing each body part in the training data. Being

independent of the class, the denominator is regarded as a

scaling factor and therefore omitted.

A complete representation of the joint probability of all

features requires storing and estimating 2N entries for each

class, which makes it computationally intractable for more

than a few classes. If we assume complete independence of

the features, the problem becomes trivial, but the correlation

between features is ignored. Therefore, a compromise is

chosen by partitioning the set of all features into M groups

of size S = N
M

, where each group is called fern. In each

fern the joint probability is computed. This leads to

P (f1, f2, . . . , fN |C = ci) =

M
∏

k=1

P (Fm|C = ci), (5)

where Fm = {fσ(m,1), fσ(m,2), . . . , fσ(m,S)},m = 1, . . . ,

M represents the mth fern and σ(m, j) is a random permu-

tation function with range 1, . . . , N .

This semi-naive bayesian approach models only some of

the dependencies between features, but can be handled eas-

ily, as we need to store and estimate M × 2S parameters.

In all our experiments we use M = 15, S = 12. Each fern

can be seen as a special kind of decision tree, with binary

features as split nodes, where within each level of the tree

the same features are evaluated. The depth of the tree corre-

sponds to the group size S. In each leaf node the probability

distribution of all classes is stored. The complete set of M

ferns is called an ensemble of ferns.

3.3. Training data generation

We synthetically create a large amount of labeled data

for training the ferns. We use a 3D body model of an in-

fant from MakeHuman [15], an open source tool for making

3D characters. A subset of the available body joints is se-

lected in our experiments. The joints do not necessarily cor-

respond to real joints of the human body, but serve as a tool

for dividing the model into different regions. We choose 21

joints for infants: head, neck, shoulders, elbows, hands, fin-

gers, upper body center, body center, stomach, hips, knees,

feet and toes. A texture is applied to the model that maps

each skin pixel to a color according to the closest joint. The

open source software Blender [2] is used for animating the

model in many different poses, using the CMU motion cap-

ture dataset [10]. The dataset contains a variety of poses

that were captured by a Vicon system at 120 Hz. Consecu-

tive poses are very similar due to the high capture rate and

are omitted if the summed joint distances lie below a prede-

fined threshold. We generate depth images from the posed

model and assign a body part label to each pixel according

to the model texture. The virtual camera viewpoint from

which the depth images are generated can be chosen arbi-

trarily. We use mainly frontal views of the body as we as-

sume the infants to be lying on their back in real data. The

data generation procedure is illustrated in Figure 2.

3.4. Fern Training

The algorithm for the training procedure is outlined in

Algorithm 1. The goal is to build an ensemble E consist-

ing of M ferns. We start by creating a fern, given its depth

S and the neighborhood radius for pixel offsets. The ran-

domness is introduced in the sampling of the binary fea-

tures, i.e. pixel offsets within the specified neighborhood

and thresholds (as used in Eq. 1 and 2). The outcome

of the features in the fern accumulates to the descriptor

Fm = (fφ1, fφ2, . . . , fφS) and is indexed by a binary code
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that indicates which leaf node is reached by the input pixel.

In each leaf node, the probability distribution over all body

part classes is stored which is given by

P (Fm = k|C = ci) =
nk,i + u

∑

k(nk,i + u)
, (6)

where we consider Fm to be equal to k if the binary code

of the feature descriptor equals k. Furthermore, nk,i is the

entry in the histogram of descriptor Fm and is equal to the

number of pixels belonging to class i that evaluate to fern

value k. The u can be seen as a Dirichlet prior to avoid

probabilities of zero, in case a leaf is not reached by any

input pixel, which makes the multiplicative combination of

all ferns zero. Choosing u = 1 leads to

P (Fm = k|C = ci) =
nk,i + 1

Ni +K
, (7)

with Ni being the total number of pixels in the training data

that belong to class i.

We evaluate the error that results from classifying all in-

put pixels using the ferns in the ensemble together with the

current fern: as before, every pixel of every input image is

input to each of the ferns and the resulting probability dis-

tributions of all ferns are multiplied. From the resulting dis-

tribution, the class with highest probability is the estimated

class for the current input pixel. The estimate is compared

to the ground truth and the average error over all pixels in

all images is computed.

The described steps are repeated iF times, after which

the fern generating the lowest error rate together with E is

added to E. After M ferns are added to the ensemble E,

the algorithm terminates.

3.5. From body parts to joint positions

After passing the ensemble of ferns, each pixel of the

body is assigned to a body part class. We filter out assum-

ingly incorrectly labeled pixels by creating connected clus-

ters in the depth image from equally labeled pixels and ig-

noring all pixels not belonging to the largest cluster of their

respective body part class. We infer the joint positions by

calculating the mean of the remaining cluster of each body

part. A drawback of this method is that the joints lie close

to the body surface, which does not resemble a real human

skeleton. We need to incorporate a procedure for finding

the joint positions more accurately and in a way that they

conform to a human body with respect to bone sizes and

locations.

4. Evaluation

Since no publicly available depth image datasets of in-

fants exist, we evaluate our method on a public pose estima-

tion dataset containing data from adults in order to compare

Algorithm 1 Fern training procedure

Input: M : predefined size of fern ensemble

iF : number of iterations per fern

S: depth of fern

R: size of neighborhood radius

I: labeled depth images

Output: ensemble of ferns E

1: Initialize:

2-D Array Histogram of size (#leaf nodes (2S)) ×
(#classes) with all zeros

Fbest = NULL

Errmin = ∞
2: for i = 0 to M do

3: for j = 0 to iF do

4: F := CREATERANDOMFERN(S,R)
5: for all images im ∈ I do

6: for all pixels p in im do

7: k := GETLEAFNODEINDEX(F, p)
8: Set Histogram[k][GETLABEL(p)] += 1
9: end for

10: end for

11: Err := EVALUATETRAININGERROR(E
⋃

F )
12: if Err < Errmin then

13: Fbest = F

Errmin = Err

14: end if

15: j += 1
16: end for

17: E = E
⋃

Fbest

18: i += 1
19: end for

it to the Kinect SDK. To show the usefulness of the system

for the proposed application we also evaluate it on manually

annotated recordings of an infant consisting of more than

1000 depth images. As a measure of accuracy we use the

average distance between estimated joints and ground truth

in all experiments. We experimentally determined the used

parameters in order to find a good tradeoff between speed

and accuracy.

4.1. Results ­ PDT13 dataset

We evaluate our system on the publicly available Person-

alized Depth Tracker Dataset (PDT13) [12]. It offers Kinect

depth recordings of 5 different adults, each performing 4

movement sequences of increasing difficulty. Ground truth

joint positions were generated based on measurements of a

full-body laser scanner.

We have trained our system using 735 K labeled depth

images. We set the number of ferns M to 15, the depth
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Table 1: Average error in mm per joint / body part over all sequences of PDT13 dataset.

Joint / body part Stomach HipC HipL HipR KneeL KneeR Neck FootL FootR

Avg. error 77 80 95 101 114 116 70 113 125

Joint / body part Head ToesL ToesR ShoulderL ShoulderR ElbowL ElbowR HandL HandR

Avg. error 96 154 172 97 90 166 146 248 332

Table 2: Average joint positions error in mm per sequence

for PDT13 dataset. The column containing M and F + num-

ber specifies the subject, the row containing D1-D4 the se-

quence.

Kinect SDK Our approach

D1 D2 D3 D4 D1 D2 D3 D4

M1 59 86 138 160 92 129 153 228

M2 38 67 81 183 70 119 117 220

M3 43 85 87 133 69 134 124 154

F1 54 98 112 187 88 142 178 178

F2 36 58 79 130 53 99 105 154

Mean 96 130

of each fern S to 12, the number of iterations per fern iF
to 32, and the neighborhood radius for pixel offsets R to

80 cm. The complete training takes about 9 hours on a

32 core workstation and the body part classification runs

in real-time on a cpu.

As the underlying skeleton differs from ours, we apply a

calibration step to remove the constant offset from our es-

timation to the ground truth. We take our estimate of an

”easy” pose (e.g. T-pose) once for each subject and calcu-

late the offset to the ground truth. We add that offset to all

our estimates for all sequences of that subject.

Table 2 shows a comparison with the Kinect SDK, in-

dicating the average joint position error per sequence. We

compare our results with those of the Kinect SDK, as both

approaches are constructed in a similar manner opposed to

the approach of [12], who uses a more complex model fit-

ting process. The reader is referred to the original work

for their results. Our approach achieves comparable perfor-

mance, although the average joint error over all sequences

is a bit higher than that of the Kinect SDK, with 130 mm

compared to 96 mm.

In table 1 the average error over all sequences is given for

each joint / body part. Our system lacks accuracy when it is

confronted with challenging limb poses and body rotations

leading to occlusions, which results in an increased distance

error.

4.2. Results ­ infant recording

Infants at the age of 3 months are sized around 60 cm in

average. We generate 180 K synthetic depth images using

a body model of appropriate size. We train an ensemble of

Figure 3: Annotations of joints illustrating infant move-

ments in the recorded sequence. Best viewed in color.

ferns containing 15 ferns of depth 13 and set the pixel offset

neighborhood radius to 20 cm.

We annotated a recording of an infant of size 60 cm con-

taining 1082 frames. The background of the depth image is

removed prior to the pose estimation, so that it only contains

the infant. It is lying on the back at a distance of 90 cm to

the camera. Figure 3 displays the annotations to illustrate

the bodily movements observed in the recording. While

the body center remains in a steady position, movements of

both arms and legs are observed. The infant in the recording

is wearing a diaper, which makes the hips and thighs look

much wider than those of the ground truth model. Figure 4

depicts an illustrative sample of the pose estimation. Figure

4a displays the ground truth labels for comparison with the

estimated body part labels. In Figure 4b and 4c the estimate

and the filtered estimate of body part labels are shown. We

can see that the body regions are found in the correct posi-

tions and the filtering removes wrong classifications. The

size of some regions differs from the ground truth, e.g. the

left shoulder, the hips and the knees. The estimated joint

positions are displayed in Figure 4d. Table 3 lists the aver-

age distance error per joint. The left hand shows the largest

average error of 149 mm, followed by the left shoulder with
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(a) Ground truth labels (b) Estimated body parts (c) Filtered classification (d) Estimated joint positions

Figure 4: Body part classification on infant data. Filtering removes wrong classifications. Estimated left shoulder and knee

regions are too big, possibly due to the diaper not being present in the training data. Best viewed in color.

Table 3: Average error in mm per joint / body part in infant recording.

Joint / body part Head Neck ShoulderR ShoulderL ElbowR ElbowL HandR HandL

Avg. error 37 20 27 73 24 20 44 149

Joint / body part Body center HipR HipL KneeR KneeL FootR FootL Mean

Avg. error 30 33 12 45 49 28 30 41

73 mm. Figure 6 displays the joint distance error per frame

for all joints. The error for the left hand jumps between up

to 40 cm and less than 5 cm distance to ground truth. There

are two main reasons for the failure cases of the left hand.

If the infant pulls up the knee sideways, the filtering some-

times removes the correctly detected hand because there is

a bigger region labeled ’hand’ on the knee (see Figure 5).

This problem occurs in frames 0 to 100 and frames 830 to

1082. As soon as the size of the wrongly detected body

part exceeds the size of the correctly detected part, the joint

is positioned at the wrong location, resulting in a jump of

the distance error. The training data does not contain such

poses which may be a reason for the misclassification. The

second problem we encounter occurs if the infant puts the

hand very close to the body, which is the case in frames 190

to 350. The hand merges with the body, and the predicted

hand is positioned on the knee. The system shows a very

steady and accurate performance with the distance error of

the vast majority of joints hardly exceeding 5 cm. The over-

all average joint position error is 41 mm.

4.3. Multi­view ferns

To show the flexibility and the potential of our approach

we train three ensembles of ferns using data from differ-

ent views: front (-45 to +45 degrees body rotation), left

(-135 to -45 degrees) and right (45 to 135 degrees). The

training data is produced using a human body model of size

130 cm. We chose the following parameters for this ex-

(a) Before filtering (b) After filtering

Figure 5: Sample of body part estimation with high error

for hand. Filtering removes correctly labeled hand as there

is a bigger region at the knee with the same label. Left hand

is colored in light green, left fingers in red. Best viewed in

color.

periment: the depth of the ferns is 12, we use 15 ferns per

ensemble and run 64 iterations per fern. The neighborhood

radius is set to 40 cm. Each fern is trained with 60 K syn-

thetic depth images. For evaluation, we manually annotated

a short sequence of a child walking from left to right and

back. The recording is manually divided into different sec-

tions (frontal, left, right, back) according to which side of

the child is turned towards the camera. Not every frame
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Figure 6: Joint distance error per frame for all joints in infant sequence. Best viewed in color.

of the sequence is annotated, which is why the front / back

view is skipped sometimes when turning from left to right

(and back). Figure 7 shows how the specialized ferns out-

perform the others in frames in which the person is seen

from the corresponding view. For each section, the respec-

tive specialized fern ensemble shows an average joint dis-

tance error of 5 to 10 cm, compared to distances of 15 to 25

cm for the others. These preliminary results support the as-

sumption that many specialized classifiers can improve the

overall accuracy over one very general classifier. Our sys-

tem allows fast training and therefore can generate different

classifiers quickly to suit varying requirements. We plan to

further explore the specialization of fern ensembles to spe-

cific tasks.

5. Conclusion & Future work

We proposed a flexible, fast to train body pose estima-

tion system which can be adapted to varying application re-

quirements. We implemented a data generation pipeline,

which lets us produce large amounts of labeled synthetic

depth images to feed the training method of the pose estima-

tor. To overcome the computational burden of recently pro-

posed approaches for training pose estimators, we present

a system based on random ferns. The training time is re-

duced by several orders of magnitude compared to existing

approaches. It requires 9 hours on a 32 core workstation,

opposed to 24 hours on a 1000 core cluster for the Kinect

approach using a similar amount of training data. Evalua-

tion on the PDT13 dataset shows comparable results, with

an average distance error of 130 mm for our system and 90

mm for the Kinect SDK. Evaluation on a manually anno-

Figure 7: Average joint distance error for three ferns, each

trained for a different view (front, left, right). Division of

the plot in sections Front, Left, Right, Back was done man-

ually according to what is observed in the recording. Best

viewed in color.

tated recording of an infant containing 1082 frames shows

an overall average distance error of 41 mm. The vast ma-

jority of joints is steadily estimated with distance errors be-

low 50 mm, only the left hand shows high distance error in

certain cases. By applying three view-dependent ferns to

a manually annotated sequence of a child, we have shown

how using specialized ferns for different views can improve

overall accuracy.

This system enables a reliable estimation of the body

pose of infants in 3D without restrictions like markers or

sensors attached to the body. It is a first step towards mark-
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erless 3D motion analysis of infants and will be the core

component in an automatic system for early-detection of

movement disorder cerebral palsy in 3 month old infants.

We demonstrated the flexibility of our system by applying

it to three different scenarios: adults, infants and children.

There is a wide range of applications in clinical motion as-

sessment that can profit from our system, e.g. analyzing

movements of toddlers or persons with missing limbs or

other rare bodily conditions for which a general body track-

ing system like the Kinect fails.

To eliminate the failure cases that appeared in the infant

recording, we will apply a scheme that weights the pixel-

wise estimates depending on their conformity to the kine-

matic chain of the body model. We intend to further im-

prove the accuracy of the estimation by integrating a track-

ing component and we plan to combine our discriminative

approach with a model-based approach in the manner of

[25]. Currently, more extensive studies with more infants

are in process. Based on the measured movements, we plan

to develop scores to resemble GMA as an aid for doctors

in diagnosing cerebral palsy. By building on the proposed

system, we aim to achieve an accuracy of pose estimation

that suits clinical requirements. We intend to build a tool

to be commonly used in clinics and pediatrists offices to

increase the number of early detections of movement disor-

ders, so that treatment can be started as soon as possible to

minimize the influences of the medical condition.
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